/* ** Copyright 2010 The Android Open Source Project ** ** Licensed under the Apache License, Version 2.0 (the "License"); ** you may not use this file except in compliance with the License. ** You may obtain a copy of the License at ** ** http://www.apache.org/licenses/LICENSE-2.0 ** ** Unless required by applicable law or agreed to in writing, software ** distributed under the License is distributed on an "AS IS" BASIS, ** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. ** See the License for the specific language governing permissions and ** limitations under the License. */ /* * Micro-benchmarking of sleep/cpu speed/memcpy/memset/memory reads/strcmp. */ #include <stdio.h> #include <stdlib.h> #include <string.h> #include <ctype.h> #include <math.h> #include <sched.h> #include <sys/resource.h> #include <time.h> #include <unistd.h> // The default size of data that will be manipulated in each iteration of // a memory benchmark. Can be modified with the --data_size option. #define DEFAULT_DATA_SIZE 1000000000 // The amount of memory allocated for the cold benchmarks to use. #define DEFAULT_COLD_DATA_SIZE (128*1024*1024) // The default size of the stride between each buffer for cold benchmarks. #define DEFAULT_COLD_STRIDE_SIZE 4096 // Number of nanoseconds in a second. #define NS_PER_SEC 1000000000 // The maximum number of arguments that a benchmark will accept. #define MAX_ARGS 2 // Default memory alignment of malloc. #define DEFAULT_MALLOC_MEMORY_ALIGNMENT 8 // Contains information about benchmark options. typedef struct { bool print_average; bool print_each_iter; int dst_align; int dst_or_mask; int src_align; int src_or_mask; int cpu_to_lock; int data_size; int dst_str_size; int cold_data_size; int cold_stride_size; int args[MAX_ARGS]; int num_args; } command_data_t; typedef void *(*void_func_t)(); typedef void *(*memcpy_func_t)(void *, const void *, size_t); typedef void *(*memset_func_t)(void *, int, size_t); typedef int (*strcmp_func_t)(const char *, const char *); typedef char *(*str_func_t)(char *, const char *); typedef size_t (*strlen_func_t)(const char *); // Struct that contains a mapping of benchmark name to benchmark function. typedef struct { const char *name; int (*ptr)(const char *, const command_data_t &, void_func_t func); void_func_t func; } function_t; // Get the current time in nanoseconds. uint64_t nanoTime() { struct timespec t; t.tv_sec = t.tv_nsec = 0; clock_gettime(CLOCK_MONOTONIC, &t); return static_cast<uint64_t>(t.tv_sec) * NS_PER_SEC + t.tv_nsec; } // Static analyzer warns about potential memory leak of orig_ptr // in getAlignedMemory. That is true and the callers in this program // do not free orig_ptr. But, we don't care about that in this // going-obsolete test program. So, here is a hack to trick the // static analyzer. static void *saved_orig_ptr; // Allocate memory with a specific alignment and return that pointer. // This function assumes an alignment value that is a power of 2. // If the alignment is 0, then use the pointer returned by malloc. uint8_t *getAlignedMemory(uint8_t *orig_ptr, int alignment, int or_mask) { uint64_t ptr = reinterpret_cast<uint64_t>(orig_ptr); saved_orig_ptr = orig_ptr; if (alignment > 0) { // When setting the alignment, set it to exactly the alignment chosen. // The pointer returned will be guaranteed not to be aligned to anything // more than that. ptr += alignment - (ptr & (alignment - 1)); ptr |= alignment | or_mask; } return reinterpret_cast<uint8_t*>(ptr); } // Allocate memory with a specific alignment and return that pointer. // This function assumes an alignment value that is a power of 2. // If the alignment is 0, then use the pointer returned by malloc. uint8_t *allocateAlignedMemory(size_t size, int alignment, int or_mask) { uint64_t ptr = reinterpret_cast<uint64_t>(malloc(size + 3 * alignment)); if (!ptr) return NULL; return getAlignedMemory((uint8_t*)ptr, alignment, or_mask); } void initString(uint8_t *buf, size_t size) { for (size_t i = 0; i < size - 1; i++) { buf[i] = static_cast<char>(32 + (i % 96)); } buf[size-1] = '\0'; } static inline double computeAverage(uint64_t time_ns, size_t size, size_t copies) { return ((size/1024.0) * copies) / ((double)time_ns/NS_PER_SEC); } static inline double computeRunningAvg(double avg, double running_avg, size_t cur_idx) { return (running_avg / (cur_idx + 1)) * cur_idx + (avg / (cur_idx + 1)); } static inline double computeRunningSquareAvg(double avg, double square_avg, size_t cur_idx) { return (square_avg / (cur_idx + 1)) * cur_idx + (avg / (cur_idx + 1)) * avg; } static inline double computeStdDev(double square_avg, double running_avg) { return sqrt(square_avg - running_avg * running_avg); } static inline void printIter(uint64_t time_ns, const char *name, size_t size, size_t copies, double avg) { printf("%s %zux%zu bytes took %.06f seconds (%f MB/s)\n", name, copies, size, (double)time_ns/NS_PER_SEC, avg/1024.0); } static inline void printSummary(uint64_t /*time_ns*/, const char *name, size_t size, size_t copies, double running_avg, double std_dev, double min, double max) { printf(" %s %zux%zu bytes average %.2f MB/s std dev %.4f min %.2f MB/s max %.2f MB/s\n", name, copies, size, running_avg/1024.0, std_dev/1024.0, min/1024.0, max/1024.0); } // For the cold benchmarks, a large buffer will be created which // contains many "size" buffers. This function will figure out the increment // needed between each buffer so that each one is aligned to "alignment". int getAlignmentIncrement(size_t size, int alignment) { if (alignment == 0) { alignment = DEFAULT_MALLOC_MEMORY_ALIGNMENT; } alignment *= 2; return size + alignment - (size % alignment); } uint8_t *getColdBuffer(int num_buffers, size_t incr, int alignment, int or_mask) { uint8_t *buffers = reinterpret_cast<uint8_t*>(malloc(num_buffers * incr + 3 * alignment)); if (!buffers) { return NULL; } return getAlignedMemory(buffers, alignment, or_mask); } static inline double computeColdAverage(uint64_t time_ns, size_t size, size_t copies, size_t num_buffers) { return ((size/1024.0) * copies * num_buffers) / ((double)time_ns/NS_PER_SEC); } static void inline printColdIter(uint64_t time_ns, const char *name, size_t size, size_t copies, size_t num_buffers, double avg) { printf("%s %zux%zux%zu bytes took %.06f seconds (%f MB/s)\n", name, copies, num_buffers, size, (double)time_ns/NS_PER_SEC, avg/1024.0); } static void inline printColdSummary( uint64_t /*time_ns*/, const char *name, size_t size, size_t copies, size_t num_buffers, double running_avg, double square_avg, double min, double max) { printf(" %s %zux%zux%zu bytes average %.2f MB/s std dev %.4f min %.2f MB/s max %.2f MB/s\n", name, copies, num_buffers, size, running_avg/1024.0, computeStdDev(running_avg, square_avg)/1024.0, min/1024.0, max/1024.0); } #define MAINLOOP(cmd_data, BENCH, COMPUTE_AVG, PRINT_ITER, PRINT_AVG) \ uint64_t time_ns; \ int iters = (cmd_data).args[1]; \ bool print_average = (cmd_data).print_average; \ bool print_each_iter = (cmd_data).print_each_iter; \ double min = 0.0, max = 0.0, running_avg = 0.0, square_avg = 0.0; \ double avg; \ for (int i = 0; iters == -1 || i < iters; i++) { \ time_ns = nanoTime(); \ BENCH; \ time_ns = nanoTime() - time_ns; \ avg = COMPUTE_AVG; \ if (print_average) { \ running_avg = computeRunningAvg(avg, running_avg, i); \ square_avg = computeRunningSquareAvg(avg, square_avg, i); \ if (min == 0.0 || avg < min) { \ min = avg; \ } \ if (avg > max) { \ max = avg; \ } \ } \ if (print_each_iter) { \ PRINT_ITER; \ } \ } \ if (print_average) { \ PRINT_AVG; \ } #define MAINLOOP_DATA(name, cmd_data, size, BENCH) \ size_t copies = (cmd_data).data_size/(size); \ size_t j; \ MAINLOOP(cmd_data, \ for (j = 0; j < copies; j++) { \ BENCH; \ }, \ computeAverage(time_ns, size, copies), \ printIter(time_ns, name, size, copies, avg), \ double std_dev = computeStdDev(square_avg, running_avg); \ printSummary(time_ns, name, size, copies, running_avg, \ std_dev, min, max)); #define MAINLOOP_COLD(name, cmd_data, size, num_incrs, BENCH) \ size_t num_strides = num_buffers / (num_incrs); \ if ((num_buffers % (num_incrs)) != 0) { \ num_strides--; \ } \ size_t copies = 1; \ num_buffers = (num_incrs) * num_strides; \ if (num_buffers * (size) < static_cast<size_t>((cmd_data).data_size)) { \ copies = (cmd_data).data_size / (num_buffers * (size)); \ } \ if (num_strides == 0) { \ printf("%s: Chosen options lead to no copies, aborting.\n", name); \ return -1; \ } \ size_t j, k; \ MAINLOOP(cmd_data, \ for (j = 0; j < copies; j++) { \ for (k = 0; k < (num_incrs); k++) { \ BENCH; \ } \ }, \ computeColdAverage(time_ns, size, copies, num_buffers), \ printColdIter(time_ns, name, size, copies, num_buffers, avg), \ printColdSummary(time_ns, name, size, copies, num_buffers, \ running_avg, square_avg, min, max)); // This version of the macro creates a single buffer of the given size and // alignment. The variable "buf" will be a pointer to the buffer and should // be used by the BENCH code. // INIT - Any specialized code needed to initialize the data. This will only // be executed once. // BENCH - The actual code to benchmark and is timed. #define BENCH_ONE_BUF(name, cmd_data, INIT, BENCH) \ size_t size = (cmd_data).args[0]; \ uint8_t *buf = allocateAlignedMemory(size, (cmd_data).dst_align, (cmd_data).dst_or_mask); \ if (!buf) \ return -1; \ INIT; \ MAINLOOP_DATA(name, cmd_data, size, BENCH); // This version of the macro creates two buffers of the given sizes and // alignments. The variables "buf1" and "buf2" will be pointers to the // buffers and should be used by the BENCH code. // INIT - Any specialized code needed to initialize the data. This will only // be executed once. // BENCH - The actual code to benchmark and is timed. #define BENCH_TWO_BUFS(name, cmd_data, INIT, BENCH) \ size_t size = (cmd_data).args[0]; \ uint8_t *buf1 = allocateAlignedMemory(size, (cmd_data).src_align, (cmd_data).src_or_mask); \ if (!buf1) \ return -1; \ size_t total_size = size; \ if ((cmd_data).dst_str_size > 0) \ total_size += (cmd_data).dst_str_size; \ uint8_t *buf2 = allocateAlignedMemory(total_size, (cmd_data).dst_align, (cmd_data).dst_or_mask); \ if (!buf2) \ return -1; \ INIT; \ MAINLOOP_DATA(name, cmd_data, size, BENCH); // This version of the macro attempts to benchmark code when the data // being manipulated is not in the cache, thus the cache is cold. It does // this by creating a single large buffer that is designed to be larger than // the largest cache in the system. The variable "buf" will be one slice // of the buffer that the BENCH code should use that is of the correct size // and alignment. In order to avoid any algorithms that prefetch past the end // of their "buf" and into the next sequential buffer, the code strides // through the buffer. Specifically, as "buf" values are iterated in BENCH // code, the end of "buf" is guaranteed to be at least "stride_size" away // from the next "buf". // INIT - Any specialized code needed to initialize the data. This will only // be executed once. // BENCH - The actual code to benchmark and is timed. #define COLD_ONE_BUF(name, cmd_data, INIT, BENCH) \ size_t size = (cmd_data).args[0]; \ size_t incr = getAlignmentIncrement(size, (cmd_data).dst_align); \ size_t num_buffers = (cmd_data).cold_data_size / incr; \ size_t buffer_size = num_buffers * incr; \ uint8_t *buffer = getColdBuffer(num_buffers, incr, (cmd_data).dst_align, (cmd_data).dst_or_mask); \ if (!buffer) \ return -1; \ size_t num_incrs = (cmd_data).cold_stride_size / incr + 1; \ size_t stride_incr = incr * num_incrs; \ uint8_t *buf; \ size_t l; \ INIT; \ MAINLOOP_COLD(name, (cmd_data), size, num_incrs, \ buf = buffer + k * incr; \ for (l = 0; l < num_strides; l++) { \ BENCH; \ buf += stride_incr; \ }); // This version of the macro attempts to benchmark code when the data // being manipulated is not in the cache, thus the cache is cold. It does // this by creating two large buffers each of which is designed to be // larger than the largest cache in the system. Two variables "buf1" and // "buf2" will be the two buffers that BENCH code should use. In order // to avoid any algorithms that prefetch past the end of either "buf1" // or "buf2" and into the next sequential buffer, the code strides through // both buffers. Specifically, as "buf1" and "buf2" values are iterated in // BENCH code, the end of "buf1" and "buf2" is guaranteed to be at least // "stride_size" away from the next "buf1" and "buf2". // INIT - Any specialized code needed to initialize the data. This will only // be executed once. // BENCH - The actual code to benchmark and is timed. #define COLD_TWO_BUFS(name, cmd_data, INIT, BENCH) \ size_t size = (cmd_data).args[0]; \ size_t buf1_incr = getAlignmentIncrement(size, (cmd_data).src_align); \ size_t total_size = size; \ if ((cmd_data).dst_str_size > 0) \ total_size += (cmd_data).dst_str_size; \ size_t buf2_incr = getAlignmentIncrement(total_size, (cmd_data).dst_align); \ size_t max_incr = (buf1_incr > buf2_incr) ? buf1_incr : buf2_incr; \ size_t num_buffers = (cmd_data).cold_data_size / max_incr; \ size_t buffer1_size = num_buffers * buf1_incr; \ size_t buffer2_size = num_buffers * buf2_incr; \ uint8_t *buffer1 = getColdBuffer(num_buffers, buf1_incr, (cmd_data).src_align, (cmd_data).src_or_mask); \ if (!buffer1) \ return -1; \ uint8_t *buffer2 = getColdBuffer(num_buffers, buf2_incr, (cmd_data).dst_align, (cmd_data).dst_or_mask); \ if (!buffer2) \ return -1; \ size_t min_incr = (buf1_incr < buf2_incr) ? buf1_incr : buf2_incr; \ size_t num_incrs = (cmd_data).cold_stride_size / min_incr + 1; \ size_t buf1_stride_incr = buf1_incr * num_incrs; \ size_t buf2_stride_incr = buf2_incr * num_incrs; \ size_t l; \ uint8_t *buf1; \ uint8_t *buf2; \ INIT; \ MAINLOOP_COLD(name, (cmd_data), size, num_incrs, \ buf1 = buffer1 + k * buf1_incr; \ buf2 = buffer2 + k * buf2_incr; \ for (l = 0; l < num_strides; l++) { \ BENCH; \ buf1 += buf1_stride_incr; \ buf2 += buf2_stride_incr; \ }); int benchmarkSleep(const char* /*name*/, const command_data_t &cmd_data, void_func_t /*func*/) { int delay = cmd_data.args[0]; MAINLOOP(cmd_data, sleep(delay), (double)time_ns/NS_PER_SEC, printf("sleep(%d) took %.06f seconds\n", delay, avg);, printf(" sleep(%d) average %.06f seconds std dev %f min %.06f seconds max %0.6f seconds\n", \ delay, running_avg, computeStdDev(square_avg, running_avg), \ min, max)); return 0; } int benchmarkMemset(const char *name, const command_data_t &cmd_data, void_func_t func) { memset_func_t memset_func = reinterpret_cast<memset_func_t>(func); BENCH_ONE_BUF(name, cmd_data, ;, memset_func(buf, i, size)); return 0; } int benchmarkMemsetCold(const char *name, const command_data_t &cmd_data, void_func_t func) { memset_func_t memset_func = reinterpret_cast<memset_func_t>(func); COLD_ONE_BUF(name, cmd_data, ;, memset_func(buf, l, size)); return 0; } int benchmarkMemcpy(const char *name, const command_data_t &cmd_data, void_func_t func) { memcpy_func_t memcpy_func = reinterpret_cast<memcpy_func_t>(func); BENCH_TWO_BUFS(name, cmd_data, memset(buf1, 0xff, size); \ memset(buf2, 0, size), memcpy_func(buf2, buf1, size)); return 0; } int benchmarkMemcpyCold(const char *name, const command_data_t &cmd_data, void_func_t