/* * Copyright (C) 2014 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <fstream> #include <string> #include <vector> #include <openssl/evp.h> #include <openssl/x509.h> #include <hardware/keymaster0.h> #include <keymaster/key_factory.h> #include <keymaster/soft_keymaster_context.h> #include <keymaster/soft_keymaster_device.h> #include <keymaster/softkeymaster.h> #include "android_keymaster_test_utils.h" #include "attestation_record.h" #include "hmac_key.h" #include "keymaster0_engine.h" #include "openssl_utils.h" using std::ifstream; using std::istreambuf_iterator; using std::ofstream; using std::string; using std::unique_ptr; using std::vector; extern "C" { int __android_log_print(int prio, const char* tag, const char* fmt); int __android_log_print(int prio, const char* tag, const char* fmt) { (void)prio, (void)tag, (void)fmt; return 0; } } // extern "C" namespace keymaster { namespace test { const uint32_t kOsVersion = 060000; const uint32_t kOsPatchLevel = 201603; StdoutLogger logger; template <typename T> vector<T> make_vector(const T* array, size_t len) { return vector<T>(array, array + len); } /** * KeymasterEnforcement class for use in testing. It's permissive in the sense that it doesn't * check cryptoperiods, but restrictive in the sense that the clock never advances (so rate-limited * keys will only work once). */ class TestKeymasterEnforcement : public KeymasterEnforcement { public: TestKeymasterEnforcement() : KeymasterEnforcement(3, 3) {} virtual bool activation_date_valid(uint64_t /* activation_date */) const { return true; } virtual bool expiration_date_passed(uint64_t /* expiration_date */) const { return false; } virtual bool auth_token_timed_out(const hw_auth_token_t& /* token */, uint32_t /* timeout */) const { return false; } virtual uint32_t get_current_time() const { return 0; } virtual bool ValidateTokenSignature(const hw_auth_token_t& /* token */) const { return true; } }; /** * Variant of SoftKeymasterContext that provides a TestKeymasterEnforcement. */ class TestKeymasterContext : public SoftKeymasterContext { public: TestKeymasterContext() {} explicit TestKeymasterContext(const string& root_of_trust) : SoftKeymasterContext(root_of_trust) {} KeymasterEnforcement* enforcement_policy() override { return &test_policy_; } private: TestKeymasterEnforcement test_policy_; }; /** * Test instance creator that builds a pure software keymaster2 implementation. */ class SoftKeymasterTestInstanceCreator : public Keymaster2TestInstanceCreator { public: keymaster2_device_t* CreateDevice() const override { std::cerr << "Creating software-only device" << std::endl; context_ = new TestKeymasterContext; SoftKeymasterDevice* device = new SoftKeymasterDevice(context_); AuthorizationSet version_info(AuthorizationSetBuilder() .Authorization(TAG_OS_VERSION, kOsVersion) .Authorization(TAG_OS_PATCHLEVEL, kOsPatchLevel)); device->keymaster2_device()->configure(device->keymaster2_device(), &version_info); return device->keymaster2_device(); } bool algorithm_in_km0_hardware(keymaster_algorithm_t) const override { return false; } int keymaster0_calls() const override { return 0; } bool is_keymaster1_hw() const override { return false; } KeymasterContext* keymaster_context() const override { return context_; } string name() const override { return "Soft Keymaster2"; } private: mutable TestKeymasterContext* context_; }; /** * Test instance creator that builds keymaster2 instances which wrap a faked hardware keymaster0 * instance, with or without EC support. */ class Keymaster0AdapterTestInstanceCreator : public Keymaster2TestInstanceCreator { public: explicit Keymaster0AdapterTestInstanceCreator(bool support_ec) : support_ec_(support_ec) {} keymaster2_device_t* CreateDevice() const { std::cerr << "Creating keymaster0-backed device (with ec: " << std::boolalpha << support_ec_ << ")." << std::endl; hw_device_t* softkeymaster_device; EXPECT_EQ(0, openssl_open(&softkeymaster_module.common, KEYSTORE_KEYMASTER, &softkeymaster_device)); // Make the software device pretend to be hardware keymaster0_device_t* keymaster0_device = reinterpret_cast<keymaster0_device_t*>(softkeymaster_device); keymaster0_device->flags &= ~KEYMASTER_SOFTWARE_ONLY; if (!support_ec_) { // Make the software device pretend not to support EC keymaster0_device->flags &= ~KEYMASTER_SUPPORTS_EC; } counting_keymaster0_device_ = new Keymaster0CountingWrapper(keymaster0_device); context_ = new TestKeymasterContext; SoftKeymasterDevice* keymaster = new SoftKeymasterDevice(context_); keymaster->SetHardwareDevice(counting_keymaster0_device_); AuthorizationSet version_info(AuthorizationSetBuilder() .Authorization(TAG_OS_VERSION, kOsVersion) .Authorization(TAG_OS_PATCHLEVEL, kOsPatchLevel)); keymaster->keymaster2_device()->configure(keymaster->keymaster2_device(), &version_info); return keymaster->keymaster2_device(); } bool algorithm_in_km0_hardware(keymaster_algorithm_t algorithm) const override { switch (algorithm) { case KM_ALGORITHM_RSA: return true; case KM_ALGORITHM_EC: return support_ec_; default: return false; } } int keymaster0_calls() const override { return counting_keymaster0_device_->count(); } bool is_keymaster1_hw() const override { return false; } KeymasterContext* keymaster_context() const override { return context_; } string name() const override { return string("Wrapped fake keymaster0 ") + (support_ec_ ? "with" : "without") + " EC support"; } private: mutable TestKeymasterContext* context_; mutable Keymaster0CountingWrapper* counting_keymaster0_device_; bool support_ec_; }; /** * Test instance creator that builds a SoftKeymasterDevice which wraps a fake hardware keymaster1 * instance, with minimal digest support. */ class Sha256OnlyKeymaster1TestInstanceCreator : public Keymaster2TestInstanceCreator { keymaster2_device_t* CreateDevice() const { std::cerr << "Creating keymaster1-backed device that supports only SHA256"; // fake_device doesn't leak because device (below) takes ownership of it. keymaster1_device_t* fake_device = make_device_sha256_only( (new SoftKeymasterDevice(new TestKeymasterContext("PseudoHW")))->keymaster_device()); // device doesn't leak; it's cleaned up by device->keymaster_device()->common.close(). context_ = new TestKeymasterContext; SoftKeymasterDevice* device = new SoftKeymasterDevice(context_); device->SetHardwareDevice(fake_device); AuthorizationSet version_info(AuthorizationSetBuilder() .Authorization(TAG_OS_VERSION, kOsVersion) .Authorization(TAG_OS_PATCHLEVEL, kOsPatchLevel)); device->keymaster2_device()->configure(device->keymaster2_device(), &version_info); return device->keymaster2_device(); } bool algorithm_in_km0_hardware(keymaster_algorithm_t) const override { return false; } int keymaster0_calls() const override { return 0; } int minimal_digest_set() const override { return true; } bool is_keymaster1_hw() const override { return true; } KeymasterContext* keymaster_context() const override { return context_; } string name() const override { return "Wrapped fake keymaster1 w/minimal digests"; } private: mutable TestKeymasterContext* context_; }; /** * Test instance creator that builds a SoftKeymasterDevice which wraps a fake hardware keymaster1 * instance, with full digest support */ class Keymaster1TestInstanceCreator : public Keymaster2TestInstanceCreator { keymaster2_device_t* CreateDevice() const { std::cerr << "Creating keymaster1-backed device"; // fake_device doesn't leak because device (below) takes ownership of it. keymaster1_device_t* fake_device = (new SoftKeymasterDevice(new TestKeymasterContext("PseudoHW")))->keymaster_device(); // device doesn't leak; it's cleaned up by device->keymaster_device()->common.close(). context_ = new TestKeymasterContext; SoftKeymasterDevice* device = new SoftKeymasterDevice(context_); device->SetHardwareDevice(fake_device); AuthorizationSet version_info(AuthorizationSetBuilder() .Authorization(TAG_OS_VERSION, kOsVersion) .Authorization(TAG_OS_PATCHLEVEL, kOsPatchLevel)); device->keymaster2_device()->configure(device->keymaster2_device(), &version_info); return device->keymaster2_device(); } bool algorithm_in_km0_hardware(keymaster_algorithm_t) const override { return false; } int keymaster0_calls() const override { return 0; } int minimal_digest_set() const override { return false; } bool is_keymaster1_hw() const override { return true; } KeymasterContext* keymaster_context() const override { return context_; } string name() const override { return "Wrapped fake keymaster1 w/full digests"; } private: mutable TestKeymasterContext* context_; }; static auto test_params = testing::Values( InstanceCreatorPtr(new SoftKeymasterTestInstanceCreator), InstanceCreatorPtr(new Keymaster0AdapterTestInstanceCreator(true /* support_ec */)), InstanceCreatorPtr(new Keymaster0AdapterTestInstanceCreator(false /* support_ec */)), InstanceCreatorPtr(new Keymaster1TestInstanceCreator), InstanceCreatorPtr(new Sha256OnlyKeymaster1TestInstanceCreator)); class NewKeyGeneration : public Keymaster2Test { protected: void CheckBaseParams() { AuthorizationSet auths = sw_enforced(); EXPECT_GT(auths.SerializedSize(), 12U); EXPECT_TRUE(contains(auths, TAG_PURPOSE, KM_PURPOSE_SIGN)); EXPECT_TRUE(contains(auths, TAG_PURPOSE, KM_PURPOSE_VERIFY)); EXPECT_TRUE(contains(auths, TAG_USER_ID, 7)); EXPECT_TRUE(contains(auths, TAG_USER_AUTH_TYPE, HW_AUTH_PASSWORD)); EXPECT_TRUE(contains(auths, TAG_AUTH_TIMEOUT, 300)); // Verify that App ID, App data and ROT are NOT included. EXPECT_FALSE(contains(auths, TAG_ROOT_OF_TRUST)); EXPECT_FALSE(contains(auths, TAG_APPLICATION_ID)); EXPECT_FALSE(contains(auths, TAG_APPLICATION_DATA)); // Just for giggles, check that some unexpected tags/values are NOT present. EXPECT_FALSE(contains(auths, TAG_PURPOSE, KM_PURPOSE_ENCRYPT)); EXPECT_FALSE(contains(auths, TAG_PURPOSE, KM_PURPOSE_DECRYPT)); EXPECT_FALSE(contains(auths, TAG_AUTH_TIMEOUT, 301)); // Now check that unspecified, defaulted tags are correct. EXPECT_TRUE(contains(auths, KM_TAG_CREATION_DATETIME)); if (GetParam()->is_keymaster1_hw()) { // If the underlying (faked) HW is KM1, it will not have version info. EXPECT_FALSE(auths.Contains(TAG_OS_VERSION)); EXPECT_FALSE(auths.Contains(TAG_OS_PATCHLEVEL)); } else { // In all othe cases; SoftKeymasterDevice keys, or keymaster0 keys wrapped by // SoftKeymasterDevice, version information will be present and up to date. EXPECT_TRUE(contains(auths, TAG_OS_VERSION, kOsVersion)); EXPECT_TRUE(contains(auths, TAG_OS_PATCHLEVEL, kOsPatchLevel)); } } }; INSTANTIATE_TEST_CASE_P(AndroidKeymasterTest, NewKeyGeneration, test_params); TEST_P(NewKeyGeneration, Rsa) { ASSERT_EQ(KM_ERROR_OK, GenerateKey(AuthorizationSetBuilder() .RsaSigningKey(256, 3) .Digest(KM_DIGEST_NONE) .Padding(KM_PAD_NONE))); CheckBaseParams(); // Check specified tags are all present, and in the right set. AuthorizationSet crypto_params; AuthorizationSet non_crypto_params; if (GetParam()->algorithm_in_km0_hardware(KM_ALGORITHM_RSA)) { EXPECT_NE(0U, hw_enforced().size()); EXPECT_NE(0U, sw_enforced().size()); crypto_params.push_back(hw_enforced()); non_crypto_params.push_back(sw_enforced()); } else { EXPECT_EQ(0U, hw_enforced().size()); EXPECT_NE(0U, sw_enforced().size()); crypto_params.push_back(sw_enforced()); } EXPECT_TRUE(contains(crypto_params, TAG_ALGORITHM, KM_ALGORITHM_RSA)); EXPECT_FALSE(contains(non_crypto_params, TAG_ALGORITHM, KM_ALGORITHM_RSA)); EXPECT_TRUE(contains(crypto_params, TAG_KEY_SIZE, 256)); EXPECT_FALSE(contains(non_crypto_params, TAG_KEY_SIZE, 256)); EXPECT_TRUE(contains(crypto_params, TAG_RSA_PUBLIC_EXPONENT, 