/* * Copyright 2014 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "aes_operation.h" #include <stdio.h> #include <new> #include <UniquePtr.h> #include <openssl/aes.h> #include <openssl/err.h> #include <openssl/rand.h> #include <keymaster/logger.h> #include "aes_key.h" #include "openssl_err.h" namespace keymaster { static const size_t GCM_NONCE_SIZE = 12; inline bool allows_padding(keymaster_block_mode_t block_mode) { switch (block_mode) { case KM_MODE_CTR: case KM_MODE_GCM: return false; case KM_MODE_ECB: case KM_MODE_CBC: return true; } assert(false /* Can't get here */); return false; } static keymaster_error_t GetAndValidateGcmTagLength(const AuthorizationSet& begin_params, const AuthorizationSet& key_params, size_t* tag_length) { uint32_t tag_length_bits; if (!begin_params.GetTagValue(TAG_MAC_LENGTH, &tag_length_bits)) { return KM_ERROR_MISSING_MAC_LENGTH; } uint32_t min_tag_length_bits; if (!key_params.GetTagValue(TAG_MIN_MAC_LENGTH, &min_tag_length_bits)) { LOG_E("AES GCM key must have KM_TAG_MIN_MAC_LENGTH", 0); return KM_ERROR_INVALID_KEY_BLOB; } if (tag_length_bits % 8 != 0 || tag_length_bits > kMaxGcmTagLength || tag_length_bits < kMinGcmTagLength) { return KM_ERROR_UNSUPPORTED_MAC_LENGTH; } if (tag_length_bits < min_tag_length_bits) { return KM_ERROR_INVALID_MAC_LENGTH; } *tag_length = tag_length_bits / 8; return KM_ERROR_OK; } Operation* AesOperationFactory::CreateOperation(const Key& key, const AuthorizationSet& begin_params, keymaster_error_t* error) { *error = KM_ERROR_OK; const SymmetricKey* symmetric_key = static_cast<const SymmetricKey*>(&key); switch (symmetric_key->key_data_size()) { case 16: case 24: case 32: break; default: *error = KM_ERROR_UNSUPPORTED_KEY_SIZE; return nullptr; } keymaster_block_mode_t block_mode; if (!begin_params.GetTagValue(TAG_BLOCK_MODE, &block_mode)) { LOG_E("%d block modes specified in begin params", begin_params.GetTagCount(TAG_BLOCK_MODE)); *error = KM_ERROR_UNSUPPORTED_BLOCK_MODE; return nullptr; } else if (!supported(block_mode)) { LOG_E("Block mode %d not supported", block_mode); *error = KM_ERROR_UNSUPPORTED_BLOCK_MODE; return nullptr; } else if (!key.authorizations().Contains(TAG_BLOCK_MODE, block_mode)) { LOG_E("Block mode %d was specified, but not authorized by key", block_mode); *error = KM_ERROR_INCOMPATIBLE_BLOCK_MODE; return nullptr; } size_t tag_length = 0; if (block_mode == KM_MODE_GCM) { *error = GetAndValidateGcmTagLength(begin_params, key.authorizations(), &tag_length); if (*error != KM_ERROR_OK) { return nullptr; } } keymaster_padding_t padding; if (!GetAndValidatePadding(begin_params, key, &padding, error)) { return nullptr; } if (!allows_padding(block_mode) && padding != KM_PAD_NONE) { LOG_E("Mode does not support padding", 0); *error = KM_ERROR_INCOMPATIBLE_PADDING_MODE; return nullptr; } bool caller_nonce = key.authorizations().GetTagValue(TAG_CALLER_NONCE); Operation* op = nullptr; switch (purpose()) { case KM_PURPOSE_ENCRYPT: op = new (std::nothrow) AesEvpEncryptOperation(block_mode, padding, caller_nonce, tag_length, symmetric_key->key_data(), symmetric_key->key_data_size()); break; case KM_PURPOSE_DECRYPT: op = new (std::nothrow) AesEvpDecryptOperation(block_mode, padding, tag_length, symmetric_key->key_data(), symmetric_key->key_data_size()); break; default: *error = KM_ERROR_UNSUPPORTED_PURPOSE; return nullptr; } if (!op) *error = KM_ERROR_MEMORY_ALLOCATION_FAILED; return op; } static const keymaster_block_mode_t supported_block_modes[] = {KM_MODE_ECB, KM_MODE_CBC, KM_MODE_CTR, KM_MODE_GCM}; const