func) { memcpy_func_t memcpy_func = reinterpret_cast<memcpy_func_t>(func); COLD_TWO_BUFS(name, cmd_data, memset(buffer1, 0xff, buffer1_size); \ memset(buffer2, 0x0, buffer2_size), memcpy_func(buf2, buf1, size)); return 0; } int benchmarkMemmoveBackwards(const char *name, const command_data_t &cmd_data, void_func_t func) { memcpy_func_t memmove_func = reinterpret_cast<memcpy_func_t>(func); size_t size = cmd_data.args[0]; size_t alloc_size = size * 2 + 3 * cmd_data.dst_align; uint8_t* src = allocateAlignedMemory(size, cmd_data.src_align, cmd_data.src_or_mask); if (!src) return -1; // Force memmove to do a backwards copy by getting a pointer into the source buffer. uint8_t* dst = getAlignedMemory(src+1, cmd_data.dst_align, cmd_data.dst_or_mask); if (!dst) return -1; MAINLOOP_DATA(name, cmd_data, size, memmove_func(dst, src, size)); return 0; } int benchmarkMemread(const char *name, const command_data_t &cmd_data, void_func_t /*func*/) { int size = cmd_data.args[0]; uint32_t *src = reinterpret_cast<uint32_t*>(malloc(size)); if (!src) return -1; memset(src, 0xff, size); // Use volatile so the compiler does not optimize away the reads. volatile int foo; size_t k; MAINLOOP_DATA(name, cmd_data, size, for (k = 0; k < size/sizeof(uint32_t); k++) foo = src[k]); free(src); return 0; } int benchmarkStrcmp(const char *name, const command_data_t &cmd_data, void_func_t func) { strcmp_func_t strcmp_func = reinterpret_cast<strcmp_func_t>(func); int retval; BENCH_TWO_BUFS(name, cmd_data, initString(buf1, size); \ initString(buf2, size), retval = strcmp_func(reinterpret_cast<char*>(buf1), reinterpret_cast<char*>(buf2)); \ if (retval != 0) printf("%s failed, return value %d\n", name, retval)); return 0; } int benchmarkStrcmpCold(const char *name, const command_data_t &cmd_data, void_func_t func) { strcmp_func_t strcmp_func = reinterpret_cast<strcmp_func_t>(func); int retval; COLD_TWO_BUFS(name, cmd_data, memset(buffer1, 'a', buffer1_size); \ memset(buffer2, 'a', buffer2_size); \ for (size_t i =0; i < num_buffers; i++) { \ buffer1[size-1+buf1_incr*i] = '\0'; \ buffer2[size-1+buf2_incr*i] = '\0'; \ }, retval = strcmp_func(reinterpret_cast<char*>(buf1), reinterpret_cast<char*>(buf2)); \ if (retval != 0) printf("%s failed, return value %d\n", name, retval)); return 0; } int benchmarkStrlen(const char *name, const command_data_t &cmd_data, void_func_t func) { size_t real_size; strlen_func_t strlen_func = reinterpret_cast<strlen_func_t>(func); BENCH_ONE_BUF(name, cmd_data, initString(buf, size), real_size = strlen_func(reinterpret_cast<char*>(buf)); \ if (real_size + 1 != size) { \ printf("%s failed, expected %zu, got %zu\n", name, size, real_size); \ return -1; \ }); return 0; } int benchmarkStrlenCold(const char *name, const command_data_t &cmd_data, void_func_t func) { strlen_func_t strlen_func = reinterpret_cast<strlen_func_t>(func); size_t real_size; COLD_ONE_BUF(name, cmd_data, memset(buffer, 'a', buffer_size); \ for (size_t i = 0; i < num_buffers; i++) { \ buffer[size-1+incr*i] = '\0'; \ }, real_size = strlen_func(reinterpret_cast<char*>(buf)); \ if (real_size + 1 != size) { \ printf("%s failed, expected %zu, got %zu\n", name, size, real_size); \ return -1; \ }); return 0; } int benchmarkStrcat(const char *name, const command_data_t &cmd_data, void_func_t func) { str_func_t str_func = reinterpret_cast<str_func_t>(func); int dst_str_size = cmd_data.dst_str_size; if (dst_str_size <= 0) { printf("%s requires --dst_str_size to be set to a non-zero value.\n", name); return -1; } BENCH_TWO_BUFS(name, cmd_data, initString(buf1, size); \ initString(buf2, dst_str_size), str_func(reinterpret_cast<char*>(buf2), reinterpret_cast<char*>(buf1)); buf2[dst_str_size-1] = '\0'); return 0; } int benchmarkStrcatCold(const char *name, const command_data_t &cmd_data, void_func_t func) { str_func_t str_func = reinterpret_cast<str_func_t>(func); int dst_str_size = cmd_data.dst_str_size; if (dst_str_size <= 0) { printf("%s requires --dst_str_size to be set to a non-zero value.