3)); EXPECT_FALSE(contains(non_crypto_params, TAG_RSA_PUBLIC_EXPONENT, 3)); EXPECT_EQ(KM_ERROR_OK, DeleteKey()); if (GetParam()->algorithm_in_km0_hardware(KM_ALGORITHM_RSA)) EXPECT_EQ(2, GetParam()->keymaster0_calls()); } TEST_P(NewKeyGeneration, RsaDefaultSize) { ASSERT_EQ(KM_ERROR_UNSUPPORTED_KEY_SIZE, GenerateKey(AuthorizationSetBuilder() .Authorization(TAG_ALGORITHM, KM_ALGORITHM_RSA) .Authorization(TAG_RSA_PUBLIC_EXPONENT, 3) .SigningKey())); EXPECT_EQ(0, GetParam()->keymaster0_calls()); } TEST_P(NewKeyGeneration, Ecdsa) { ASSERT_EQ(KM_ERROR_OK, GenerateKey(AuthorizationSetBuilder().EcdsaSigningKey(224).Digest(KM_DIGEST_NONE))); CheckBaseParams(); // Check specified tags are all present, and in the right set. AuthorizationSet crypto_params; AuthorizationSet non_crypto_params; if (GetParam()->algorithm_in_km0_hardware(KM_ALGORITHM_EC)) { EXPECT_NE(0U, hw_enforced().size()); EXPECT_NE(0U, sw_enforced().size()); crypto_params.push_back(hw_enforced()); non_crypto_params.push_back(sw_enforced()); } else { EXPECT_EQ(0U, hw_enforced().size()); EXPECT_NE(0U, sw_enforced().size()); crypto_params.push_back(sw_enforced()); } EXPECT_TRUE(contains(crypto_params, TAG_ALGORITHM, KM_ALGORITHM_EC)); EXPECT_FALSE(contains(non_crypto_params, TAG_ALGORITHM, KM_ALGORITHM_EC)); EXPECT_TRUE(contains(crypto_params, TAG_KEY_SIZE, 224)); EXPECT_FALSE(contains(non_crypto_params, TAG_KEY_SIZE, 224)); if (GetParam()->algorithm_in_km0_hardware(KM_ALGORITHM_EC)) EXPECT_EQ(1, GetParam()->keymaster0_calls()); } TEST_P(NewKeyGeneration, EcdsaDefaultSize) { ASSERT_EQ(KM_ERROR_UNSUPPORTED_KEY_SIZE, GenerateKey(AuthorizationSetBuilder() .Authorization(TAG_ALGORITHM, KM_ALGORITHM_EC) .SigningKey() .Digest(KM_DIGEST_NONE))); EXPECT_EQ(0, GetParam()->keymaster0_calls()); } TEST_P(NewKeyGeneration, EcdsaInvalidSize) { ASSERT_EQ(KM_ERROR_UNSUPPORTED_KEY_SIZE, GenerateKey(AuthorizationSetBuilder().EcdsaSigningKey(190).Digest(KM_DIGEST_NONE))); EXPECT_EQ(0, GetParam()->keymaster0_calls()); } TEST_P(NewKeyGeneration, EcdsaMismatchKeySize) { ASSERT_EQ(KM_ERROR_INVALID_ARGUMENT, GenerateKey(AuthorizationSetBuilder() .EcdsaSigningKey(224) .Authorization(TAG_EC_CURVE, KM_EC_CURVE_P_256) .Digest(KM_DIGEST_NONE))); } TEST_P(NewKeyGeneration, EcdsaAllValidSizes) { size_t valid_sizes[] = {224, 256, 384, 521}; for (size_t size : valid_sizes) { EXPECT_EQ(KM_ERROR_OK, GenerateKey(AuthorizationSetBuilder().EcdsaSigningKey(size).Digest( KM_DIGEST_NONE))) << "Failed to generate size: " << size; } if (GetParam()->algorithm_in_km0_hardware(KM_ALGORITHM_EC)) EXPECT_EQ(4, GetParam()->keymaster0_calls()); } TEST_P(NewKeyGeneration, HmacSha256) { ASSERT_EQ(KM_ERROR_OK, GenerateKey(AuthorizationSetBuilder() .HmacKey(128) .Digest(KM_DIGEST_SHA_2_256) .Authorization(TAG_MIN_MAC_LENGTH, 256))); EXPECT_EQ(0, GetParam()->keymaster0_calls()); } TEST_P(NewKeyGeneration, CheckKeySizes) { for (size_t key_size = 0; key_size <= kMaxHmacKeyLengthBits + 10; ++key_size) { if (key_size < kMinHmacKeyLengthBits || key_size > kMaxHmacKeyLengthBits || key_size % 8 != 0) { EXPECT_EQ(KM_ERROR_UNSUPPORTED_KEY_SIZE, GenerateKey(AuthorizationSetBuilder() .HmacKey(key_size) .Digest(KM_DIGEST_SHA_2_256) .Authorization(TAG_MIN_MAC_LENGTH, 256))) << "HMAC key size " << key_size << " invalid."; } else { EXPECT_EQ(KM_ERROR_OK, GenerateKey(AuthorizationSetBuilder() .HmacKey(key_size) .Digest(KM_DIGEST_SHA_2_256) .Authorization(TAG_MIN_MAC_LENGTH, 256))); } } EXPECT_EQ(0, GetParam()->keymaster0_calls()); } TEST_P(NewKeyGeneration, HmacMultipleDigests) { ASSERT_EQ(KM_ERROR_UNSUPPORTED_DIGEST, GenerateKey(AuthorizationSetBuilder() .HmacKey(128) .Digest(KM_DIGEST_SHA1) .Digest(KM_DIGEST_SHA_2_256) .Authorization(TAG_MIN_MAC_LENGTH, 128))); EXPECT_EQ(0, GetParam()->keymaster0_calls()); } TEST_P(NewKeyGeneration, HmacDigestNone) { ASSERT_EQ(KM_ERROR_UNSUPPORTED_DIGEST, GenerateKey(AuthorizationSetBuilder() .HmacKey(128) .Digest(KM_DIGEST_NONE) .Authorization(TAG_MIN_MAC_LENGTH, 128))); EXPECT_EQ(0, GetParam()->keymaster0_calls()); } TEST_P(NewKeyGeneration, HmacSha256TooShortMacLength) { ASSERT_EQ(KM_ERROR_UNSUPPORTED_MIN_MAC_LENGTH, GenerateKey(AuthorizationSetBuilder() .HmacKey(128) .Digest(KM_DIGEST_SHA_2_256) .Authorization(TAG_MIN_MAC_LENGTH, 48))); EXPECT_EQ(0, GetParam()->keymaster0_calls()); } TEST_P(NewKeyGeneration, HmacSha256NonIntegralOctetMacLength) { ASSERT_EQ(KM_ERROR_UNSUPPORTED_MIN_MAC_LENGTH, GenerateKey(AuthorizationSetBuilder() .HmacKey(128) .Digest(KM_DIGEST_SHA_2_256) .Authorization(TAG_MIN_MAC_LENGTH, 130))); EXPECT_EQ(0, GetParam()->keymaster0_calls()); } TEST_P(NewKeyGeneration, HmacSha256TooLongMacLength) { ASSERT_EQ(KM_ERROR_UNSUPPORTED_MIN_MAC_LENGTH, GenerateKey(AuthorizationSetBuilder() .HmacKey(128) .Digest(KM_DIGEST_SHA_2_256) .Authorization(TAG_MIN_MAC_LENGTH, 384))); EXPECT_EQ(0, GetParam()->keymaster0_calls()); } typedef Keymaster2Test GetKeyCharacteristics; INSTANTIATE_TEST_CASE_P(AndroidKeymasterTest, GetKeyCharacteristics, test_params); TEST_P(GetKeyCharacteristics, SimpleRsa) { ASSERT_EQ(KM_ERROR_OK, GenerateKey(AuthorizationSetBuilder() .RsaSigningKey(256, 3) .Digest(KM_DIGEST_NONE) .Padding(KM_PAD_NONE))); AuthorizationSet original(sw_enforced()); ASSERT_EQ(KM_ERROR_OK, GetCharacteristics()); EXPECT_EQ(original, sw_enforced()); if (GetParam()->algorithm_in_km0_hardware(KM_ALGORITHM_RSA)) EXPECT_EQ(1, GetParam()->keymaster0_calls()); } typedef Keymaster2Test SigningOperationsTest; INSTANTIATE_TEST_CASE_P(AndroidKeymasterTest, SigningOperationsTest, test_params); TEST_P(SigningOperationsTest, RsaSuccess) { ASSERT_EQ(KM_ERROR_OK, GenerateKey(AuthorizationSetBuilder() .RsaSigningKey(256, 3) .Digest(KM_DIGEST_NONE) .Padding(KM_PAD_NONE))); string message = "12345678901234567890123456789012"; string signature; SignMessage(message, &signature, KM_DIGEST_NONE, KM_PAD_NONE); if (GetParam()->algorithm_in_km0_hardware(KM_ALGORITHM_RSA)) EXPECT_EQ(3, GetParam()->keymaster0_calls()); } TEST_P(SigningOperationsTest, RsaPssSha256Success) { ASSERT_EQ(KM_ERROR_OK, GenerateKey(AuthorizationSetBuilder() .RsaSigningKey(768, 3) .Digest(KM_DIGEST_SHA_2_256) .Padding(KM_PAD_RSA_PSS))); // Use large message, which won't work without digesting. string message(1024, 'a'); string signature; SignMessage(message, &signature, KM_DIGEST_SHA_2_256, KM_PAD_RSA_PSS); if (GetParam()->algorithm_in_km0_hardware(KM_ALGORITHM_RSA)) EXPECT_EQ(3, GetParam()->keymaster0_calls()); } TEST_P(SigningOperationsTest, RsaPaddingNoneDoesNotAllowOther) { ASSERT_EQ(KM_ERROR_OK, GenerateKey(AuthorizationSetBuilder() .RsaSigningKey(512, 3) .Digest(KM_DIGEST_NONE) .Padding(KM_PAD_NONE))); string message = "12345678901234567890123456789012"; string signature; AuthorizationSet begin_params(client_params()); begin_params.push_back(TAG_DIGEST, KM_DIGEST_NONE); begin_params.push_back(TAG_PADDING, KM_PAD_RSA_PKCS1_1_5_SIGN); EXPECT_EQ(KM_ERROR_INCOMPATIBLE_PADDING_MODE, BeginOperation(KM_PURPOSE_SIGN, begin_params)); if (GetParam()->algorithm_in_km0_hardware(KM_ALGORITHM_RSA)) EXPECT_EQ(2, GetParam()->keymaster0_calls()); } TEST_P(SigningOperationsTest, RsaPkcs1Sha256Success) { ASSERT_EQ(KM_ERROR_OK, GenerateKey(AuthorizationSetBuilder() .RsaSigningKey(512, 3) .Digest(KM_DIGEST_SHA_2_256) .Padding(KM_PAD_RSA_PKCS1_1_5_SIGN))); string message(1024, 'a'); string signature; SignMessage(message, &signature, KM_DIGEST_SHA_2_256, KM_PAD_RSA_PKCS1_1_5_SIGN); if (GetParam()->algorithm_in_km0_hardware(KM_ALGORITHM_RSA)) EXPECT_EQ(3, GetParam()->keymaster0_calls()); } TEST_P(SigningOperationsTest, RsaPkcs1NoDigestSuccess) { ASSERT_EQ(KM_ERROR_OK, GenerateKey(AuthorizationSetBuilder() .RsaSigningKey(512, 3) .Digest(KM_DIGEST_NONE) .Padding(KM_PAD_RSA_PKCS1_1_5_SIGN))); string message(53, 'a'); string signature; SignMessage(message, &signature, KM_DIGEST_NONE, KM_PAD_RSA_PKCS1_1_5_SIGN); if (GetParam()->algorithm_in_km0_hardware(KM_ALGORITHM_RSA)) EXPECT_EQ(3, GetParam()->keymaster0_calls()); } TEST_P(SigningOperationsTest, RsaPkcs1NoDigestTooLarge) { ASSERT_EQ(KM_ERROR_OK, GenerateKey(AuthorizationSetBuilder() .RsaSigningKey(512, 3) .Digest(KM_DIGEST_NONE) .Padding(KM_PAD_RSA_PKCS1_1_5_SIGN))); string message(54, 'a'); AuthorizationSet begin_params(client_params()); begin_params.push_back(TAG_DIGEST, KM_DIGEST_NONE); begin_params.push_back(TAG_PADDING, KM_PAD_RSA_PKCS1_1_5_SIGN); EXPECT_EQ(KM_ERROR_OK, BeginOperation(KM_PURPOSE_SIGN, begin_params)); string result; string signature; EXPECT_EQ(KM_ERROR_INVALID_INPUT_LENGTH, FinishOperation(message, "", &signature)); if (GetParam()->algorithm_in_km0_hardware(KM_ALGORITHM_RSA)) EXPECT_EQ(2, GetParam()->keymaster0_calls()); } TEST_P(SigningOperationsTest, RsaPssSha256TooSmallKey) { // Key must be at least 10 bytes larger than hash, to provide eight bytes of random salt, so // verify that nine bytes larger than hash won't work. ASSERT_EQ(KM_ERROR_OK, GenerateKey(AuthorizationSetBuilder() .RsaSigningKey(256 + 9 * 8, 3) .Digest(KM_DIGEST_SHA_2_256) .Padding(KM_PAD_RSA_PSS))); string message(1024, 'a'); string signature; AuthorizationSet begin_params(client_params()); begin_params.push_back(TAG_DIGEST, KM_DIGEST_SHA_2_256); begin_params.push_back(TAG_PADDING, KM_PAD_RSA_PSS); EXPECT_EQ(KM_ERROR_INCOMPATIBLE_DIGEST, BeginOperation(KM_PURPOSE_SIGN, begin_params)); } TEST_P(SigningOperationsTest, RsaNoPaddingHugeData) { ASSERT_EQ(KM_ERROR_OK, GenerateKey(AuthorizationSetBuilder() .RsaSigningKey(256, 3) .Digest(KM_DIGEST_NONE) .Padding(KM_PAD_RSA_PKCS1_1_5_SIGN))); string message(64 * 1024, 'a'); string signature; AuthorizationSet begin_params(client_params()); begin_params.push_back(TAG_DIGEST, KM_DIGEST_NONE); begin_params.push_back(TAG_PADDING, KM_PAD_RSA_PKCS1_1_5_SIGN); ASSERT_EQ(KM_ERROR_OK, BeginOperation(KM_PURPOSE_SIGN, begin_params)); string result; size_t input_consumed; EXPECT_EQ(KM_ERROR_INVALID_INPUT_LENGTH, UpdateOperation(message, &result, &input_consumed)); if (GetParam()->algorithm_in_km0_hardware(KM_ALGORITHM_RSA)) EXPECT_EQ(2, GetParam()->keymaster0_calls()); } TEST_P(SigningOperationsTest, RsaAbort) { ASSERT_EQ(KM_ERROR_OK, GenerateKey(AuthorizationSetBuilder() .RsaSigningKey(256, 3) .Digest(KM_DIGEST_NONE) .Padding(KM_PAD_NONE))); AuthorizationSet begin_params(client_params()); begin_params.push_back(TAG_DIGEST, KM_DIGEST_NONE); begin_params.push_back(TAG_PADDING, KM_PAD_NONE); ASSERT_EQ(KM_ERROR_OK, BeginOperation(KM_PURPOSE_SIGN, begin_params)); EXPECT_EQ(KM_ERROR_OK, AbortOperation()); // Another abort should fail EXPECT_EQ(KM_ERROR_INVALID_OPERATION_HANDLE, AbortOperation()); if (GetParam()->algorithm_in_km0_hardware(KM_ALGORITHM_RSA)) EXPECT_EQ(2, GetParam()->keymaster0_calls()); } TEST_P(SigningOperationsTest, RsaUnsupportedPadding) { GenerateKey(AuthorizationSetBuilder() .RsaSigningKey(256, 3) .Digest(KM_DIGEST_SHA_2_256 /* supported digest */) .Padding(KM_PAD_PKCS7)); AuthorizationSet begin_params(client_params()); begin_params.push_back(TAG_DIGEST, KM_DIGEST_SHA_2_256); ASSERT_EQ(KM_ERROR_UNSUPPORTED_PADDING_MODE, BeginOperation(KM_PURPOSE_SIGN, begin_params)); if (GetParam()->algorithm_in_km0_hardware(KM_ALGORITHM_RSA)) EXPECT_EQ(2, GetParam()->keymaster0_calls()); } TEST_P(SigningOperationsTest, RsaNoDigest) { // PSS requires a digest. GenerateKey(AuthorizationSetBuilder() .RsaSigningKey(256, 3) .Digest(KM_DIGEST_NONE) .Padding(KM_PAD_RSA_PSS)); AuthorizationSet begin_params(client_params()); begin_params.push_back(TAG_DIGEST, KM_DIGEST_NONE); begin_params.push_back(TAG_PADDING, KM_PAD_RSA_PSS); ASSERT_EQ(KM_ERROR_INCOMPATIBLE_DIGEST, BeginOperation(KM_PURPOSE_SIGN, begin_params)); if (GetParam()->algorithm_in_km0_hardware(KM_ALGORITHM_RSA)) EXPECT_EQ(2, GetParam()->keymaster0_calls()); } TEST_P(SigningOperationsTest, RsaNoPadding) { // Padding must be specified ASSERT_EQ(KM_ERROR_OK, GenerateKey(AuthorizationSetBuilder().RsaKey(256, 3).SigningKey().Digest( KM_DIGEST_NONE))); AuthorizationSet begin_params(client_params()); begin_params.push_back(TAG_DIGEST, KM_DIGEST_NONE); ASSERT_EQ(KM_ERROR_UNSUPPORTED_PADDING_MODE, BeginOperation(KM_PURPOSE_SIGN, begin_params)); if (GetParam()->algorithm_in_km0_hardware(KM_ALGORITHM_RSA)) EXPECT_EQ(2, GetParam()->keymaster0_calls()); } TEST_P(SigningOperationsTest, RsaTooShortMessage) { ASSERT_EQ(KM_ERROR_OK, GenerateKey(AuthorizationSetBuilder() .RsaSigningKey(256, 3) .Digest(KM_DIGEST_NONE) .Padding(KM_PAD_NONE))); string message = "1234567890123456789012345678901"; string signature; SignMessage(message, &signature, KM_DIGEST_NONE, KM_PAD_NONE); if (GetParam()->algorithm_in_km0_hardware(KM_ALGORITHM_RSA)) EXPECT_EQ(3, GetParam()->keymaster0_calls()); } TEST_P(SigningOperationsTest, RsaSignWithEncryptionKey) { ASSERT_EQ(KM_ERROR_OK, GenerateKey(AuthorizationSetBuilder() .RsaEncryptionKey(256, 3) .Digest(KM_DIGEST_NONE) .Padding(KM_PAD_NONE))); AuthorizationSet begin_params(client_params()); begin_params.push_back(TAG_PADDING, KM_PAD_NONE); begin_params.push_back(TAG_DIGEST, KM_DIGEST_NONE); ASSERT_EQ(KM_ERROR_INCOMPATIBLE_PURPOSE, BeginOperation(KM_PURPOSE_SIGN, begin_params)); if (GetParam()->algorithm_in_km0_hardware(KM_ALGORITHM_RSA)) EXPECT_EQ(2, GetParam()->keymaster0_calls()); } TEST_P(SigningOperationsTest, RsaSignTooLargeMessage) { ASSERT_EQ(KM_ERROR_OK, GenerateKey(AuthorizationSetBuilder() .RsaSigningKey(256, 3) .Digest(KM_DIGEST_NONE) .Padding(KM_PAD_NONE))); string message(256 / 8, static_cast<char>(0xff)); string signature; AuthorizationSet begin_params(client_params()); begin_params.push_back(TAG_PADDING, KM_PAD_NONE); begin_params.push_back(TAG_DIGEST, KM_DIGEST_NONE); ASSERT_EQ(KM_ERROR_OK, BeginOperation(KM_PURPOSE_SIGN, begin_params)); string result; size_t input_consumed; ASSERT_EQ(KM_ERROR_OK, UpdateOperation(message, &result, &input_consumed)); ASSERT_EQ(message.size(), input_consumed); string output; ASSERT_EQ(KM_ERROR_INVALID_ARGUMENT, FinishOperation(&output)); if (GetParam()->algorithm_in_km0_hardware(KM_ALGORITHM_RSA)) EXPECT_EQ(3, GetParam()->keymaster0_calls()); } TEST_P(SigningOperationsTest, EcdsaSuccess) { ASSERT_EQ(KM_ERROR_OK, GenerateKey(AuthorizationSetBuilder().EcdsaSigningKey(224).Digest(KM_DIGEST_NONE))); string message(224 / 8, 'a'); string signature; SignMessage(message, &signature, KM_DIGEST_NONE); if (GetParam()->algorithm_in_km0_hardware(KM_ALGORITHM_EC)) EXPECT_EQ(3, GetParam()->keymaster0_calls()); } TEST_P(SigningOperationsTest, EcdsaSha256Success) { ASSERT_EQ(KM_ERROR_OK, GenerateKey(AuthorizationSetBuilder().EcdsaSigningKey(224).Digest( KM_DIGEST_SHA_2_256))); string message(1024, 'a'); string signature; SignMessage(message, &signature, KM_DIGEST_SHA_2_256); if (GetParam()->algorithm_in_km0_hardware(KM_ALGORITHM_EC)) EXPECT_EQ(3, GetParam()->keymaster0_calls()); } TEST_P(SigningOperationsTest, EcdsaSha384Success) { ASSERT_EQ(KM_ERROR_OK, GenerateKey(AuthorizationSetBuilder().EcdsaSigningKey(224).Digest( KM_DIGEST_SHA_2_384))); string message(1024, 'a'); string signature; SignMessage(message, &signature, KM_DIGEST_SHA_2_384); if (GetParam()->algorithm_in_km0_hardware(KM_ALGORITHM_EC)) EXPECT_EQ(3, GetParam()->keymaster0_calls()); } TEST_P(SigningOperationsTest, EcdsaNoPaddingHugeData) { ASSERT_EQ(KM_ERROR_OK, GenerateKey(AuthorizationSetBuilder().EcdsaSigningKey(224).Digest(KM_DIGEST_NONE))); string message(64 * 1024, 'a'); string signature; AuthorizationSet begin_params(client_params()); begin_params.push_back(TAG_DIGEST, KM_DIGEST_NONE); ASSERT_EQ(KM_ERROR_OK, BeginOperation(KM_PURPOSE_SIGN, begin_params)); string result; size_t input_consumed; EXPECT_EQ(KM_ERROR_OK, UpdateOperation(message, &result, &input_consumed)); if (GetParam()->algorithm_in_km0_hardware(KM_ALGORITHM_EC)) EXPECT_EQ(2, GetParam()->keymaster0_calls()); } TEST_P(SigningOperationsTest, EcdsaAllSizesAndHashes) { vector<int> key_sizes = {224, 256, 384, 521}; vector<keymaster_digest_t> digests = { KM_DIGEST_SHA1, KM_DIGEST_SHA_2_224, KM_DIGEST_SHA_2_256, KM_DIGEST_SHA_2_384, KM_DIGEST_SHA_2_512, }; for (int key_size : key_sizes) { for (keymaster_digest_t digest : digests) { ASSERT_EQ( KM_ERROR_OK, GenerateKey(AuthorizationSetBuilder().EcdsaSigningKey(key_size).Digest(digest))); string message(1024, 'a'); string signature; if (digest == KM_DIGEST_NONE) message.resize(key_size / 8); SignMessage(message, &signature, digest); } } if (GetParam()->algorithm_in_km0_hardware(KM_ALGORITHM_EC)) EXPECT_EQ(digests.size() * key_sizes.size() * 3, static_cast<size_t>(GetParam()->keymaster0_calls())); } TEST_P(SigningOperationsTest, AesEcbSign) { ASSERT_EQ(KM_ERROR_OK, GenerateKey(AuthorizationSetBuilder().AesEncryptionKey(128).Authorization( TAG_BLOCK_MODE, KM_MODE_ECB))); ASSERT_EQ(KM_ERROR_UNSUPPORTED_PURPOSE, BeginOperation(KM_PURPOSE_SIGN)); ASSERT_EQ(KM_ERROR_UNSUPPORTED_PURPOSE, BeginOperation(KM_PURPOSE_VERIFY)); EXPECT_EQ(0, GetParam()->keymaster0_calls()); } TEST_P(SigningOperationsTest, HmacSha1Success) { GenerateKey(AuthorizationSetBuilder() .HmacKey(128) .Digest(KM_DIGEST_SHA1) .Authorization(TAG_MIN_MAC_LENGTH, 160)); string message = "12345678901234567890123456789012"; string signature; MacMessage(message, &signature, 160); ASSERT_EQ(20U, signature.size()); EXPECT_EQ(0, GetParam()->keymaster0_calls()); } TEST_P(SigningOperationsTest, HmacSha224Success) { ASSERT_EQ(KM_ERROR_OK, GenerateKey(AuthorizationSetBuilder() .HmacKey(128) .Digest(KM_DIGEST_SHA_2_224) .Authorization(TAG_MIN_MAC_LENGTH, 160))); string message = "12345678901234567890123456789012"; string signature; MacMessage(message, &signature, 224); ASSERT_EQ(28U, signature.size()); EXPECT_EQ(0, GetParam()->keymaster0_calls()); } TEST_P(SigningOperationsTest, HmacSha256Success) { ASSERT_EQ(KM_ERROR_OK, GenerateKey(AuthorizationSetBuilder() .HmacKey(128) .Digest(KM_DIGEST_SHA_2_256) .Authorization(TAG_MIN_MAC_LENGTH, 256))); string message = "12345678901234567890123456789012"; string signature; MacMessage(message, &signature, 256); ASSERT_EQ(32U, signature.size()); EXPECT_EQ(0, GetParam()->keymaster0_calls()); } TEST_P(SigningOperationsTest, HmacSha384Success) { ASSERT_EQ(KM_ERROR_OK, GenerateKey(AuthorizationSetBuilder() .HmacKey(128) .Digest(KM_DIGEST_SHA_2_384) .Authorization(TAG_MIN_MAC_LENGTH, 384))); string message = "12345678901234567890123456789012"; string signature; MacMessage(message, &signature, 384); ASSERT_EQ(48U, signature.size()); EXPECT_EQ(0, GetParam()->keymaster0_calls()); } TEST_P(SigningOperationsTest, HmacSha512Success) { ASSERT_EQ(KM_ERROR_OK, GenerateKey(AuthorizationSetBuilder() .HmacKey(128) .Digest(KM_DIGEST_SHA_2_512) .Authorization(TAG_MIN_MAC_LENGTH, 384))); string message = "12345678901234567890123456789012"; string signature; MacMessage(message, &signature, 512); ASSERT_EQ(64U, signature.size()); EXPECT_EQ(0, GetParam()->keymaster0_calls()); } TEST_P(SigningOperationsTest, HmacLengthInKey) { // TODO(swillden): unified API should generate an error on key generation. ASSERT_EQ(KM_ERROR_OK, GenerateKey(AuthorizationSetBuilder() .HmacKey(128) .Digest(KM_DIGEST_SHA_2_256) .Authorization(TAG_MIN_MAC_LENGTH, 128))); string message = "12345678901234567890123456789012"; string signature; MacMessage(message, &signature, 160); ASSERT_EQ(20U, signature.size()); EXPECT_EQ(0, GetParam()->keymaster0_calls()); } TEST_P(SigningOperationsTest, HmacRfc4231TestCase3) { string key(20, 0xaa); string message(50, 0xdd); uint8_t sha_224_expected[] = { 0x7f, 0xb3, 0xcb, 0x35, 0x88, 0xc6, 0xc1, 0xf6, 0xff, 0xa9, 0x69, 0x4d, 0x7d, 0x6a, 0xd2, 0x64, 0x93, 0x65, 0xb0, 0xc1, 0xf6, 0x5d, 0x69, 0xd1, 0xec, 0x83, 0x33, 0xea, }; uint8_t sha_256_expected[] = { 0x77, 0x3e, 0xa9, 0x1e, 0x36, 0x80, 0x0e, 0x46, 0x85, 0x4d, 0xb8, 0xeb, 0xd0, 0x91, 0x81, 0xa7, 0x29, 0x59, 0x09, 0x8b, 0x3e, 0xf8, 0xc1, 0x22, 0xd9, 0x63, 0x55, 0x14, 0xce, 0xd5, 0x65, 0xfe, }; uint8_t sha_384_expected[] = { 0x88, 0x06, 0x26, 0x08, 0xd3, 0xe6, 0xad, 0x8a, 0x0a, 0xa2, 0xac, 0xe0, 0x14, 0xc8, 0xa8, 0x6f, 0x0a, 0xa6, 0x35, 0xd9, 0x47, 0xac, 0x9f, 0xeb, 0xe8, 0x3e, 0xf4, 0xe5, 0x59, 0x66, 0x14, 0x4b, 0x2a, 0x5a, 0xb3, 0x9d, 0xc1, 0x38, 0x14, 0xb9, 0x4e, 0x3a, 0xb6, 0xe1, 0x01, 0xa3, 0x4f, 0x27, }; uint8_t sha_512_expected[] = { 0xfa, 0x73, 0xb0, 0x08, 0x9d, 0x56, 0xa2, 0x84, 0xef, 0xb0, 0xf0, 0x75, 0x6c, 0x89, 0x0b, 0xe9, 0xb1, 0xb5, 0xdb, 0xdd, 0x8e, 0xe8, 0x1a, 0x36, 0x55, 0xf8, 0x3e, 0x33, 0xb2, 0x27, 0x9d, 0x39, 0xbf, 0x3e, 0x84, 0x82, 0x79, 0xa7, 0x22, 0xc8, 0x06, 0xb4, 0x85, 0xa4, 0x7e, 0x67, 0xc8, 0x07, 0xb9, 0x46, 0xa3, 0x37, 0xbe, 0xe8, 0x94, 0x26, 0x74, 0x27, 0x88, 0x59, 0xe1, 0x32, 0x92, 0xfb, }; CheckHmacTestVector(key, message, KM_DIGEST_SHA_2_224, make_string(sha_224_expected)); CheckHmacTestVector(key, message, KM_DIGEST_SHA_2_256, make_string(sha_256_expected)); CheckHmacTestVector(key, message, KM_DIGEST_SHA_2_384, make_string(sha_384_expected)); CheckHmacTestVector(key, message, KM_DIGEST_SHA_2_512, make_string(sha_512_expected)); EXPECT_EQ(0, GetParam()->keymaster0_calls()); } TEST_P(SigningOperationsTest, HmacRfc4231TestCase4) { uint8_t key_data[25] = { 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, }; string key = make_string(key_data); string message(50, 0xcd); uint8_t sha_224_expected[] = { 0x6c, 0x11, 0x50, 0x68, 0x74, 0x01, 0x3c, 0xac, 0x6a, 0x2a, 0xbc, 0x1b, 0xb3, 0x82, 0x62, 0x7c, 0xec, 0x6a, 0x90, 0xd8, 0x6e, 0xfc, 0x01, 0x2d, 0xe7, 0xaf, 0xec, 0x5a, }; uint8_t sha_256_expected[] = { 0x82, 0x55, 0x8a, 0x38, 0x9a, 0x44, 0x3c, 0x0e, 0xa4, 0xcc, 0x81, 0x98, 0x99, 0xf2, 0x08, 0x3a, 0x85, 0xf0, 0xfa, 0xa3, 0xe5, 0x78, 0xf8, 0x07, 0x7a, 0x2e, 0x3f, 0xf4, 0x67, 0x29, 0x66, 0x5b, }; uint8_t sha_384_expected[] = { 0x3e, 0x8a, 0x69, 0xb7, 0x78, 0x3c, 0x25, 0x85, 0x19, 0x33, 0xab, 0x62, 0x90, 0xaf, 0x6c, 0xa7, 0x7a, 0x99, 0x81, 0x48, 0x08, 0x50, 0x00, 0x9c, 0xc5, 0x57, 0x7c, 0x6e, 0x1f, 0x57, 0x3b, 0x4e, 0x68, 0x01, 0xdd, 0x23, 0xc4, 0xa7, 0xd6, 0x79, 0xcc, 0xf8, 0xa3, 0x86, 0xc6, 0x74, 0xcf, 0xfb, }; uint8_t sha_512_expected[] = { 0xb0, 0xba, 0x46, 0x56, 0x37, 0x45, 0x8c, 0x69, 0x90, 0xe5, 0xa8, 0xc5, 0xf6, 0x1d, 0x4a, 0xf7, 0xe5, 0x76, 0xd9, 0x7f, 0xf9, 0x4b, 0x87, 0x2d, 0xe7, 0x6f, 0x80, 0x50, 0x36, 0x1e, 0xe3, 0xdb, 0xa9, 0x1c, 0xa5, 0xc1, 0x1a, 0xa2, 0x5e, 0xb4, 0xd6, 0x79, 0x27, 0x5c, 0xc5, 0x78, 0x80, 0x63, 0xa5, 0xf1, 0x97, 0x41, 0x12, 0x0c, 0x4f, 0x2d, 0xe2, 0xad, 0xeb, 0xeb, 0x10, 0xa2, 0x98, 0xdd, }; CheckHmacTestVector(key, message, KM_DIGEST_SHA_2_224, make_string(sha_224_expected)); CheckHmacTestVector(key, message, KM_DIGEST_SHA_2_256, make_string(sha_256_expected)); CheckHmacTestVector(key, message, KM_DIGEST_SHA_2_384, make_string(sha_384_expected)); CheckHmacTestVector(key, message, KM_DIGEST_SHA_2_512, make_string(sha_512_expected)); EXPECT_EQ(0, GetParam()->keymaster0_calls()); } TEST_P(SigningOperationsTest, HmacRfc4231TestCase5) { string key(20, 0x0c); string message = "Test With Truncation"; uint8_t sha_224_expected[] = { 0x0e, 0x2a, 0xea, 0x68, 0xa9, 0x0c, 0x8d, 0x37, 0xc9, 0x88, 0xbc, 0xdb, 0x9f, 0xca, 0x6f, 0xa8, }; uint8_t sha_256_expected[] = { 0xa3, 0xb6, 0x16, 0x74, 0x73, 0x10, 0x0e, 0xe0, 0x6e, 0x0c, 0x79, 0x6c, 0x29, 0x55, 0x55, 0x2b, }; uint8_t sha_384_expected[] = { 0x3a, 0xbf, 0x34, 0xc3, 0x50, 0x3b, 