keymaster_block_mode_t* AesOperationFactory::SupportedBlockModes(size_t* block_mode_count) const { *block_mode_count = array_length(supported_block_modes); return supported_block_modes; } static const keymaster_padding_t supported_padding_modes[] = {KM_PAD_NONE, KM_PAD_PKCS7}; const keymaster_padding_t* AesOperationFactory::SupportedPaddingModes(size_t* padding_mode_count) const { *padding_mode_count = array_length(supported_padding_modes); return supported_padding_modes; } AesEvpOperation::AesEvpOperation(keymaster_purpose_t purpose, keymaster_block_mode_t block_mode, keymaster_padding_t padding, bool caller_iv, size_t tag_length, const uint8_t* key, size_t key_size) : Operation(purpose), block_mode_(block_mode), caller_iv_(caller_iv), tag_length_(tag_length), data_started_(false), key_size_(key_size), padding_(padding) { memcpy(key_, key, key_size_); EVP_CIPHER_CTX_init(&ctx_); } AesEvpOperation::~AesEvpOperation() { EVP_CIPHER_CTX_cleanup(&ctx_); memset_s(aad_block_buf_.get(), AES_BLOCK_SIZE, 0); } keymaster_error_t AesEvpOperation::Begin(const AuthorizationSet& /* input_params */, AuthorizationSet* /* output_params */) { if (block_mode_ == KM_MODE_GCM) { aad_block_buf_length_ = 0; aad_block_buf_.reset(new (std::nothrow) uint8_t[AES_BLOCK_SIZE]); if (!aad_block_buf_.get()) return KM_ERROR_MEMORY_ALLOCATION_FAILED; } return InitializeCipher(); } keymaster_error_t AesEvpOperation::Update(const AuthorizationSet& additional_params, const Buffer& input, AuthorizationSet* /* output_params */, Buffer* output, size_t* input_consumed) { keymaster_error_t error; if (block_mode_ == KM_MODE_GCM) if (!HandleAad(additional_params, input, &error)) return error; if (!InternalUpdate(input.peek_read(), input.available_read(), output, &error)) return error; *input_consumed = input.available_read(); return KM_ERROR_OK; } inline bool is_bad_decrypt(unsigned long error) { return (ERR_GET_LIB(error) == ERR_LIB_CIPHER && // ERR_GET_REASON(error) == CIPHER_R_BAD_DECRYPT); } keymaster_error_t AesEvpOperation::Finish(const AuthorizationSet& additional_params, const Buffer& input, const Buffer& /* signature */, AuthorizationSet* output_params, Buffer* output) { keymaster_error_t error; if (!UpdateForFinish(additional_params, input, output_params, output, &error)) return error; if (!output->reserve(AES_BLOCK_SIZE)) return KM_ERROR_MEMORY_ALLOCATION_FAILED; if (block_mode_ == KM_MODE_GCM && aad_block_buf_length_ > 0 && !ProcessBufferedAadBlock(&error)) return error; int output_written = -1; if (!EVP_CipherFinal_ex(&ctx_, output->peek_write(), &output_written)) { if (tag_length_ > 0) return KM_ERROR_VERIFICATION_FAILED; LOG_E("Error encrypting final block: %s", ERR_error_string(ERR_peek_last_error(), NULL)); return TranslateLastOpenSslError(); } assert(output_written <= AES_BLOCK_SIZE); if (!output->advance_write(output_written)) return KM_ERROR_UNKNOWN_ERROR; return KM_ERROR_OK; } bool AesEvpOperation::need_iv() const { switch (block_mode_) { case KM_MODE_CBC: case KM_MODE_CTR: case KM_MODE_GCM: return true; case KM_MODE_ECB: return false; default: // Shouldn't get here. assert(false); return false; } } keymaster_error_t AesEvpOperation::InitializeCipher() { const EVP_CIPHER* cipher; switch (block_mode_) { case KM_MODE_ECB: switch (key_size_) { case 16: cipher = EVP_aes_128_ecb(); break; case 24: cipher = EVP_aes_192_ecb(); break; case 32: cipher = EVP_aes_256_ecb(); break; default: return KM_ERROR_UNSUPPORTED_KEY_SIZE; } break; case KM_MODE_CBC: switch (key_size_) { case 16: cipher = EVP_aes_128_cbc(); break; case 24: cipher = EVP_aes_192_cbc(); break; case 32: cipher = EVP_aes_256_cbc(); break; default: return KM_ERROR_UNSUPPORTED_KEY_SIZE; } break; case KM_MODE_CTR: switch (key_size_) { case 16: cipher = EVP_aes_128_ctr(); break; case 24: cipher = EVP_aes_192_ctr(); break; case 32: cipher = EVP_aes_256_ctr(); break; default: return KM_ERROR_UNSUPPORTED_KEY_SIZE; } break; case KM_MODE_GCM: switch (key_size_) { case 16: cipher = EVP_aes_128_gcm(); break; case 24: cipher = EVP_aes_192_gcm(); break; case 32: cipher = EVP_aes_256_gcm(); break; default: return KM_ERROR_UNSUPPORTED_KEY_SIZE; } break; default: return KM_ERROR_UNSUPPORTED_BLOCK_MODE; } if (!EVP_CipherInit_ex(&ctx_, cipher, NULL /* engine */, key_, iv_.get(), evp_encrypt_mode())) return TranslateLastOpenSslError(); switch (padding_) { case KM_PAD_NONE: EVP_CIPHER_CTX_set_padding(&ctx_, 0 /* disable padding */); break; case KM_PAD_PKCS7: // This is the default for OpenSSL EVP cipher operations. break; default: return KM_ERROR_UNSUPPORTED_PADDING_MODE; } if (block_mode_ == KM_MODE_GCM) { aad_block_buf_length_ = 0; aad_block_buf_.reset(new (std::nothrow) uint8_t[AES_BLOCK_SIZE]); if (!aad_block_buf_.get()) return KM_ERROR_MEMORY_ALLOCATION_FAILED; } return KM_ERROR_OK; } keymaster_error_t AesEvpOperation::GetIv(const AuthorizationSet& input_params) { keymaster_blob_t iv_blob; if (!input_params.GetTagValue(TAG_NONCE, &iv_blob)) { LOG_E("No IV provided", 0); return KM_ERROR_INVALID_ARGUMENT; } if (block_mode_ != KM_MODE_GCM && iv_blob.data_length != AES_BLOCK_SIZE) { LOG_E("Expected %d-byte IV for AES operation, but got %d bytes", AES_BLOCK_SIZE, iv_blob.data_length); return KM_ERROR_INVALID_NONCE; } if (block_mode_ == KM_MODE_GCM && iv_blob.data_length != GCM_NONCE_SIZE) { LOG_E("Expected %d-byte nonce for AES-GCM operation, but got %d bytes", GCM_NONCE_SIZE, iv_blob.data_length); return KM_ERROR_INVALID_NONCE; } iv_.reset(dup_array(iv_blob.data, iv_blob.data_length)); if (!iv_.get()) return KM_ERROR_MEMORY_ALLOCATION_FAILED; iv_length_ = iv_blob.data_length; return KM_ERROR_OK; } /* * Process Incoming Associated Authentication Data. * * This method is more complex than might be expected, because the underlying library silently does * the wrong thing when given partial AAD blocks, so we have to take care to process AAD in * AES_BLOCK_SIZE increments, buffering (in aad_block_buf_) when given smaller amounts of data. */ bool AesEvpOperation::HandleAad(const AuthorizationSet& input_params, const Buffer& input, keymaster_error_t* error) { assert(tag_length_ > 0); assert(error); keymaster_blob_t aad; if (input_params.GetTagValue(TAG_ASSOCIATED_DATA, &aad)) { if (data_started_) { *error = KM_ERROR_INVALID_TAG; return false; } if (aad_block_buf_length_ > 0) { FillBufferedAadBlock(&aad); if (aad_block_buf_length_ == AES_BLOCK_SIZE && !ProcessBufferedAadBlock(error)) return false; } size_t blocks_to_process = aad.data_length / AES_BLOCK_SIZE; if (blocks_to_process && !ProcessAadBlocks(aad.data, blocks_to_process, error)) return false; aad.data += blocks_to_process * AES_BLOCK_SIZE; aad.data_length -= blocks_to_process * AES_BLOCK_SIZE; FillBufferedAadBlock(&aad); assert(aad.data_length == 0); } if (input.available_read()) { data_started_ = true; // Data has begun, no more AAD is allowed. Process any buffered AAD. if (aad_block_buf_length_ > 0 && !ProcessBufferedAadBlock(error)) return false; } return true; } bool AesEvpOperation::ProcessBufferedAadBlock(keymaster_error_t* error) { int output_written; if (EVP_CipherUpdate(&ctx_, nullptr /* out */, &output_written, aad_block_buf_.get(), aad_block_buf_length_)) { aad_block_buf_length_ = 0; return true; } *error = TranslateLastOpenSslError(); return false; } bool AesEvpOperation::ProcessAadBlocks(const uint8_t* data, size_t blocks, keymaster_error_t* error) { int output_written; if (EVP_CipherUpdate(&ctx_, nullptr /* out */, &output_written, data, blocks * AES_BLOCK_SIZE)) return true; *error = TranslateLastOpenSslError(); return false; } inline size_t min(size_t a, size_t b) { return (a < b) ? a : b; } void AesEvpOperation::FillBufferedAadBlock(keymaster_blob_t* aad) { size_t to_buffer = min(AES_BLOCK_SIZE - aad_block_buf_length_, aad->data_length); memcpy(aad_block_buf_.get() + aad_block_buf_length_, aad->data, to_buffer); aad->data += to_buffer; aad->data_length -= to_buffer; aad_block_buf_length_ += to_buffer; } bool AesEvpOperation::InternalUpdate(const uint8_t* input, size_t input_length, Buffer* output, keymaster_error_t* error) { assert(output); assert(error); if (!input_length) return true; if (!output->reserve(input_length + AES_BLOCK_SIZE)) { *error = KM_ERROR_MEMORY_ALLOCATION_FAILED; return false; } int output_written = -1; if (!EVP_CipherUpdate(&ctx_, output->peek_write(), &output_written, input, input_length)) { *error = TranslateLastOpenSslError(); return false; } return output->advance_write(output_written); } bool AesEvpOperation::UpdateForFinish(const AuthorizationSet& additional_params, const Buffer& input, AuthorizationSet* output_params, Buffer* output, keymaster_error_t* error) { if (input.available_read() || !additional_params.empty()) { size_t input_consumed; *error = Update(additional_params, input, output_params, output, &input_consumed); if (*error != KM_ERROR_OK) return false; if (input_consumed != input.available_read()) { *error = KM_ERROR_INVALID_INPUT_LENGTH; return false; } } return true; } keymaster_error_t AesEvpEncryptOperation::Begin(const AuthorizationSet& input_params, AuthorizationSet* output_params) { if (!output_params) return KM_ERROR_OUTPUT_PARAMETER_NULL; if (need_iv()) { keymaster_error_t error = KM_ERROR_OK; if (input_params.find(TAG_NONCE) == -1) error = GenerateIv(); else if (caller_iv_) error = GetIv(input_params); else error = KM_ERROR_CALLER_NONCE_PROHIBITED; if (error == KM_ERROR_OK) output_params->push_back(TAG_NONCE, iv_.get(), iv_length_); else return error; } return AesEvpOperation::Begin(input_params, output_params); } keymaster_error_t AesEvpEncryptOperation::Finish(const AuthorizationSet& additional_params, const Buffer& input, const Buffer& signature, AuthorizationSet* output_params, Buffer* output) { if (!output->reserve(input.available_read() + AES_BLOCK_SIZE + tag_length_)) return KM_ERROR_MEMORY_ALLOCATION_FAILED; keymaster_error_t error = AesEvpOperation::Finish(additional_params, input, signature, output_params, output); if (error != KM_ERROR_OK) return error; if (tag_length_ > 0) { if (!output->reserve(tag_length_)) return KM_ERROR_MEMORY_ALLOCATION_FAILED; if (!EVP_CIPHER_CTX_ctrl(&ctx_, EVP_CTRL_GCM_GET_TAG, tag_length_, output->peek_write())) return TranslateLastOpenSslError(); if (!output->advance_write(tag_length_)) return KM_ERROR_UNKNOWN_ERROR; } return KM_ERROR_OK; } keymaster_error_t AesEvpEncryptOperation::GenerateIv() { iv_length_ = (block_mode_ == KM_MODE_GCM) ? GCM_NONCE_SIZE : AES_BLOCK_SIZE; iv_.reset(new (std::nothrow) uint8_t[iv_length_]); if (!iv_.get()) return KM_ERROR_MEMORY_ALLOCATION_FAILED; if (RAND_bytes(iv_.get(), iv_length_) != 1) return