\n", name); return -1; } COLD_TWO_BUFS(name, cmd_data, memset(buffer1, 'a', buffer1_size); \ memset(buffer2, 'b', buffer2_size); \ for (size_t i = 0; i < num_buffers; i++) { \ buffer1[size-1+buf1_incr*i] = '\0'; \ buffer2[dst_str_size-1+buf2_incr*i] = '\0'; \ }, str_func(reinterpret_cast<char*>(buf2), reinterpret_cast<char*>(buf1)); buf2[dst_str_size-1] = '\0'); return 0; } int benchmarkStrcpy(const char *name, const command_data_t &cmd_data, void_func_t func) { str_func_t str_func = reinterpret_cast<str_func_t>(func); BENCH_TWO_BUFS(name, cmd_data, initString(buf1, size); \ memset(buf2, 0, size), str_func(reinterpret_cast<char*>(buf2), reinterpret_cast<char*>(buf1))); return 0; } int benchmarkStrcpyCold(const char *name, const command_data_t &cmd_data, void_func_t func) { str_func_t str_func = reinterpret_cast<str_func_t>(func); COLD_TWO_BUFS(name, cmd_data, memset(buffer1, 'a', buffer1_size); \ for (size_t i = 0; i < num_buffers; i++) { \ buffer1[size-1+buf1_incr*i] = '\0'; \ } \ memset(buffer2, 0, buffer2_size), str_func(reinterpret_cast<char*>(buf2), reinterpret_cast<char*>(buf1))); return 0; } // Create the mapping structure. function_t function_table[] = { { "memcpy", benchmarkMemcpy, reinterpret_cast<void_func_t>(memcpy) }, { "memcpy_cold", benchmarkMemcpyCold, reinterpret_cast<void_func_t>(memcpy) }, { "memmove_forward", benchmarkMemcpy, reinterpret_cast<void_func_t>(memmove) }, { "memmove_backward", benchmarkMemmoveBackwards, reinterpret_cast<void_func_t>(memmove) }, { "memread", benchmarkMemread, NULL }, { "memset", benchmarkMemset, reinterpret_cast<void_func_t>(memset) }, { "memset_cold", benchmarkMemsetCold, reinterpret_cast<void_func_t>(memset) }, { "sleep", benchmarkSleep, NULL }, { "strcat", benchmarkStrcat, reinterpret_cast<void_func_t>(strcat) }, { "strcat_cold", benchmarkStrcatCold, reinterpret_cast<void_func_t>(strcat) }, { "strcmp", benchmarkStrcmp, reinterpret_cast<void_func_t>(strcmp) }, { "strcmp_cold", benchmarkStrcmpCold, reinterpret_cast<void_func_t>(strcmp) }, { "strcpy", benchmarkStrcpy, reinterpret_cast<void_func_t>(strcpy) }, { "strcpy_cold", benchmarkStrcpyCold, reinterpret_cast<void_func_t>(strcpy) }, { "strlen", benchmarkStrlen, reinterpret_cast<void_func_t>(strlen) }, { "strlen_cold", benchmarkStrlenCold, reinterpret_cast<void_func_t>(strlen) }, }; void usage() { printf("Usage:\n"); printf(" micro_bench [--data_size DATA_BYTES] [--print_average]\n"); printf(" [--no_print_each_iter] [--lock_to_cpu CORE]\n"); printf(" [--src_align ALIGN] [--src_or_mask OR_MASK]\n"); printf(" [--dst_align ALIGN] [--dst_or_mask OR_MASK]\n"); printf(" [--dst_str_size SIZE] [--cold_data_size DATA_BYTES]\n"); printf(" [--cold_stride_size SIZE]\n"); printf(" --data_size DATA_BYTES\n"); printf(" For the data benchmarks (memcpy/memset/memread) the approximate\n"); printf(" size of data, in bytes, that will be manipulated in each iteration.\n"); printf(" --print_average\n"); printf(" Print the average and standard deviation of all iterations.\n"); printf(" --no_print_each_iter\n"); printf(" Do not print any values in each iteration.\n"); printf(" --lock_to_cpu CORE\n"); printf(" Lock to the specified CORE. The default is to use the last core found.\n"); printf(" --dst_align ALIGN\n"); printf(" If the command supports it, align the destination pointer to ALIGN.\n"); printf(" The default is to use the value returned by malloc.\n"); printf(" --dst_or_mask OR_MASK\n"); printf(" If the command supports it, or in the OR_MASK on to the destination pointer.\n"); printf(" The OR_MASK must be smaller than the dst_align value.