0x2a, 0x23, 0xa4, 0x6e, 0xfc, 0x61, 0x9b, 0xae, 0xf8, 0x97, }; uint8_t sha_512_expected[] = { 0x41, 0x5f, 0xad, 0x62, 0x71, 0x58, 0x0a, 0x53, 0x1d, 0x41, 0x79, 0xbc, 0x89, 0x1d, 0x87, 0xa6, }; CheckHmacTestVector(key, message, KM_DIGEST_SHA_2_224, make_string(sha_224_expected)); CheckHmacTestVector(key, message, KM_DIGEST_SHA_2_256, make_string(sha_256_expected)); CheckHmacTestVector(key, message, KM_DIGEST_SHA_2_384, make_string(sha_384_expected)); CheckHmacTestVector(key, message, KM_DIGEST_SHA_2_512, make_string(sha_512_expected)); EXPECT_EQ(0, GetParam()->keymaster0_calls()); } TEST_P(SigningOperationsTest, HmacRfc4231TestCase6) { string key(131, 0xaa); string message = "Test Using Larger Than Block-Size Key - Hash Key First"; uint8_t sha_224_expected[] = { 0x95, 0xe9, 0xa0, 0xdb, 0x96, 0x20, 0x95, 0xad, 0xae, 0xbe, 0x9b, 0x2d, 0x6f, 0x0d, 0xbc, 0xe2, 0xd4, 0x99, 0xf1, 0x12, 0xf2, 0xd2, 0xb7, 0x27, 0x3f, 0xa6, 0x87, 0x0e, }; uint8_t sha_256_expected[] = { 0x60, 0xe4, 0x31, 0x59, 0x1e, 0xe0, 0xb6, 0x7f, 0x0d, 0x8a, 0x26, 0xaa, 0xcb, 0xf5, 0xb7, 0x7f, 0x8e, 0x0b, 0xc6, 0x21, 0x37, 0x28, 0xc5, 0x14, 0x05, 0x46, 0x04, 0x0f, 0x0e, 0xe3, 0x7f, 0x54, }; uint8_t sha_384_expected[] = { 0x4e, 0xce, 0x08, 0x44, 0x85, 0x81, 0x3e, 0x90, 0x88, 0xd2, 0xc6, 0x3a, 0x04, 0x1b, 0xc5, 0xb4, 0x4f, 0x9e, 0xf1, 0x01, 0x2a, 0x2b, 0x58, 0x8f, 0x3c, 0xd1, 0x1f, 0x05, 0x03, 0x3a, 0xc4, 0xc6, 0x0c, 0x2e, 0xf6, 0xab, 0x40, 0x30, 0xfe, 0x82, 0x96, 0x24, 0x8d, 0xf1, 0x63, 0xf4, 0x49, 0x52, }; uint8_t sha_512_expected[] = { 0x80, 0xb2, 0x42, 0x63, 0xc7, 0xc1, 0xa3, 0xeb, 0xb7, 0x14, 0x93, 0xc1, 0xdd, 0x7b, 0xe8, 0xb4, 0x9b, 0x46, 0xd1, 0xf4, 0x1b, 0x4a, 0xee, 0xc1, 0x12, 0x1b, 0x01, 0x37, 0x83, 0xf8, 0xf3, 0x52, 0x6b, 0x56, 0xd0, 0x37, 0xe0, 0x5f, 0x25, 0x98, 0xbd, 0x0f, 0xd2, 0x21, 0x5d, 0x6a, 0x1e, 0x52, 0x95, 0xe6, 0x4f, 0x73, 0xf6, 0x3f, 0x0a, 0xec, 0x8b, 0x91, 0x5a, 0x98, 0x5d, 0x78, 0x65, 0x98, }; CheckHmacTestVector(key, message, KM_DIGEST_SHA_2_224, make_string(sha_224_expected)); CheckHmacTestVector(key, message, KM_DIGEST_SHA_2_256, make_string(sha_256_expected)); CheckHmacTestVector(key, message, KM_DIGEST_SHA_2_384, make_string(sha_384_expected)); CheckHmacTestVector(key, message, KM_DIGEST_SHA_2_512, make_string(sha_512_expected)); EXPECT_EQ(0, GetParam()->keymaster0_calls()); } TEST_P(SigningOperationsTest, HmacRfc4231TestCase7) { string key(131, 0xaa); string message = "This is a test using a larger than block-size key and a larger than " "block-size data. The key needs to be hashed before being used by the HMAC " "algorithm."; uint8_t sha_224_expected[] = { 0x3a, 0x85, 0x41, 0x66, 0xac, 0x5d, 0x9f, 0x02, 0x3f, 0x54, 0xd5, 0x17, 0xd0, 0xb3, 0x9d, 0xbd, 0x94, 0x67, 0x70, 0xdb, 0x9c, 0x2b, 0x95, 0xc9, 0xf6, 0xf5, 0x65, 0xd1, }; uint8_t sha_256_expected[] = { 0x9b, 0x09, 0xff, 0xa7, 0x1b, 0x94, 0x2f, 0xcb, 0x27, 0x63, 0x5f, 0xbc, 0xd5, 0xb0, 0xe9, 0x44, 0xbf, 0xdc, 0x63, 0x64, 0x4f, 0x07, 0x13, 0x93, 0x8a, 0x7f, 0x51, 0x53, 0x5c, 0x3a, 0x35, 0xe2, }; uint8_t sha_384_expected[] = { 0x66, 0x17, 0x17, 0x8e, 0x94, 0x1f, 0x02, 0x0d, 0x35, 0x1e, 0x2f, 0x25, 0x4e, 0x8f, 0xd3, 0x2c, 0x60, 0x24, 0x20, 0xfe, 0xb0, 0xb8, 0xfb, 0x9a, 0xdc, 0xce, 0xbb, 0x82, 0x46, 0x1e, 0x99, 0xc5, 0xa6, 0x78, 0xcc, 0x31, 0xe7, 0x99, 0x17, 0x6d, 0x38, 0x60, 0xe6, 0x11, 0x0c, 0x46, 0x52, 0x3e, }; uint8_t sha_512_expected[] = { 0xe3, 0x7b, 0x6a, 0x77, 0x5d, 0xc8, 0x7d, 0xba, 0xa4, 0xdf, 0xa9, 0xf9, 0x6e, 0x5e, 0x3f, 0xfd, 0xde, 0xbd, 0x71, 0xf8, 0x86, 0x72, 0x89, 0x86, 0x5d, 0xf5, 0xa3, 0x2d, 0x20, 0xcd, 0xc9, 0x44, 0xb6, 0x02, 0x2c, 0xac, 0x3c, 0x49, 0x82, 0xb1, 0x0d, 0x5e, 0xeb, 0x55, 0xc3, 0xe4, 0xde, 0x15, 0x13, 0x46, 0x76, 0xfb, 0x6d, 0xe0, 0x44, 0x60, 0x65, 0xc9, 0x74, 0x40, 0xfa, 0x8c, 0x6a, 0x58, }; CheckHmacTestVector(key, message, KM_DIGEST_SHA_2_224, make_string(sha_224_expected)); CheckHmacTestVector(key, message, KM_DIGEST_SHA_2_256, make_string(sha_256_expected)); CheckHmacTestVector(key, message, KM_DIGEST_SHA_2_384, make_string(sha_384_expected)); CheckHmacTestVector(key, message, KM_DIGEST_SHA_2_512, make_string(sha_512_expected)); EXPECT_EQ(0, GetParam()->keymaster0_calls()); } TEST_P(SigningOperationsTest, HmacSha256TooLargeMacLength) { ASSERT_EQ(KM_ERROR_OK, GenerateKey(AuthorizationSetBuilder() .HmacKey(128) .Digest(KM_DIGEST_SHA_2_256) .Authorization(TAG_MIN_MAC_LENGTH, 256))); AuthorizationSet begin_params(client_params()); begin_params.push_back(TAG_MAC_LENGTH, 264); begin_params.push_back(TAG_DIGEST, KM_DIGEST_SHA_2_256); ASSERT_EQ(KM_ERROR_UNSUPPORTED_MAC_LENGTH, BeginOperation(KM_PURPOSE_SIGN, begin_params, nullptr /* output_params */)); EXPECT_EQ(0, GetParam()->keymaster0_calls()); } TEST_P(SigningOperationsTest, HmacSha256TooSmallMacLength) { ASSERT_EQ(KM_ERROR_OK, GenerateKey(AuthorizationSetBuilder() .HmacKey(128) .Digest(KM_DIGEST_SHA_2_256) .Authorization(TAG_MIN_MAC_LENGTH, 128))); AuthorizationSet begin_params(client_params()); begin_params.push_back(TAG_MAC_LENGTH, 120); begin_params.push_back(TAG_DIGEST, KM_DIGEST_SHA_2_256); ASSERT_EQ(KM_ERROR_INVALID_MAC_LENGTH, BeginOperation(KM_PURPOSE_SIGN, begin_params, nullptr /* output_params */)); EXPECT_EQ(0, GetParam()->keymaster0_calls()); } // TODO(swillden): Add more verification failure tests. typedef Keymaster2Test VerificationOperationsTest; INSTANTIATE_TEST_CASE_P(AndroidKeymasterTest, VerificationOperationsTest, test_params); TEST_P(VerificationOperationsTest, RsaSuccess) { ASSERT_EQ(KM_ERROR_OK, GenerateKey(AuthorizationSetBuilder() .RsaSigningKey(256, 3) .Digest(KM_DIGEST_NONE) .Padding(KM_PAD_NONE))); string message = "12345678901234567890123456789012"; string signature; SignMessage(message, &signature, KM_DIGEST_NONE, KM_PAD_NONE); VerifyMessage(message, signature, KM_DIGEST_NONE, KM_PAD_NONE); if (GetParam()->algorithm_in_km0_hardware(KM_ALGORITHM_RSA)) EXPECT_EQ(4, GetParam()->keymaster0_calls()); } TEST_P(VerificationOperationsTest, RsaPssSha256Success) { ASSERT_EQ(KM_ERROR_OK, GenerateKey(AuthorizationSetBuilder() .RsaSigningKey(768, 3) .Digest(KM_DIGEST_SHA_2_256) .Padding(KM_PAD_RSA_PSS))); // Use large message, which won't work without digesting. string message(1024, 'a'); string signature; SignMessage(message, &signature, KM_DIGEST_SHA_2_256, KM_PAD_RSA_PSS); VerifyMessage(message, signature, KM_DIGEST_SHA_2_256, KM_PAD_RSA_PSS); if (GetParam()->algorithm_in_km0_hardware(KM_ALGORITHM_RSA)) EXPECT_EQ(4, GetParam()->keymaster0_calls()); } TEST_P(VerificationOperationsTest, RsaPssSha224Success) { ASSERT_EQ(KM_ERROR_OK, GenerateKey(AuthorizationSetBuilder() .RsaSigningKey(512, 3) .Digest(KM_DIGEST_SHA_2_224) .Padding(KM_PAD_RSA_PSS))); // Use large message, which won't work without digesting. string message(1024, 'a'); string signature; SignMessage(message, &signature, KM_DIGEST_SHA_2_224, KM_PAD_RSA_PSS); VerifyMessage(message, signature, KM_DIGEST_SHA_2_224, KM_PAD_RSA_PSS); if (GetParam()->algorithm_in_km0_hardware(KM_ALGORITHM_RSA)) EXPECT_EQ(4, GetParam()->keymaster0_calls()); // Verify with OpenSSL. string pubkey; EXPECT_EQ(KM_ERROR_OK, ExportKey(KM_KEY_FORMAT_X509, &pubkey)); const uint8_t* p = reinterpret_cast<const uint8_t*>(pubkey.data()); unique_ptr<EVP_PKEY, EVP_PKEY_Delete> pkey( d2i_PUBKEY(nullptr /* alloc new */, &p, pubkey.size())); ASSERT_TRUE(pkey.get()); EVP_MD_CTX digest_ctx; EVP_MD_CTX_init(&digest_ctx); EVP_PKEY_CTX* pkey_ctx; EXPECT_EQ(1, EVP_DigestVerifyInit(&digest_ctx, &pkey_ctx, EVP_sha224(), nullptr /* engine */, pkey.get())); EXPECT_EQ(1, EVP_PKEY_CTX_set_rsa_padding(pkey_ctx, RSA_PKCS1_PSS_PADDING)); EXPECT_EQ(1, EVP_DigestVerifyUpdate(&digest_ctx, message.data(), message.size())); EXPECT_EQ(1, EVP_DigestVerifyFinal(&digest_ctx, reinterpret_cast<const uint8_t*>(signature.data()), signature.size())); EVP_MD_CTX_cleanup(&digest_ctx); } TEST_P(VerificationOperationsTest, RsaPssSha256CorruptSignature) { GenerateKey(AuthorizationSetBuilder() .RsaSigningKey(768, 3) .Digest(KM_DIGEST_SHA_2_256) .Padding(KM_PAD_RSA_PSS)); string message(1024, 'a'); string signature; SignMessage(message, &signature, KM_DIGEST_SHA_2_256, KM_PAD_RSA_PSS); ++signature[signature.size() / 2]; AuthorizationSet begin_params(client_params()); begin_params.push_back(TAG_DIGEST, KM_DIGEST_SHA_2_256); begin_params.push_back(TAG_PADDING, KM_PAD_RSA_PSS); EXPECT_EQ(KM_ERROR_OK, BeginOperation(KM_PURPOSE_VERIFY, begin_params)); string result; EXPECT_EQ(KM_ERROR_VERIFICATION_FAILED, FinishOperation(message, signature, &result)); if (GetParam()->algorithm_in_km0_hardware(KM_ALGORITHM_RSA)) EXPECT_EQ(4, GetParam()->keymaster0_calls()); } TEST_P(VerificationOperationsTest, RsaPssSha256CorruptInput) { ASSERT_EQ(KM_ERROR_OK, GenerateKey(AuthorizationSetBuilder() .RsaSigningKey(768, 3) .Digest(KM_DIGEST_SHA_2_256) .Padding(KM_PAD_RSA_PSS))); // Use large message, which won't work without digesting. string message(1024, 'a'); string signature; SignMessage(message, &signature, KM_DIGEST_SHA_2_256, KM_PAD_RSA_PSS); ++message[message.size() / 2]; AuthorizationSet begin_params(client_params()); begin_params.push_back(TAG_DIGEST, KM_DIGEST_SHA_2_256); begin_params.push_back(TAG_PADDING, KM_PAD_RSA_PSS); EXPECT_EQ(KM_ERROR_OK, BeginOperation(KM_PURPOSE_VERIFY, begin_params)); string result; EXPECT_EQ(KM_ERROR_VERIFICATION_FAILED, FinishOperation(message, signature, &result)); if (GetParam()->algorithm_in_km0_hardware(KM_ALGORITHM_RSA)) EXPECT_EQ(4, GetParam()->keymaster0_calls()); } TEST_P(VerificationOperationsTest, RsaPkcs1Sha256Success) { GenerateKey(AuthorizationSetBuilder() .RsaSigningKey(512, 3) .Digest(KM_DIGEST_SHA_2_256) .Padding(KM_PAD_RSA_PKCS1_1_5_SIGN)); string message(1024, 'a'); string signature; SignMessage(message, &signature, KM_DIGEST_SHA_2_256, KM_PAD_RSA_PKCS1_1_5_SIGN); VerifyMessage(message, signature, KM_DIGEST_SHA_2_256, KM_PAD_RSA_PKCS1_1_5_SIGN); if (GetParam()->algorithm_in_km0_hardware(KM_ALGORITHM_RSA)) EXPECT_EQ(4, GetParam()->keymaster0_calls()); } TEST_P(VerificationOperationsTest, RsaPks1Sha224Success) { ASSERT_EQ(KM_ERROR_OK, GenerateKey(AuthorizationSetBuilder() .RsaSigningKey(512, 3) .Digest(KM_DIGEST_SHA_2_224) .Padding(KM_PAD_RSA_PKCS1_1_5_SIGN))); // Use large message, which won't work without digesting. string message(1024, 'a'); string signature; SignMessage(message, &signature, KM_DIGEST_SHA_2_224, KM_PAD_RSA_PKCS1_1_5_SIGN); VerifyMessage(message, signature, KM_DIGEST_SHA_2_224, KM_PAD_RSA_PKCS1_1_5_SIGN); if (GetParam()->algorithm_in_km0_hardware(KM_ALGORITHM_RSA)) EXPECT_EQ(4, GetParam()->keymaster0_calls()); // Verify with OpenSSL. string pubkey; EXPECT_EQ(KM_ERROR_OK, ExportKey(KM_KEY_FORMAT_X509, &pubkey)); const uint8_t* p = reinterpret_cast<const uint8_t*>(pubkey.data()); unique_ptr<EVP_PKEY, EVP_PKEY_Delete> pkey( d2i_PUBKEY(nullptr /* alloc new */, &p, pubkey.size())); ASSERT_TRUE(pkey.get()); EVP_MD_CTX digest_ctx; EVP_MD_CTX_init(&digest_ctx); EVP_PKEY_CTX* pkey_ctx; EXPECT_EQ(1, EVP_DigestVerifyInit(&digest_ctx, &pkey_ctx, EVP_sha224(), nullptr /* engine */, pkey.get())); EXPECT_EQ(1, EVP_DigestVerifyUpdate(&digest_ctx, message.data(), message.size())); EXPECT_EQ(1, EVP_DigestVerifyFinal(&digest_ctx, reinterpret_cast<const uint8_t*>(signature.data()), signature.size())); EVP_MD_CTX_cleanup(&digest_ctx); } TEST_P(VerificationOperationsTest, RsaPkcs1Sha256CorruptSignature) { GenerateKey(AuthorizationSetBuilder() .RsaSigningKey(512, 3) .Digest(KM_DIGEST_SHA_2_256) .Padding(KM_PAD_RSA_PKCS1_1_5_SIGN)); string message(1024, 'a'); string signature; SignMessage(message, &signature, KM_DIGEST_SHA_2_256, KM_PAD_RSA_PKCS1_1_5_SIGN); ++signature[signature.size() / 