TranslateLastOpenSslError(); return KM_ERROR_OK; } keymaster_error_t AesEvpDecryptOperation::Begin(const AuthorizationSet& input_params, AuthorizationSet* output_params) { if (need_iv()) { keymaster_error_t error = GetIv(input_params); if (error != KM_ERROR_OK) return error; } if (tag_length_ > 0) { tag_buf_length_ = 0; tag_buf_.reset(new (std::nothrow) uint8_t[tag_length_]); if (!tag_buf_.get()) return KM_ERROR_MEMORY_ALLOCATION_FAILED; } return AesEvpOperation::Begin(input_params, output_params); } keymaster_error_t AesEvpDecryptOperation::Update(const AuthorizationSet& additional_params, const Buffer& input, AuthorizationSet* /* output_params */, Buffer* output, size_t* input_consumed) { if (!output || !input_consumed) return KM_ERROR_OUTPUT_PARAMETER_NULL; // Barring error, we'll consume it all. *input_consumed = input.available_read(); keymaster_error_t error; if (block_mode_ == KM_MODE_GCM) { if (!HandleAad(additional_params, input, &error)) return error; return ProcessAllButTagLengthBytes(input, output); } if (!InternalUpdate(input.peek_read(), input.available_read(), output, &error)) return error; return KM_ERROR_OK; } keymaster_error_t AesEvpDecryptOperation::ProcessAllButTagLengthBytes(const Buffer& input, Buffer* output) { if (input.available_read() <= tag_buf_unused()) { BufferCandidateTagData(input.peek_read(), input.available_read()); return KM_ERROR_OK; } const size_t data_available = tag_buf_length_ + input.available_read(); const size_t to_process = data_available - tag_length_; const size_t to_process_from_tag_buf = min(to_process, tag_buf_length_); const size_t to_process_from_input = to_process - to_process_from_tag_buf; if (!output->reserve(to_process + AES_BLOCK_SIZE)) return KM_ERROR_MEMORY_ALLOCATION_FAILED; keymaster_error_t error; if (!ProcessTagBufContentsAsData(to_process_from_tag_buf, output, &error)) return error; if (!InternalUpdate(input.peek_read(), to_process_from_input, output, &error)) return error; BufferCandidateTagData(input.peek_read() + to_process_from_input, input.available_read() - to_process_from_input); assert(tag_buf_unused() == 0); return KM_ERROR_OK; } bool AesEvpDecryptOperation::ProcessTagBufContentsAsData(size_t to_process, Buffer* output, keymaster_error_t* error) { assert(to_process <= tag_buf_length_); if (!InternalUpdate(tag_buf_.get(), to_process, output, error)) return false; if (to_process < tag_buf_length_) memmove(tag_buf_.get(), tag_buf_.get() + to_process, tag_buf_length_ - to_process); tag_buf_length_ -= to_process; return true; } void AesEvpDecryptOperation::BufferCandidateTagData(const uint8_t* data, size_t data_length) { assert(data_length <= tag_length_ - tag_buf_length_); memcpy(tag_buf_.get() + tag_buf_length_, data, data_length); tag_buf_length_ += data_length; } keymaster_error_t AesEvpDecryptOperation::Finish(const AuthorizationSet& additional_params, const Buffer& input, const Buffer& signature, AuthorizationSet* output_params, Buffer* output) { keymaster_error_t error; if (!UpdateForFinish(additional_params, input, output_params, output, &error)) return error; if (tag_buf_length_ < tag_length_) return KM_ERROR_INVALID_INPUT_LENGTH; else if (tag_length_ > 0 && !EVP_CIPHER_CTX_ctrl(&ctx_, EVP_CTRL_GCM_SET_TAG, tag_length_, tag_buf_.get())) return TranslateLastOpenSslError(); AuthorizationSet empty_params; Buffer empty_input; return AesEvpOperation::Finish(empty_params, empty_input, signature, output_params, output); } keymaster_error_t AesEvpOperation::Abort() { return KM_ERROR_OK; } } // namespace keymaster