\n"); printf(" The default value is 0.\n"); printf(" --src_align ALIGN\n"); printf(" If the command supports it, align the source pointer to ALIGN. The default is to use the\n"); printf(" value returned by malloc.\n"); printf(" --src_or_mask OR_MASK\n"); printf(" If the command supports it, or in the OR_MASK on to the source pointer.\n"); printf(" The OR_MASK must be smaller than the src_align value.\n"); printf(" The default value is 0.\n"); printf(" --dst_str_size SIZE\n"); printf(" If the command supports it, create a destination string of this length.\n"); printf(" The default is to not update the destination string.\n"); printf(" --cold_data_size DATA_SIZE\n"); printf(" For _cold benchmarks, use this as the total amount of memory to use.\n"); printf(" The default is 128MB, and the number should be larger than the cache on the chip.\n"); printf(" This value is specified in bytes.\n"); printf(" --cold_stride_size SIZE\n"); printf(" For _cold benchmarks, use this as the minimum stride between iterations.\n"); printf(" The default is 4096 bytes and the number should be larger than the amount of data\n"); printf(" pulled in to the cache by each run of the benchmark.\n"); printf(" ITERS\n"); printf(" The number of iterations to execute each benchmark. If not\n"); printf(" passed in then run forever.\n"); printf(" micro_bench cpu UNUSED [ITERS]\n"); printf(" micro_bench [--dst_align ALIGN] [--dst_or_mask OR_MASK] memcpy NUM_BYTES [ITERS]\n"); printf(" micro_bench memread NUM_BYTES [ITERS]\n"); printf(" micro_bench [--dst_align ALIGN] [--dst_or_mask OR_MASK] memset NUM_BYTES [ITERS]\n"); printf(" micro_bench sleep TIME_TO_SLEEP [ITERS]\n"); printf(" TIME_TO_SLEEP\n"); printf(" The time in seconds to sleep.\n"); printf(" micro_bench [--src_align ALIGN] [--src_or_mask OR_MASK] [--dst_align ALIGN] [--dst_or_mask] [--dst_str_size SIZE] strcat NUM_BYTES [ITERS]\n"); printf(" micro_bench [--src_align ALIGN] [--src_or_mask OR_MASK] [--dst_align ALIGN] [--dst_or_mask OR_MASK] strcmp NUM_BYTES [ITERS]\n"); printf(" micro_bench [--src_align ALIGN] [--src_or_mask OR_MASK] [--dst_align ALIGN] [--dst_or_mask] strcpy NUM_BYTES [ITERS]\n"); printf(" micro_bench [--dst_align ALIGN] [--dst_or_mask OR_MASK] strlen NUM_BYTES [ITERS]\n"); printf("\n"); printf(" In addition, memcpy/memcpy/memset/strcat/strcpy/strlen have _cold versions\n"); printf(" that will execute the function on a buffer not in the cache.\n"); } function_t *processOptions(int argc, char **argv, command_data_t *cmd_data) { function_t *command = NULL; // Initialize the command_flags. cmd_data->print_average = false; cmd_data->print_each_iter = true; cmd_data->dst_align = 0; cmd_data->src_align = 0; cmd_data->src_or_mask = 0; cmd_data->dst_or_mask = 0; cmd_data->num_args = 0; cmd_data->cpu_to_lock = -1; cmd_data->data_size = DEFAULT_DATA_SIZE; cmd_data->dst_str_size = -1; cmd_data->cold_data_size = DEFAULT_COLD_DATA_SIZE; cmd_data->cold_stride_size = DEFAULT_COLD_STRIDE_SIZE; for (int i = 0; i < MAX_ARGS; i++) { cmd_data->args[i] = -1; } for (int i = 1; i < argc; i++) { if (argv[i][0] == '-') { int *save_value = NULL; if (strcmp(argv[i], "--print_average") == 0) { cmd_data->print_average = true; } else if (strcmp(argv[i], "--no_print_each_iter") == 0) { cmd_data->print_each_iter = false; } else if (strcmp(argv[i], "--dst_align") == 0) { save_value = &cmd_data->dst_align; } else if (strcmp(argv[i], "--src_align") == 0) { save_value = &cmd_data->src_align; } else if (strcmp(argv[i], "--dst_or_mask") == 0) { save_value = &cmd_data->dst_or_mask; } else if (strcmp(argv[i], "--src_or_mask") == 0) { save_value = &cmd_data->src_or_mask; } else if (strcmp(argv[i], "--lock_to_cpu") == 0) { save_value = &cmd_data->cpu_to_lock; } else if (strcmp(argv[i], "--data_size") == 0) { save_value = &cmd_data->data_size; } else