2]; AuthorizationSet begin_params(client_params()); begin_params.push_back(TAG_DIGEST, KM_DIGEST_SHA_2_256); begin_params.push_back(TAG_PADDING, KM_PAD_RSA_PKCS1_1_5_SIGN); EXPECT_EQ(KM_ERROR_OK, BeginOperation(KM_PURPOSE_VERIFY, begin_params)); string result; EXPECT_EQ(KM_ERROR_VERIFICATION_FAILED, FinishOperation(message, signature, &result)); if (GetParam()->algorithm_in_km0_hardware(KM_ALGORITHM_RSA)) EXPECT_EQ(4, GetParam()->keymaster0_calls()); } TEST_P(VerificationOperationsTest, RsaPkcs1Sha256CorruptInput) { ASSERT_EQ(KM_ERROR_OK, GenerateKey(AuthorizationSetBuilder() .RsaSigningKey(512, 3) .Digest(KM_DIGEST_SHA_2_256) .Padding(KM_PAD_RSA_PKCS1_1_5_SIGN))); // Use large message, which won't work without digesting. string message(1024, 'a'); string signature; SignMessage(message, &signature, KM_DIGEST_SHA_2_256, KM_PAD_RSA_PKCS1_1_5_SIGN); ++message[message.size() / 2]; AuthorizationSet begin_params(client_params()); begin_params.push_back(TAG_DIGEST, KM_DIGEST_SHA_2_256); begin_params.push_back(TAG_PADDING, KM_PAD_RSA_PKCS1_1_5_SIGN); EXPECT_EQ(KM_ERROR_OK, BeginOperation(KM_PURPOSE_VERIFY, begin_params)); string result; EXPECT_EQ(KM_ERROR_VERIFICATION_FAILED, FinishOperation(message, signature, &result)); if (GetParam()->algorithm_in_km0_hardware(KM_ALGORITHM_RSA)) EXPECT_EQ(4, GetParam()->keymaster0_calls()); } TEST_P(VerificationOperationsTest, RsaAllDigestAndPadCombinations) { vector<keymaster_digest_t> digests = { KM_DIGEST_NONE, KM_DIGEST_MD5, KM_DIGEST_SHA1, KM_DIGEST_SHA_2_224, KM_DIGEST_SHA_2_256, KM_DIGEST_SHA_2_384, KM_DIGEST_SHA_2_512, }; vector<keymaster_padding_t> padding_modes{ KM_PAD_NONE, KM_PAD_RSA_PKCS1_1_5_SIGN, KM_PAD_RSA_PSS, }; int trial_count = 0; for (keymaster_padding_t padding_mode : padding_modes) { for (keymaster_digest_t digest : digests) { if (digest != KM_DIGEST_NONE && padding_mode == KM_PAD_NONE) // Digesting requires padding continue; // Compute key & message size that will work. size_t key_bits = 0; size_t message_len = 1000; if (digest == KM_DIGEST_NONE) { key_bits = 256; switch (padding_mode) { case KM_PAD_NONE: // Match key size. message_len = key_bits / 8; break; case KM_PAD_RSA_PKCS1_1_5_SIGN: message_len = key_bits / 8 - 11; break; case KM_PAD_RSA_PSS: // PSS requires a digest. continue; default: FAIL() << "Missing padding"; break; } } else { size_t digest_bits; switch (digest) { case KM_DIGEST_MD5: digest_bits = 128; break; case KM_DIGEST_SHA1: digest_bits = 160; break; case KM_DIGEST_SHA_2_224: digest_bits = 224; break; case KM_DIGEST_SHA_2_256: digest_bits = 256; break; case KM_DIGEST_SHA_2_384: digest_bits = 384; break; case KM_DIGEST_SHA_2_512: digest_bits = 512; break; default: FAIL() << "Missing digest"; } switch (padding_mode) { case KM_PAD_RSA_PKCS1_1_5_SIGN: key_bits = digest_bits + 8 * (11 + 19); break; case KM_PAD_RSA_PSS: key_bits = digest_bits * 2 + 2 * 8; break; default: FAIL() << "Missing padding"; break; } } GenerateKey(AuthorizationSetBuilder() .RsaSigningKey(key_bits, 3) .Digest(digest) .Padding(padding_mode)); string message(message_len, 'a'); string signature; SignMessage(message, &signature, digest, padding_mode); VerifyMessage(message, signature, digest, padding_mode); ++trial_count; } } if (GetParam()->algorithm_in_km0_hardware(KM_ALGORITHM_RSA)) EXPECT_EQ(trial_count * 4, GetParam()->keymaster0_calls()); } TEST_P(VerificationOperationsTest, EcdsaSuccess) { ASSERT_EQ(KM_ERROR_OK, GenerateKey(AuthorizationSetBuilder().EcdsaSigningKey(256).Digest(KM_DIGEST_NONE))); string message = "12345678901234567890123456789012"; string signature; SignMessage(message, &signature, KM_DIGEST_NONE); VerifyMessage(message, signature, KM_DIGEST_NONE); if (GetParam()->algorithm_in_km0_hardware(KM_ALGORITHM_EC)) EXPECT_EQ(4, GetParam()->keymaster0_calls()); } TEST_P(VerificationOperationsTest, EcdsaTooShort) { ASSERT_EQ(KM_ERROR_OK, GenerateKey(AuthorizationSetBuilder().EcdsaSigningKey(256).Digest(KM_DIGEST_NONE))); string message = "12345678901234567890"; string signature; SignMessage(message, &signature, KM_DIGEST_NONE); VerifyMessage(message, signature, KM_DIGEST_NONE); if (GetParam()->algorithm_in_km0_hardware(KM_ALGORITHM_EC)) EXPECT_EQ(4, GetParam()->keymaster0_calls()); } TEST_P(VerificationOperationsTest, EcdsaSlightlyTooLong) { ASSERT_EQ(KM_ERROR_OK, GenerateKey(AuthorizationSetBuilder().EcdsaSigningKey(521).Digest(KM_DIGEST_NONE))); string message(66, 'a'); string signature; SignMessage(message, &signature, KM_DIGEST_NONE); VerifyMessage(message, signature, KM_DIGEST_NONE); // Modifying low-order bits doesn't matter, because they didn't get signed. Ugh. message[65] ^= 7; VerifyMessage(message, signature, KM_DIGEST_NONE); if (GetParam()->algorithm_in_km0_hardware(KM_ALGORITHM_EC)) EXPECT_EQ(5, GetParam()->keymaster0_calls()); } TEST_P(VerificationOperationsTest, EcdsaSha256Success) { ASSERT_EQ(KM_ERROR_OK, GenerateKey(AuthorizationSetBuilder() .EcdsaSigningKey(256) .Digest(KM_DIGEST_SHA_2_256) .Digest(KM_DIGEST_NONE))); string message = "12345678901234567890123456789012"; string signature; SignMessage(message, &signature, KM_DIGEST_SHA_2_256); VerifyMessage(message, signature, KM_DIGEST_SHA_2_256); if (GetParam()->algorithm_in_km0_hardware(KM_ALGORITHM_EC)) EXPECT_EQ(4, GetParam()->keymaster0_calls()); // Just for giggles, try verifying with the wrong digest. AuthorizationSet begin_params(client_params()); begin_params.push_back(TAG_DIGEST, KM_DIGEST_NONE); EXPECT_EQ(KM_ERROR_OK, BeginOperation(KM_PURPOSE_VERIFY, begin_params)); string result; EXPECT_EQ(KM_ERROR_VERIFICATION_FAILED, FinishOperation(message, signature, &result)); } TEST_P(VerificationOperationsTest, EcdsaSha224Success) { ASSERT_EQ(KM_ERROR_OK, GenerateKey(AuthorizationSetBuilder().EcdsaSigningKey(256).Digest( KM_DIGEST_SHA_2_224))); string message = "12345678901234567890123456789012"; string signature; SignMessage(message, &signature, KM_DIGEST_SHA_2_224); VerifyMessage(message, signature, KM_DIGEST_SHA_2_224); if (GetParam()->algorithm_in_km0_hardware(KM_ALGORITHM_EC)) EXPECT_EQ(4, GetParam()->keymaster0_calls()); // Just for giggles, try verifying with the wrong digest. AuthorizationSet begin_params(client_params()); begin_params.push_back(TAG_DIGEST, KM_DIGEST_NONE); EXPECT_EQ(KM_ERROR_OK, BeginOperation(KM_PURPOSE_VERIFY, begin_params)); string result; EXPECT_EQ(KM_ERROR_VERIFICATION_FAILED, FinishOperation(message, signature, &result)); } TEST_P(VerificationOperationsTest, EcdsaAllDigestsAndKeySizes) { keymaster_digest_t digests[] = { KM_DIGEST_SHA1, KM_DIGEST_SHA_2_224, KM_DIGEST_SHA_2_256, KM_DIGEST_SHA_2_384, KM_DIGEST_SHA_2_512, }; size_t key_sizes[] = {224, 256, 384, 521}; string message = "1234567890"; string signature; for (auto key_size : key_sizes) { AuthorizationSetBuilder builder; builder.EcdsaSigningKey(key_size); for (auto digest : digests) builder.Digest(digest); ASSERT_EQ(KM_ERROR_OK, GenerateKey(builder)); for (auto digest : digests) { SignMessage(message, &signature, digest); VerifyMessage(message, signature, digest); } } if (GetParam()->algorithm_in_km0_hardware(KM_ALGORITHM_EC)) EXPECT_EQ(static_cast<int>(array_length(key_sizes) * (1 + 3 * array_length(digests))), GetParam()->keymaster0_calls()); } TEST_P(VerificationOperationsTest, HmacSha1Success) { GenerateKey(AuthorizationSetBuilder() .HmacKey(128) .Digest(KM_DIGEST_SHA1) .Authorization(TAG_MIN_MAC_LENGTH, 128)); string message = "123456789012345678901234567890123456789012345678"; string signature; MacMessage(message, &signature, 160); VerifyMac(message, signature); EXPECT_EQ(0, GetParam()->keymaster0_calls()); } TEST_P(VerificationOperationsTest, HmacSha224Success) { GenerateKey(AuthorizationSetBuilder() .HmacKey(128) .Digest(KM_DIGEST_SHA_2_224) .Authorization(TAG_MIN_MAC_LENGTH, 128)); string message = "123456789012345678901234567890123456789012345678"; string signature; MacMessage(message, &signature, 224); VerifyMac(message, signature); EXPECT_EQ(0, GetParam()->keymaster0_calls()); } TEST_P(VerificationOperationsTest, HmacSha256Success) { GenerateKey(AuthorizationSetBuilder() .HmacKey(128) .Digest(KM_DIGEST_SHA_2_256) .Authorization(TAG_MIN_MAC_LENGTH, 128)); string message = "123456789012345678901234567890123456789012345678"; string signature; MacMessage(message, &signature, 256); VerifyMac(message, signature); EXPECT_EQ(0, GetParam()->keymaster0_calls()); } TEST_P(VerificationOperationsTest, HmacSha256TooShortMac) { GenerateKey(AuthorizationSetBuilder() .HmacKey(128) .Digest(KM_DIGEST_SHA_2_256) .Authorization(TAG_MIN_MAC_LENGTH, 128)); string message = "123456789012345678901234567890123456789012345678"; string signature; MacMessage(message, &signature, 256); // Shorten to 128 bits, should still work. signature.resize(128 / 8); VerifyMac(message, signature); // Drop one more byte. signature.resize(signature.length() - 1); AuthorizationSet begin_params(client_params()); EXPECT_EQ(KM_ERROR_OK, BeginOperation(KM_PURPOSE_VERIFY, begin_params)); string result; EXPECT_EQ(KM_ERROR_INVALID_MAC_LENGTH, FinishOperation(message, signature, &result)); EXPECT_EQ(0, GetParam()->keymaster0_calls()); } TEST_P(VerificationOperationsTest, HmacSha384Success) { GenerateKey(AuthorizationSetBuilder() .HmacKey(128) .Digest(KM_DIGEST_SHA_2_384) .Authorization(TAG_MIN_MAC_LENGTH, 128)); string message = "123456789012345678901234567890123456789012345678"; string signature; MacMessage(message, &signature, 384); VerifyMac(message, signature); EXPECT_EQ(0, GetParam()->keymaster0_calls()); } TEST_P(VerificationOperationsTest, HmacSha512Success) { GenerateKey(AuthorizationSetBuilder() .HmacKey(128) .Digest(KM_DIGEST_SHA_2_512) .Authorization(TAG_MIN_MAC_LENGTH, 128)); string message = "123456789012345678901234567890123456789012345678"; string signature; MacMessage(message, &signature, 512); VerifyMac(message, signature); EXPECT_EQ(0, GetParam()->keymaster0_calls()); } typedef Keymaster2Test ExportKeyTest; INSTANTIATE_TEST_CASE_P(AndroidKeymasterTest, ExportKeyTest, test_params); TEST_P(ExportKeyTest, RsaSuccess) { ASSERT_EQ(KM_ERROR_OK, GenerateKey(AuthorizationSetBuilder() .RsaSigningKey(256, 3) .Digest(KM_DIGEST_NONE) .Padding(KM_PAD_NONE))); string export_data; ASSERT_EQ(KM_ERROR_OK, ExportKey(KM_KEY_FORMAT_X509, &export_data)); EXPECT_GT(export_data.length(), 0U); // TODO(swillden): Verify that the exported key is actually usable to verify signatures. if (GetParam()->algorithm_in_km0_hardware(KM_ALGORITHM_RSA)) EXPECT_EQ(2, GetParam()->keymaster0_calls()); } TEST_P(ExportKeyTest, EcdsaSuccess) { ASSERT_EQ(KM_ERROR_OK, GenerateKey(AuthorizationSetBuilder().EcdsaSigningKey(224).Digest(KM_DIGEST_NONE))); string export_data; ASSERT_EQ(KM_ERROR_OK, ExportKey(KM_KEY_FORMAT_X509, &export_data)); EXPECT_GT(export_data.length(), 0U); // TODO(swillden): Verify that the exported key is actually usable to verify signatures. if (GetParam()->algorithm_in_km0_hardware(KM_ALGORITHM_EC)) EXPECT_EQ(2, GetParam()->keymaster0_calls()); } TEST_P(ExportKeyTest, RsaUnsupportedKeyFormat) { ASSERT_EQ(KM_ERROR_OK, GenerateKey(AuthorizationSetBuilder() .RsaSigningKey(256, 3) .Digest(KM_DIGEST_NONE) .Padding(KM_PAD_NONE))); string export_data; ASSERT_EQ(KM_ERROR_UNSUPPORTED_KEY_FORMAT, ExportKey(KM_KEY_FORMAT_PKCS8, &export_data)); if (GetParam()->algorithm_in_km0_hardware(KM_ALGORITHM_RSA)) EXPECT_EQ(2, GetParam()->keymaster0_calls()); } TEST_P(ExportKeyTest, RsaCorruptedKeyBlob) { ASSERT_EQ(KM_ERROR_OK, GenerateKey(AuthorizationSetBuilder() .RsaSigningKey(256, 3) .Digest(KM_DIGEST_NONE) .Padding(KM_PAD_NONE))); corrupt_key_blob(); string export_data; ASSERT_EQ(KM_ERROR_INVALID_KEY_BLOB, ExportKey(KM_KEY_FORMAT_X509, &export_data)); if (GetParam()->algorithm_in_km0_hardware(KM_ALGORITHM_RSA)) EXPECT_EQ(2, GetParam()->keymaster0_calls()); } TEST_P(ExportKeyTest, AesKeyExportFails) { ASSERT_EQ(KM_ERROR_OK, GenerateKey(AuthorizationSetBuilder().AesEncryptionKey(128))); string export_data; EXPECT_EQ(KM_ERROR_UNSUPPORTED_KEY_FORMAT, ExportKey(KM_KEY_FORMAT_X509, &export_data)); EXPECT_EQ(KM_ERROR_UNSUPPORTED_KEY_FORMAT, ExportKey(KM_KEY_FORMAT_PKCS8, &export_data)); EXPECT_EQ(KM_ERROR_UNSUPPORTED_KEY_FORMAT, ExportKey(KM_KEY_FORMAT_RAW, &export_data)); EXPECT_EQ(0, GetParam()->keymaster0_calls()); } static string read_file(const string& file_name) { ifstream file_stream(file_name, std::ios::binary); istreambuf_iterator<char> file_begin(file_stream); istreambuf_iterator<char> file_end; return string(file_begin, file_end); } typedef Keymaster2Test ImportKeyTest; INSTANTIATE_TEST_CASE_P(AndroidKeymasterTest, ImportKeyTest, test_params); TEST_P(ImportKeyTest, RsaSuccess) { string pk8_key = read_file("rsa_privkey_pk8.der"); ASSERT_EQ(633U, pk8_key.size()); ASSERT_EQ(KM_ERROR_OK, ImportKey(AuthorizationSetBuilder() .RsaSigningKey(1024, 65537) .Digest(KM_DIGEST_NONE) .Padding(KM_PAD_NONE), KM_KEY_FORMAT_PKCS8, pk8_key)); // Check values derived from the key. EXPECT_TRUE(contains(GetParam()->algorithm_in_km0_hardware(KM_ALGORITHM_RSA) ? hw_enforced() : sw_enforced(), TAG_ALGORITHM, KM_ALGORITHM_RSA)); EXPECT_TRUE(contains(GetParam()->algorithm_in_km0_hardware(KM_ALGORITHM_RSA) ? hw_enforced() : sw_enforced(), TAG_KEY_SIZE, 1024)); EXPECT_TRUE(contains(GetParam()->algorithm_in_km0_hardware(KM_ALGORITHM_RSA) ? hw_enforced() : sw_enforced(), TAG_RSA_PUBLIC_EXPONENT, 65537U)); // And values provided by AndroidKeymaster if (GetParam()->algorithm_in_km0_hardware(KM_ALGORITHM_RSA)) EXPECT_TRUE(contains(hw_enforced(), TAG_ORIGIN, KM_ORIGIN_UNKNOWN)); else EXPECT_TRUE(contains(sw_enforced(), TAG_ORIGIN, KM_ORIGIN_IMPORTED)); EXPECT_TRUE(contains(sw_enforced(), KM_TAG_CREATION_DATETIME)); string message(1024 / 8, 'a'); string signature; SignMessage(message, &signature, KM_DIGEST_NONE, KM_PAD_NONE); VerifyMessage(message, signature, KM_DIGEST_NONE, KM_PAD_NONE); if (GetParam()->algorithm_in_km0_hardware(KM_ALGORITHM_RSA)) EXPECT_EQ(4, GetParam()->keymaster0_calls()); } TEST_P(ImportKeyTest, RsaKeySizeMismatch) { string pk8_key = read_file("rsa_privkey_pk8.der"); ASSERT_EQ(633U, pk8_key.size()); ASSERT_EQ(KM_ERROR_IMPORT_PARAMETER_MISMATCH, ImportKey(AuthorizationSetBuilder() .RsaSigningKey(2048 /* Doesn't match key */, 3) .Digest(KM_DIGEST_NONE) .Padding(KM_PAD_NONE), KM_KEY_FORMAT_PKCS8, pk8_key)); EXPECT_EQ(0, GetParam()->keymaster0_calls()); } TEST_P(ImportKeyTest, RsaPublicExponenMismatch) { string pk8_key = read_file("rsa_privkey_pk8.der"); ASSERT_EQ(633U, pk8_key.size()); ASSERT_EQ(KM_ERROR_IMPORT_PARAMETER_MISMATCH, ImportKey(AuthorizationSetBuilder() .RsaSigningKey(256, 3 /* Doesnt' match key */) .Digest(KM_DIGEST_NONE) .Padding(KM_PAD_NONE), KM_KEY_FORMAT_PKCS8, pk8_key)); EXPECT_EQ(0, GetParam()->keymaster0_calls()); } TEST_P(ImportKeyTest, EcdsaSuccess) { string pk8_key = read_file("ec_privkey_pk8.der"); ASSERT_EQ(138U, pk8_key.size()); ASSERT_EQ(KM_ERROR_OK, ImportKey(AuthorizationSetBuilder().EcdsaSigningKey(256).Digest(KM_DIGEST_NONE), KM_KEY_FORMAT_PKCS8, pk8_key)); // Check values derived from the key. EXPECT_TRUE(contains(GetParam()->algorithm_in_km0_hardware(KM_ALGORITHM_EC) ? hw_enforced() : sw_enforced(), TAG_ALGORITHM, KM_ALGORITHM_EC)); EXPECT_TRUE(contains(GetParam()->algorithm_in_km0_hardware(KM_ALGORITHM_EC) ? hw_enforced() : sw_enforced(), TAG_KEY_SIZE, 256)); // And values provided by AndroidKeymaster if (GetParam()->algorithm_in_km0_hardware(KM_ALGORITHM_EC)) EXPECT_TRUE(contains(hw_enforced(), TAG_ORIGIN, KM_ORIGIN_UNKNOWN)); else EXPECT_TRUE(contains(sw_enforced(), TAG_ORIGIN, KM_ORIGIN_IMPORTED)); EXPECT_TRUE(contains(sw_enforced(), KM_TAG_CREATION_DATETIME)); string message(32, 'a'); string signature; SignMessage(message, &signature, KM_DIGEST_NONE); VerifyMessage(message, signature, KM_DIGEST_NONE); if (GetParam()->algorithm_in_km0_hardware(KM_ALGORITHM_EC)) EXPECT_EQ(4, GetParam()->keymaster0_calls()); } TEST_P(ImportKeyTest, EcdsaSizeSpecified) { string pk8_key = read_file("ec_privkey_pk8.der"); ASSERT_EQ(138U, pk8_key.size()); ASSERT_EQ(KM_ERROR_OK, ImportKey(AuthorizationSetBuilder().EcdsaSigningKey(256).Digest(KM_DIGEST_NONE), KM_KEY_FORMAT_PKCS8, pk8_key)); // Check values derived from the key. EXPECT_TRUE(contains(GetParam()->algorithm_in_km0_hardware(KM_ALGORITHM_EC) ? hw_enforced() : sw_enforced(), TAG_ALGORITHM, KM_ALGORITHM_EC)); EXPECT_TRUE(contains(GetParam()->algorithm_in_km0_hardware(KM_ALGORITHM_EC) ? hw_enforced() : sw_enforced(), TAG_KEY_SIZE, 256)); // And values provided by AndroidKeymaster if (GetParam()->algorithm_in_km0_hardware(KM_ALGORITHM_EC)) EXPECT_TRUE(contains(hw_enforced(), TAG_ORIGIN, KM_ORIGIN_UNKNOWN)); else EXPECT_TRUE(contains(sw_enforced(), TAG_ORIGIN, KM_ORIGIN_IMPORTED)); EXPECT_TRUE(contains(sw_enforced(), KM_TAG_CREATION_DATETIME)); string message(32, 'a'); string signature; SignMessage(message, &signature, KM_DIGEST_NONE); VerifyMessage(message, signature, KM_DIGEST_NONE); if (GetParam()->algorithm_in_km0_hardware(KM_ALGORITHM_EC)) EXPECT_EQ(4, GetParam()->keymaster0_calls()); } TEST_P(ImportKeyTest, EcdsaSizeMismatch) { string pk8_key = read_file("ec_privkey_pk8.der"); ASSERT_EQ(138U, pk8_key.size()); ASSERT_EQ(KM_ERROR_IMPORT_PARAMETER_MISMATCH, ImportKey(AuthorizationSetBuilder() .EcdsaSigningKey(224 /* Doesn't match key */) .Digest(KM_DIGEST_NONE), KM_KEY_FORMAT_PKCS8, pk8_key)); EXPECT_EQ(0, GetParam()->keymaster0_calls()); } TEST_P(ImportKeyTest, AesKeySuccess) { char key_data[16] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; string key(key_data, sizeof(key_data)); ASSERT_EQ(KM_ERROR_OK, ImportKey(AuthorizationSetBuilder().AesEncryptionKey(128).EcbMode().Authorization( TAG_PADDING, KM_PAD_PKCS7), KM_KEY_FORMAT_RAW, key)); EXPECT_TRUE(contains(sw_enforced(), TAG_ORIGIN, KM_ORIGIN_IMPORTED)); EXPECT_TRUE(contains(sw_enforced(), KM_TAG_CREATION_DATETIME)); string message = "Hello World!"; string ciphertext = EncryptMessage(message, KM_MODE_ECB, KM_PAD_PKCS7); string plaintext = DecryptMessage(ciphertext, KM_MODE_ECB, KM_PAD_PKCS7); EXPECT_EQ(message, plaintext); EXPECT_EQ(0, GetParam()->keymaster0_calls()); } TEST_P(ImportKeyTest, HmacSha256KeySuccess) { char key_data[16] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; string key(key_data, sizeof(key_data)); ASSERT_EQ(KM_ERROR_OK, ImportKey(AuthorizationSetBuilder() .HmacKey(sizeof(key_data) * 8) .Digest(KM_DIGEST_SHA_2_256) .Authorization(TAG_MIN_MAC_LENGTH, 256), KM_KEY_FORMAT_RAW, key)); EXPECT_TRUE(contains(sw_enforced(), TAG_ORIGIN, KM_ORIGIN_IMPORTED)); EXPECT_TRUE(contains(sw_enforced(), KM_TAG_CREATION_DATETIME)); string message = "Hello World!"; string signature; MacMessage(message, &signature, 256); VerifyMac(message, signature); EXPECT_EQ(0, GetParam()->keymaster0_calls()); } typedef Keymaster2Test EncryptionOperationsTest; INSTANTIATE_TEST_CASE_P(AndroidKeymasterTest, EncryptionOperationsTest, test_params); TEST_P(EncryptionOperationsTest, RsaNoPaddingSuccess) { ASSERT_EQ(KM_ERROR_OK, GenerateKey(AuthorizationSetBuilder().RsaEncryptionKey(256, 3).Padding(KM_PAD_NONE))); string message = "12345678901234567890123456789012"; string ciphertext1 = EncryptMessage(string(message), KM_PAD_NONE); EXPECT_EQ(256U / 8, ciphertext1.size()); string ciphertext2 = EncryptMessage(string(message), KM_PAD_NONE); EXPECT_EQ(256U / 8, ciphertext2.size()); // Unpadded RSA is deterministic EXPECT_EQ(ciphertext1, ciphertext2); if (GetParam()->algorithm_in_km0_hardware(KM_ALGORITHM_RSA)) EXPECT_EQ(3, GetParam()->keymaster0_calls()); } TEST_P(EncryptionOperationsTest, RsaNoPaddingTooShort) { ASSERT_EQ(KM_ERROR_OK, GenerateKey(AuthorizationSetBuilder().RsaEncryptionKey(256, 3).Padding(KM_PAD_NONE))); string message = "1"; string ciphertext = EncryptMessage(message, KM_PAD_NONE); EXPECT_EQ(256U / 8, ciphertext.size()); string expected_plaintext = string(256 / 8 - 1, 0) + message; string plaintext = DecryptMessage(ciphertext, KM_PAD_NONE); EXPECT_EQ(expected_plaintext, plaintext); if (GetParam()->algorithm_in_km0_hardware(KM_ALGORITHM_RSA)) EXPECT_EQ(4, GetParam()->keymaster0_calls()); } TEST_P(EncryptionOperationsTest, RsaNoPaddingTooLong) { ASSERT_EQ(KM_ERROR_OK, GenerateKey(AuthorizationSetBuilder().RsaEncryptionKey(256, 3).Padding(KM_PAD_NONE))); string message = "123456789012345678901234567890123"; AuthorizationSet begin_params(client_params()); begin_params.push_back(TAG_PADDING, KM_PAD_NONE); EXPECT_EQ(KM_ERROR_OK, BeginOperation(KM_PURPOSE_ENCRYPT, begin_params)); string result; size_t input_consumed; EXPECT_EQ(KM_ERROR_INVALID_INPUT_LENGTH, UpdateOperation(message, &result, &input_consumed)); if (GetParam()->algorithm_in_km0_hardware(KM_ALGORITHM_RSA)) EXPECT_EQ(2, GetParam()->keymaster0_calls()); } TEST_P(EncryptionOperationsTest, RsaNoPaddingLargerThanModulus) { ASSERT_EQ(KM_ERROR_OK, GenerateKey(AuthorizationSetBuilder().RsaEncryptionKey(256, 3).Padding(KM_PAD_NONE))); string exported; ASSERT_EQ(KM_ERROR_OK, ExportKey(KM_KEY_FORMAT_X509, &exported)); const uint8_t* p = reinterpret_cast<const uint8_t*>(exported.data()); unique_ptr<EVP_PKEY, EVP_PKEY_Delete> pkey( d2i_PUBKEY(nullptr /* alloc new */, &p, exported.size())); unique_ptr<RSA, RSA_Delete> rsa(EVP_PKEY_get1_RSA(pkey.get())); size_t modulus_len = BN_num_bytes(rsa->n); ASSERT_EQ(256U / 8, modulus_len); unique_ptr<uint8_t[]> modulus_buf(new uint8_t[modulus_len]); BN_bn2bin(rsa->n, modulus_buf.get()); // The modulus is too big to encrypt. string message(reinterpret_cast<const char*>(modulus_buf.get()), modulus_len); AuthorizationSet begin_params(client_params()); begin_params.push_back(TAG_PADDING, KM_PAD_NONE); EXPECT_EQ(KM_ERROR_OK, BeginOperation(KM_PURPOSE_ENCRYPT, begin_params)); string result; size_t input_consumed; EXPECT_EQ(KM_ERROR_OK, UpdateOperation(message, &result, &input_consumed)); EXPECT_EQ(KM_ERROR_INVALID_ARGUMENT, FinishOperation(&result)); // One smaller than the modulus is okay. BN_sub(rsa->n, rsa->n, BN_value_one()); modulus_len = BN_num_bytes(rsa->n); ASSERT_EQ(256U / 8, modulus_len); BN_bn2bin(rsa->n, modulus_buf.get()); message = string(reinterpret_cast<const char*>(modulus_buf.get()), modulus_len); EXPECT_EQ(KM_ERROR_OK, BeginOperation(KM_PURPOSE_ENCRYPT, begin_params)); EXPECT_EQ(KM_ERROR_OK, FinishOperation(message, "", &result)); if (GetParam()->algorithm_in_km0_hardware(KM_ALGORITHM_RSA)) EXPECT_EQ(4, GetParam()->keymaster0_calls()); } TEST_P(EncryptionOperationsTest, RsaOaepSuccess) { size_t key_size = 768; ASSERT_EQ(KM_ERROR_OK, GenerateKey(AuthorizationSetBuilder() .RsaEncryptionKey(key_size, 3) .Padding(KM_PAD_RSA_OAEP) .Digest(KM_DIGEST_SHA_2_256))); string message = "Hello"; string ciphertext1 = EncryptMessage(string(message), KM_DIGEST_SHA_2_256, KM_PAD_RSA_OAEP); EXPECT_EQ(key_size / 8, ciphertext1.size()); string ciphertext2 = EncryptMessage(string(message), KM_DIGEST_SHA_2_256, KM_PAD_RSA_OAEP); EXPECT_EQ(key_size / 8, ciphertext2.size()); // OAEP randomizes padding so every result should be different. EXPECT_NE(ciphertext1, ciphertext2); if (GetParam()->algorithm_in_km0_hardware(KM_ALGORITHM_RSA)) EXPECT_EQ(3, GetParam()->keymaster0_calls()); } TEST_P(EncryptionOperationsTest, RsaOaepSha224Success) { size_t key_size = 768; ASSERT_EQ(KM_ERROR_OK, GenerateKey(AuthorizationSetBuilder() .RsaEncryptionKey(key_size, 3) .Padding(KM_PAD_RSA_OAEP) .Digest(KM_DIGEST_SHA_2_224))); string message = "Hello"; string ciphertext1 = EncryptMessage(string(message), KM_DIGEST_SHA_2_224, KM_PAD_RSA_OAEP); EXPECT_EQ(key_size / 8, ciphertext1.size()); string ciphertext2 = EncryptMessage(string(message), KM_DIGEST_SHA_2_224, KM_PAD_RSA_OAEP); EXPECT_EQ(key_size / 8, ciphertext2.size()); // OAEP randomizes padding so every result should be different. EXPECT_NE(ciphertext1, ciphertext2); if (GetParam()->algorithm_in_km0_hardware(KM_ALGORITHM_RSA)) EXPECT_EQ(3, GetParam()->keymaster0_calls()); } TEST_P(EncryptionOperationsTest, RsaOaepRoundTrip) { size_t key_size = 768; ASSERT_EQ(KM_ERROR_OK, GenerateKey(AuthorizationSetBuilder() .RsaEncryptionKey(key_size, 3) .Padding(KM_PAD_RSA_OAEP) .Digest(KM_DIGEST_SHA_2_256))); string message = "Hello World!"; string ciphertext = EncryptMessage(string(message), KM_DIGEST_SHA_2_256, KM_PAD_RSA_OAEP); EXPECT_EQ(key_size / 8, ciphertext.size()); string plaintext = DecryptMessage(ciphertext, KM_DIGEST_SHA_2_256, KM_PAD_RSA_OAEP); EXPECT_EQ(message, plaintext); if (GetParam()->algorithm_in_km0_hardware(KM_ALGORITHM_RSA)) EXPECT_EQ(4, GetParam()->keymaster0_calls()); } TEST_P(EncryptionOperationsTest, RsaOaepSha224RoundTrip) { size_t key_size = 768; ASSERT_EQ(KM_ERROR_OK, GenerateKey(AuthorizationSetBuilder() .RsaEncryptionKey(key_size, 3) .Padding(KM_PAD_RSA_OAEP) .Digest(KM_DIGEST_SHA_2_224))); string message = "Hello World!"; string ciphertext = EncryptMessage(string(message), KM_DIGEST_SHA_2_224, KM_PAD_RSA_OAEP); EXPECT_EQ(key_size / 8, ciphertext.size()); string plaintext = DecryptMessage(ciphertext, KM_DIGEST_SHA_2_224, KM_PAD_RSA_OAEP); EXPECT_EQ(message, plaintext); if (GetParam()->algorithm_in_km0_hardware(KM_ALGORITHM_RSA)) EXPECT_EQ(4, GetParam()->keymaster0_calls()); } TEST_P(EncryptionOperationsTest, RsaOaepInvalidDigest) { ASSERT_EQ(KM_ERROR_OK, GenerateKey(AuthorizationSetBuilder() .RsaEncryptionKey(512, 3) .Padding(KM_PAD_RSA_OAEP) .Digest(KM_DIGEST_NONE))); string message = "Hello World!"; AuthorizationSet begin_params(client_params()); begin_params.push_back(TAG_PADDING, KM_PAD_RSA_OAEP); begin_params.push_back(TAG_DIGEST, KM_DIGEST_NONE); EXPECT_EQ(KM_ERROR_INCOMPATIBLE_DIGEST, BeginOperation(KM_PURPOSE_ENCRYPT, begin_params)); if (GetParam()->algorithm_in_km0_hardware(KM_ALGORITHM_RSA)) EXPECT_EQ(2, GetParam()->keymaster0_calls()); } TEST_P(EncryptionOperationsTest, RsaOaepUnauthorizedDigest) { if (GetParam()->minimal_digest_set()) // We don't have two supported digests, so we can't try authorizing one and using another. return; ASSERT_EQ(KM_ERROR_OK, GenerateKey(AuthorizationSetBuilder() .RsaEncryptionKey(512, 3) .Padding(KM_PAD_RSA_OAEP) .Digest(KM_DIGEST_SHA_2_256))); string message = "Hello World!"; // Works because encryption is a public key operation. EncryptMessage(string(message), KM_DIGEST_SHA1, KM_PAD_RSA_OAEP); AuthorizationSet begin_params(client_params()); begin_params.push_back(TAG_PADDING, KM_PAD_RSA_OAEP); begin_params.push_back(TAG_DIGEST, KM_DIGEST_SHA1); EXPECT_EQ(KM_ERROR_INCOMPATIBLE_DIGEST, BeginOperation(KM_PURPOSE_DECRYPT, begin_params)); if (GetParam()->algorithm_in_km0_hardware(KM_ALGORITHM_RSA)) EXPECT_EQ(3, GetParam()->keymaster0_calls()); } TEST_P(EncryptionOperationsTest, RsaOaepDecryptWithWrongDigest) { if (GetParam()->minimal_digest_set()) // We don't have two supported digests, so we can't try encrypting with one and decrypting // with another. return; ASSERT_EQ(KM_ERROR_OK, GenerateKey(AuthorizationSetBuilder() .RsaEncryptionKey(768, 3) .Padding(KM_PAD_RSA_OAEP) .Digest(KM_DIGEST_SHA_2_256) .Digest(KM_DIGEST_SHA_2_384))); string message = "Hello World!"; string ciphertext = EncryptMessage(string(message), KM_DIGEST_SHA_2_256, KM_PAD_RSA_OAEP); string result; size_t input_consumed; AuthorizationSet begin_params(client_params()); begin_params.push_back(TAG_PADDING, KM_PAD_RSA_OAEP); begin_params.push_back(TAG_DIGEST, KM_DIGEST_SHA_2_384); EXPECT_EQ(KM_ERROR_OK, BeginOperation(KM_PURPOSE_DECRYPT, begin_params)); EXPECT_EQ(KM_ERROR_OK, UpdateOperation(ciphertext, &result, &input_consumed)); EXPECT_EQ(KM_ERROR_UNKNOWN_ERROR, FinishOperation(&result)); EXPECT_EQ(0U, result.size()); if (GetParam()->algorithm_in_km0_hardware(KM_ALGORITHM_RSA)) EXPECT_EQ(4, GetParam()->keymaster0_calls()); } TEST_P(EncryptionOperationsTest, RsaOaepTooLarge) { ASSERT_EQ(KM_ERROR_OK, GenerateKey(AuthorizationSetBuilder() .RsaEncryptionKey(512, 3) .Padding(KM_PAD_RSA_OAEP) .Digest(KM_DIGEST_SHA1))); string message = "12345678901234567890123"; string result; size_t input_consumed; AuthorizationSet begin_params(client_params()); begin_params.push_back(TAG_PADDING, KM_PAD_RSA_OAEP); begin_params.push_back(TAG_DIGEST, KM_DIGEST_SHA1); EXPECT_EQ(KM_ERROR_OK, BeginOperation(KM_PURPOSE_ENCRYPT, begin_params)); EXPECT_EQ(KM_ERROR_OK, UpdateOperation(message, &result, &input_consumed)); EXPECT_EQ(KM_ERROR_INVALID_INPUT_LENGTH, FinishOperation(&result)); EXPECT_EQ(0U, result.size()); if (GetParam()->algorithm_in_km0_hardware(KM_ALGORITHM_RSA)) EXPECT_EQ(2, GetParam()->keymaster0_calls()); } TEST_P(EncryptionOperationsTest, RsaOaepCorruptedDecrypt) { size_t key_size = 768; ASSERT_EQ(KM_ERROR_OK, GenerateKey(AuthorizationSetBuilder() .RsaEncryptionKey(768, 3) .Padding(KM_PAD_RSA_OAEP) .Digest(KM_DIGEST_SHA_2_256))); string message = "Hello World!"; string ciphertext = EncryptMessage(string(message), KM_DIGEST_SHA_2_256, KM_PAD_RSA_OAEP); EXPECT_EQ(key_size / 8, ciphertext.size()); // Corrupt the ciphertext ciphertext[key_size / 8 / 2]++; string result; size_t input_consumed; AuthorizationSet begin_params(client_params()); begin_params.push_back(TAG_PADDING, KM_PAD_RSA_OAEP); begin_params.push_back(TAG_DIGEST, KM_DIGEST_SHA_2_256); EXPECT_EQ(KM_ERROR_OK, BeginOperation(KM_PURPOSE_DECRYPT, begin_params)); EXPECT_EQ(KM_ERROR_OK, UpdateOperation(ciphertext, &result, &input_consumed)); EXPECT_EQ(KM_ERROR_UNKNOWN_ERROR, FinishOperation(&result)); EXPECT_EQ(0U, result.size()); if (GetParam()->algorithm_in_km0_hardware(KM_ALGORITHM_RSA)) EXPECT_EQ(4, GetParam()->keymaster0_calls()); } TEST_P(EncryptionOperationsTest, RsaPkcs1Success) { ASSERT_EQ(KM_ERROR_OK, GenerateKey(AuthorizationSetBuilder().RsaEncryptionKey(512, 3).Padding( KM_PAD_RSA_PKCS1_1_5_ENCRYPT))); string message = "Hello World!"; string ciphertext1 = EncryptMessage(message, KM_PAD_RSA_PKCS1_1_5_ENCRYPT); EXPECT_EQ(512U / 8, ciphertext1.size()); string ciphertext2 = EncryptMessage(message, KM_PAD_RSA_PKCS1_1_5_ENCRYPT); EXPECT_EQ(512U / 8, ciphertext2.size()); // PKCS1 v1.5 randomizes padding so every result should be different. EXPECT_NE(ciphertext1, ciphertext2); if (GetParam()->algorithm_in_km0_hardware(KM_ALGORITHM_RSA)) EXPECT_EQ(3, GetParam()->keymaster0_calls()); } TEST_P(EncryptionOperationsTest, RsaPkcs1RoundTrip) { ASSERT_EQ(KM_ERROR_OK, GenerateKey(AuthorizationSetBuilder().RsaEncryptionKey(512, 3).Padding( KM_PAD_RSA_PKCS1_1_5_ENCRYPT))); string message = "Hello World!"; string ciphertext = EncryptMessage(message, KM_PAD_RSA_PKCS1_1_5_ENCRYPT); EXPECT_EQ(512U / 8, ciphertext.size()); string plaintext = DecryptMessage(ciphertext, KM_PAD_RSA_PKCS1_1_5_ENCRYPT); EXPECT_EQ(message, plaintext); if (GetParam()->algorithm_in_km0_hardware(KM_ALGORITHM_RSA)) EXPECT_EQ(4, GetParam()->keymaster0_calls()); } TEST_P(EncryptionOperationsTest, RsaRoundTripAllCombinations) { size_t key_size = 2048; ASSERT_EQ(KM_ERROR_OK, GenerateKey(AuthorizationSetBuilder() .RsaEncryptionKey(key_size, 3) .Padding(KM_PAD_RSA_PKCS1_1_5_ENCRYPT) .Padding(KM_PAD_RSA_OAEP) .Digest(KM_DIGEST_NONE) .Digest(KM_DIGEST_MD5) .Digest(KM_DIGEST_SHA1) .Digest(KM_DIGEST_SHA_2_224) .Digest(KM_DIGEST_SHA_2_256) .Digest(KM_DIGEST_SHA_2_384) .Digest(KM_DIGEST_SHA_2_512))); string message = "Hello World!"; keymaster_padding_t padding_modes[] = {KM_PAD_RSA_OAEP, KM_PAD_RSA_PKCS1_1_5_ENCRYPT}; keymaster_digest_t digests[] = { KM_DIGEST_NONE, KM_DIGEST_MD5, KM_DIGEST_SHA1, KM_DIGEST_SHA_2_224, KM_DIGEST_SHA_2_256, KM_DIGEST_SHA_2_384, KM_DIGEST_SHA_2_512, }; for (auto padding : padding_modes) for (auto digest : digests) { if (padding == KM_PAD_RSA_OAEP && digest == KM_DIGEST_NONE) // OAEP requires a digest. continue; string ciphertext = EncryptMessage(message, digest, padding); EXPECT_EQ(key_size / 8, ciphertext.size()); string plaintext = DecryptMessage(ciphertext, digest, padding); EXPECT_EQ(message, plaintext); } if (GetParam()->algorithm_in_km0_hardware(KM_ALGORITHM_RSA)) EXPECT_EQ(40, GetParam()->keymaster0_calls()); } TEST_P(EncryptionOperationsTest, RsaPkcs1TooLarge) { ASSERT_EQ(KM_ERROR_OK, GenerateKey(AuthorizationSetBuilder().RsaEncryptionKey(512, 3).Padding( KM_PAD_RSA_PKCS1_1_5_ENCRYPT))); string message = "123456789012345678901234567890123456789012345678901234"; string result; size_t input_consumed; AuthorizationSet begin_params(client_params()); begin_params.push_back(TAG_PADDING, KM_PAD_RSA_PKCS1_1_5_ENCRYPT); EXPECT_EQ(KM_ERROR_OK, BeginOperation(KM_PURPOSE_ENCRYPT, begin_params)); EXPECT_EQ(KM_ERROR_OK, UpdateOperation(message, &result, &input_consumed)); EXPECT_EQ(KM_ERROR_INVALID_INPUT_LENGTH, FinishOperation(&result)); EXPECT_EQ(0U, result.size()); if (GetParam()->algorithm_in_km0_hardware(KM_ALGORITHM_RSA)) EXPECT_EQ(2, GetParam()->keymaster0_calls()); } TEST_P(EncryptionOperationsTest, RsaPkcs1CorruptedDecrypt) { ASSERT_EQ(KM_ERROR_OK, GenerateKey(AuthorizationSetBuilder().RsaEncryptionKey(512, 3).Padding( KM_PAD_RSA_PKCS1_1_5_ENCRYPT))); string message = "Hello World!"; string ciphertext = EncryptMessage(string(message), KM_PAD_RSA_PKCS1_1_5_ENCRYPT); EXPECT_EQ(512U / 8, ciphertext.size()); // Corrupt the ciphertext ciphertext[512 / 8 / 2]++; string result; size_t input_consumed; AuthorizationSet begin_params(client_params()); begin_params.push_back(TAG_PADDING, KM_PAD_RSA_PKCS1_1_5_ENCRYPT); EXPECT_EQ(KM_ERROR_OK, BeginOperation(KM_PURPOSE_DECRYPT, begin_params)); EXPECT_EQ(KM_ERROR_OK, UpdateOperation(ciphertext, &result, &input_consumed)); EXPECT_EQ(KM_ERROR_UNKNOWN_ERROR, FinishOperation(&result)); EXPECT_EQ(0U, result.size()); if (GetParam()->algorithm_in_km0_hardware(KM_ALGORITHM_RSA)) EXPECT_EQ(4, GetParam()->keymaster0_calls()); } TEST_P(EncryptionOperationsTest, RsaEncryptWithSigningKey) { ASSERT_EQ(KM_ERROR_OK, GenerateKey(AuthorizationSetBuilder().RsaSigningKey(256, 3).Padding(KM_PAD_NONE))); AuthorizationSet begin_params(client_params()); begin_params.push_back(TAG_PADDING, KM_PAD_NONE); ASSERT_EQ(KM_ERROR_INCOMPATIBLE_PURPOSE, BeginOperation(KM_PURPOSE_DECRYPT, begin_params)); if (GetParam()->algorithm_in_km0_hardware(KM_ALGORITHM_RSA)) EXPECT_EQ(2, GetParam()->keymaster0_calls()); } TEST_P(EncryptionOperationsTest, EcdsaEncrypt) { ASSERT_EQ(KM_ERROR_OK, GenerateKey(AuthorizationSetBuilder().EcdsaSigningKey(224).Digest(KM_DIGEST_NONE))); ASSERT_EQ(KM_ERROR_UNSUPPORTED_PURPOSE, BeginOperation(KM_PURPOSE_ENCRYPT)); ASSERT_EQ(KM_ERROR_UNSUPPORTED_PURPOSE, BeginOperation(KM_PURPOSE_DECRYPT)); if (GetParam()->algorithm_in_km0_hardware(KM_ALGORITHM_EC)) EXPECT_EQ(3, GetParam()->keymaster0_calls()); } TEST_P(EncryptionOperationsTest, HmacEncrypt) { ASSERT_EQ(KM_ERROR_OK, GenerateKey(AuthorizationSetBuilder() .HmacKey(128) .Digest(KM_DIGEST_SHA_2_256) .Padding(KM_PAD_NONE) .Authorization(TAG_MIN_MAC_LENGTH, 