if (strcmp(argv[i], "--dst_str_size") == 0) { save_value = &cmd_data->dst_str_size; } else if (strcmp(argv[i], "--cold_data_size") == 0) { save_value = &cmd_data->cold_data_size; } else if (strcmp(argv[i], "--cold_stride_size") == 0) { save_value = &cmd_data->cold_stride_size; } else { printf("Unknown option %s\n", argv[i]); return NULL; } if (save_value) { // Checking both characters without a strlen() call should be // safe since as long as the argument exists, one character will // be present (\0). And if the first character is '-', then // there will always be a second character (\0 again). if (i == argc - 1 || (argv[i + 1][0] == '-' && !isdigit(argv[i + 1][1]))) { printf("The option %s requires one argument.\n", argv[i]); return NULL; } *save_value = (int)strtol(argv[++i], NULL, 0); } } else if (!command) { for (size_t j = 0; j < sizeof(function_table)/sizeof(function_t); j++) { if (strcmp(argv[i], function_table[j].name) == 0) { command = &function_table[j]; break; } } if (!command) { printf("Uknown command %s\n", argv[i]); return NULL; } } else if (cmd_data->num_args > MAX_ARGS) { printf("More than %d number arguments passed in.\n", MAX_ARGS); return NULL; } else { cmd_data->args[cmd_data->num_args++] = atoi(argv[i]); } } // Check the arguments passed in make sense. if (cmd_data->num_args != 1 && cmd_data->num_args != 2) { printf("Not enough arguments passed in.\n"); return NULL; } else if (cmd_data->dst_align < 0) { printf("The --dst_align option must be greater than or equal to 0.\n"); return NULL; } else if (cmd_data->src_align < 0) { printf("The --src_align option must be greater than or equal to 0.\n"); return NULL; } else if (cmd_data->data_size <= 0) { printf("The --data_size option must be a positive number.\n"); return NULL; } else if ((cmd_data->dst_align & (cmd_data->dst_align - 1))) { printf("The --dst_align option must be a power of 2.\n"); return NULL; } else if ((cmd_data->src_align & (cmd_data->src_align - 1))) { printf("The --src_align option must be a power of 2.\n"); return NULL; } else if (!cmd_data->src_align && cmd_data->src_or_mask) { printf("The --src_or_mask option requires that --src_align be set.\n"); return NULL; } else if (!cmd_data->dst_align && cmd_data->dst_or_mask) { printf("The --dst_or_mask option requires that --dst_align be set.\n"); return NULL; } else if (cmd_data->src_or_mask > cmd_data->src_align) { printf("The value of --src_or_mask cannot be larger that --src_align.\n"); return NULL; } else if (cmd_data->dst_or_mask > cmd_data->dst_align) { printf("The value of --src_or_mask cannot be larger that --src_align.\n"); return NULL; } return command; } bool raisePriorityAndLock(int cpu_to_lock) { cpu_set_t cpuset; if (setpriority(PRIO_PROCESS, 0, -20)) { perror("Unable to raise priority of process.\n"); return false; } CPU_ZERO(&cpuset); if (sched_getaffinity(0, sizeof(cpuset), &cpuset) != 0) { perror("sched_getaffinity failed"); return false; } if (cpu_to_lock < 0) { // Lock to the last active core we find. for (int i = 0; i < CPU_SETSIZE; i++) { if (CPU_ISSET(i, &cpuset)) { cpu_to_lock = i; } } } else if (!CPU_ISSET(cpu_to_lock, &cpuset)) { printf("Cpu %d does not exist.\n", cpu_to_lock); return false; } if (cpu_to_lock < 0) { printf("Cannot find any valid cpu to lock.\n"); return false; } CPU_ZERO(&cpuset); CPU_SET(cpu_to_lock, &cpuset); if (sched_setaffinity(0, sizeof(cpuset), &cpuset) != 0) { perror("sched_setaffinity failed"); return false; } return true; } int main(int argc, char **argv) { command_data_t cmd_data; function_t *command = processOptions(argc, argv, &cmd_data); if (!command) { usage(); return -1; } if (!raisePriorityAndLock(cmd_data.cpu_to_lock)) { return -1; } printf("%s\n", command->name); return (*command->ptr)(command->name, cmd_data, command->func); }