128))); ASSERT_EQ(KM_ERROR_UNSUPPORTED_PURPOSE, BeginOperation(KM_PURPOSE_ENCRYPT)); ASSERT_EQ(KM_ERROR_UNSUPPORTED_PURPOSE, BeginOperation(KM_PURPOSE_DECRYPT)); EXPECT_EQ(0, GetParam()->keymaster0_calls()); } TEST_P(EncryptionOperationsTest, AesEcbRoundTripSuccess) { ASSERT_EQ(KM_ERROR_OK, GenerateKey(AuthorizationSetBuilder() .AesEncryptionKey(128) .Authorization(TAG_BLOCK_MODE, KM_MODE_ECB) .Padding(KM_PAD_NONE))); // Two-block message. string message = "12345678901234567890123456789012"; string ciphertext1 = EncryptMessage(message, KM_MODE_ECB, KM_PAD_NONE); EXPECT_EQ(message.size(), ciphertext1.size()); string ciphertext2 = EncryptMessage(string(message), KM_MODE_ECB, KM_PAD_NONE); EXPECT_EQ(message.size(), ciphertext2.size()); // ECB is deterministic. EXPECT_EQ(ciphertext1, ciphertext2); string plaintext = DecryptMessage(ciphertext1, KM_MODE_ECB, KM_PAD_NONE); EXPECT_EQ(message, plaintext); EXPECT_EQ(0, GetParam()->keymaster0_calls()); } TEST_P(EncryptionOperationsTest, AesEcbNotAuthorized) { ASSERT_EQ(KM_ERROR_OK, GenerateKey(AuthorizationSetBuilder() .AesEncryptionKey(128) .Authorization(TAG_BLOCK_MODE, KM_MODE_CBC) .Padding(KM_PAD_NONE))); // Two-block message. string message = "12345678901234567890123456789012"; AuthorizationSet begin_params(client_params()); begin_params.push_back(TAG_BLOCK_MODE, KM_MODE_ECB); begin_params.push_back(TAG_PADDING, KM_PAD_NONE); EXPECT_EQ(KM_ERROR_INCOMPATIBLE_BLOCK_MODE, BeginOperation(KM_PURPOSE_ENCRYPT, begin_params)); EXPECT_EQ(0, GetParam()->keymaster0_calls()); } TEST_P(EncryptionOperationsTest, AesEcbNoPaddingWrongInputSize) { ASSERT_EQ(KM_ERROR_OK, GenerateKey(AuthorizationSetBuilder() .AesEncryptionKey(128) .Authorization(TAG_BLOCK_MODE, KM_MODE_ECB) .Padding(KM_PAD_NONE))); // Message is slightly shorter than two blocks. string message = "1234567890123456789012345678901"; AuthorizationSet begin_params(client_params()); begin_params.push_back(TAG_BLOCK_MODE, KM_MODE_ECB); begin_params.push_back(TAG_PADDING, KM_PAD_NONE); EXPECT_EQ(KM_ERROR_OK, BeginOperation(KM_PURPOSE_ENCRYPT, begin_params)); string ciphertext; EXPECT_EQ(KM_ERROR_INVALID_INPUT_LENGTH, FinishOperation(message, "", &ciphertext)); EXPECT_EQ(0, GetParam()->keymaster0_calls()); } TEST_P(EncryptionOperationsTest, AesEcbPkcs7Padding) { ASSERT_EQ(KM_ERROR_OK, GenerateKey(AuthorizationSetBuilder() .AesEncryptionKey(128) .Authorization(TAG_BLOCK_MODE, KM_MODE_ECB) .Authorization(TAG_PADDING, KM_PAD_PKCS7))); // Try various message lengths; all should work. for (size_t i = 0; i < 32; ++i) { string message(i, 'a'); string ciphertext = EncryptMessage(message, KM_MODE_ECB, KM_PAD_PKCS7); EXPECT_EQ(i + 16 - (i % 16), ciphertext.size()); string plaintext = DecryptMessage(ciphertext, KM_MODE_ECB, KM_PAD_PKCS7); EXPECT_EQ(message, plaintext); } EXPECT_EQ(0, GetParam()->keymaster0_calls()); } TEST_P(EncryptionOperationsTest, AesEcbNoPaddingKeyWithPkcs7Padding) { ASSERT_EQ(KM_ERROR_OK, GenerateKey(AuthorizationSetBuilder() .AesEncryptionKey(128) .Authorization(TAG_BLOCK_MODE, KM_MODE_ECB) .Authorization(TAG_PADDING, KM_PAD_NONE))); // Try various message lengths; all should fail. for (size_t i = 0; i < 32; ++i) { AuthorizationSet begin_params(client_params()); begin_params.push_back(TAG_BLOCK_MODE, KM_MODE_ECB); begin_params.push_back(TAG_PADDING, KM_PAD_PKCS7); EXPECT_EQ(KM_ERROR_INCOMPATIBLE_PADDING_MODE, BeginOperation(KM_PURPOSE_ENCRYPT, begin_params)); } EXPECT_EQ(0, GetParam()->keymaster0_calls()); } TEST_P(EncryptionOperationsTest, AesEcbPkcs7PaddingCorrupted) { ASSERT_EQ(KM_ERROR_OK, GenerateKey(AuthorizationSetBuilder() .AesEncryptionKey(128) .Authorization(TAG_BLOCK_MODE, KM_MODE_ECB) .Authorization(TAG_PADDING, KM_PAD_PKCS7))); string message = "a"; string ciphertext = EncryptMessage(message, KM_MODE_ECB, KM_PAD_PKCS7); EXPECT_EQ(16U, ciphertext.size()); EXPECT_NE(ciphertext, message); ++ciphertext[ciphertext.size() / 2]; AuthorizationSet begin_params(client_params()); begin_params.push_back(TAG_BLOCK_MODE, KM_MODE_ECB); begin_params.push_back(TAG_PADDING, KM_PAD_PKCS7); EXPECT_EQ(KM_ERROR_OK, BeginOperation(KM_PURPOSE_DECRYPT, begin_params)); string plaintext; size_t input_consumed; EXPECT_EQ(KM_ERROR_OK, UpdateOperation(ciphertext, &plaintext, &input_consumed)); EXPECT_EQ(ciphertext.size(), input_consumed); EXPECT_EQ(KM_ERROR_INVALID_ARGUMENT, FinishOperation(&plaintext)); EXPECT_EQ(0, GetParam()->keymaster0_calls()); } TEST_P(EncryptionOperationsTest, AesCtrRoundTripSuccess) { ASSERT_EQ(KM_ERROR_OK, GenerateKey(AuthorizationSetBuilder() .AesEncryptionKey(128) .Authorization(TAG_BLOCK_MODE, KM_MODE_CTR) .Padding(KM_PAD_NONE))); string message = "123"; string iv1; string ciphertext1 = EncryptMessage(message, KM_MODE_CTR, KM_PAD_NONE, &iv1); EXPECT_EQ(message.size(), ciphertext1.size()); EXPECT_EQ(16U, iv1.size()); string iv2; string ciphertext2 = EncryptMessage(message, KM_MODE_CTR, KM_PAD_NONE, &iv2); EXPECT_EQ(message.size(), ciphertext2.size()); EXPECT_EQ(16U, iv2.size()); // IVs should be random, so ciphertexts should differ. EXPECT_NE(iv1, iv2); EXPECT_NE(ciphertext1, ciphertext2); string plaintext = DecryptMessage(ciphertext1, KM_MODE_CTR, KM_PAD_NONE, iv1); EXPECT_EQ(message, plaintext); EXPECT_EQ(0, GetParam()->keymaster0_calls()); } TEST_P(EncryptionOperationsTest, AesCtrIncremental) { ASSERT_EQ(KM_ERROR_OK, GenerateKey(AuthorizationSetBuilder() .AesEncryptionKey(128) .Authorization(TAG_BLOCK_MODE, KM_MODE_CTR) .Padding(KM_PAD_NONE))); int increment = 15; string message(239, 'a'); AuthorizationSet input_params(client_params()); input_params.push_back(TAG_BLOCK_MODE, KM_MODE_CTR); input_params.push_back(TAG_PADDING, KM_PAD_NONE); AuthorizationSet output_params; EXPECT_EQ(KM_ERROR_OK, BeginOperation(KM_PURPOSE_ENCRYPT, input_params, &output_params)); string ciphertext; size_t input_consumed; for (size_t i = 0; i < message.size(); i += increment) EXPECT_EQ(KM_ERROR_OK, UpdateOperation(message.substr(i, increment), &ciphertext, &input_consumed)); EXPECT_EQ(KM_ERROR_OK, FinishOperation(&ciphertext)); EXPECT_EQ(message.size(), ciphertext.size()); // Move TAG_NONCE into input_params input_params.Reinitialize(output_params); input_params.push_back(client_params()); input_params.push_back(TAG_BLOCK_MODE, KM_MODE_CTR); input_params.push_back(TAG_PADDING, KM_PAD_NONE); output_params.Clear(); EXPECT_EQ(KM_ERROR_OK, BeginOperation(KM_PURPOSE_DECRYPT, input_params, &output_params)); string plaintext; for (size_t i = 0; i < ciphertext.size(); i += increment) EXPECT_EQ(KM_ERROR_OK, UpdateOperation(ciphertext.substr(i, increment), &plaintext, &input_consumed)); EXPECT_EQ(KM_ERROR_OK, FinishOperation(&plaintext)); EXPECT_EQ(ciphertext.size(), plaintext.size()); EXPECT_EQ(message, plaintext); EXPECT_EQ(0, GetParam()->keymaster0_calls()); } struct AesCtrSp80038aTestVector { const char* key; const char* nonce; const char* plaintext; const char* ciphertext; }; // These test vectors are taken from // http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf, section F.5. static const AesCtrSp80038aTestVector kAesCtrSp80038aTestVectors[] = { // AES-128 { "2b7e151628aed2a6abf7158809cf4f3c", "f0f1f2f3f4f5f6f7f8f9fafbfcfdfeff", "6bc1bee22e409f96e93d7e117393172aae2d8a571e03ac9c9eb76fac45af8e51" "30c81c46a35ce411e5fbc1191a0a52eff69f2445df4f9b17ad2b417be66c3710", "874d6191b620e3261bef6864990db6ce9806f66b7970fdff8617187bb9fffdff" "5ae4df3edbd5d35e5b4f09020db03eab1e031dda2fbe03d1792170a0f3009cee", }, // AES-192 { "8e73b0f7da0e6452c810f32b809079e562f8ead2522c6b7b", "f0f1f2f3f4f5f6f7f8f9fafbfcfdfeff", "6bc1bee22e409f96e93d7e117393172aae2d8a571e03ac9c9eb76fac45af8e51" "30c81c46a35ce411e5fbc1191a0a52eff69f2445df4f9b17ad2b417be66c3710", "1abc932417521ca24f2b0459fe7e6e0b090339ec0aa6faefd5ccc2c6f4ce8e94" "1e36b26bd1ebc670d1bd1d665620abf74f78a7f6d29809585a97daec58c6b050", }, // AES-256 { "603deb1015ca71be2b73aef0857d77811f352c073b6108d72d9810a30914dff4", "f0f1f2f3f4f5f6f7f8f9fafbfcfdfeff", "6bc1bee22e409f96e93d7e117393172aae2d8a571e03ac9c9eb76fac45af8e51" "30c81c46a35ce411e5fbc1191a0a52eff69f2445df4f9b17ad2b417be66c3710", "601ec313775789a5b7a7f504bbf3d228f443e3ca4d62b59aca84e990cacaf5c5" "2b0930daa23de94ce87017ba2d84988ddfc9c58db67aada613c2dd08457941a6", }, }; TEST_P(EncryptionOperationsTest, AesCtrSp80038aTestVector) { for (size_t i = 0; i < 3; i++) { const AesCtrSp80038aTestVector& test(kAesCtrSp80038aTestVectors[i]); const string key = hex2str(test.key); const string nonce = hex2str(test.nonce); const string plaintext = hex2str(test.plaintext); const string ciphertext = hex2str(test.ciphertext); CheckAesCtrTestVector(key, nonce, plaintext, ciphertext); } EXPECT_EQ(0, GetParam()->keymaster0_calls()); } TEST_P(EncryptionOperationsTest, AesCtrInvalidPaddingMode) { ASSERT_EQ(KM_ERROR_OK, GenerateKey(AuthorizationSetBuilder() .AesEncryptionKey(128) .Authorization(TAG_BLOCK_MODE, KM_MODE_CTR) .Authorization(TAG_PADDING, KM_PAD_PKCS7))); AuthorizationSet begin_params(client_params()); begin_params.push_back(TAG_BLOCK_MODE, KM_MODE_CTR); begin_params.push_back(TAG_PADDING, KM_PAD_NONE); EXPECT_EQ(KM_ERROR_INCOMPATIBLE_PADDING_MODE, BeginOperation(KM_PURPOSE_ENCRYPT, begin_params)); EXPECT_EQ(0, GetParam()->keymaster0_calls()); } TEST_P(EncryptionOperationsTest, AesCtrInvalidCallerNonce) { ASSERT_EQ(KM_ERROR_OK, GenerateKey(AuthorizationSetBuilder() .AesEncryptionKey(128) .Authorization(TAG_BLOCK_MODE, KM_MODE_CTR) .Authorization(TAG_CALLER_NONCE) .Padding(KM_PAD_NONE))); AuthorizationSet input_params(client_params()); input_params.push_back(TAG_BLOCK_MODE, KM_MODE_CTR); input_params.push_back(TAG_PADDING, KM_PAD_NONE); input_params.push_back(TAG_NONCE, "123", 3); EXPECT_EQ(KM_ERROR_INVALID_NONCE, BeginOperation(KM_PURPOSE_ENCRYPT, input_params)); EXPECT_EQ(0, GetParam()->keymaster0_calls()); } TEST_P(EncryptionOperationsTest, AesCbcRoundTripSuccess) { ASSERT_EQ(KM_ERROR_OK, GenerateKey(AuthorizationSetBuilder() .AesEncryptionKey(128) .Authorization(TAG_BLOCK_MODE, KM_MODE_CBC) .Padding(KM_PAD_NONE))); // Two-block message. string message = "12345678901234567890123456789012"; string iv1; string ciphertext1 = EncryptMessage(message, KM_MODE_CBC, KM_PAD_NONE, &iv1); EXPECT_EQ(message.size(), ciphertext1.size()); string iv2; string ciphertext2 = EncryptMessage(message, KM_MODE_CBC, KM_PAD_NONE, &iv2); EXPECT_EQ(message.size(), ciphertext2.size()); // IVs should be random, so ciphertexts should differ. EXPECT_NE(iv1, iv2); EXPECT_NE(ciphertext1, ciphertext2); string plaintext = DecryptMessage(ciphertext1, KM_MODE_CBC, KM_PAD_NONE, iv1); EXPECT_EQ(message, plaintext); EXPECT_EQ(0, GetParam()->keymaster0_calls()); } TEST_P(EncryptionOperationsTest, AesCallerNonce) { ASSERT_EQ(KM_ERROR_OK, GenerateKey(AuthorizationSetBuilder() .AesEncryptionKey(128) .Authorization(TAG_BLOCK_MODE, KM_MODE_CBC) .Authorization(TAG_CALLER_NONCE) .Padding(KM_PAD_NONE))); string message = "12345678901234567890123456789012"; string iv1; // Don't specify nonce, should get a random one. string ciphertext1 = EncryptMessage(message, KM_MODE_CBC, KM_PAD_NONE, &iv1); EXPECT_EQ(message.size(), ciphertext1.size()); EXPECT_EQ(16U, iv1.size()); string plaintext = DecryptMessage(ciphertext1, KM_MODE_CBC, KM_PAD_NONE, iv1); EXPECT_EQ(message, plaintext); // Now specify a nonce, should also work. AuthorizationSet input_params(client_params()); AuthorizationSet update_params; AuthorizationSet output_params; input_params.push_back(TAG_NONCE, "abcdefghijklmnop", 16); input_params.push_back(TAG_BLOCK_MODE, KM_MODE_CBC); input_params.push_back(TAG_PADDING, KM_PAD_NONE); string ciphertext2 = ProcessMessage(KM_PURPOSE_ENCRYPT, message, input_params, update_params, &output_params); // Decrypt with correct nonce. plaintext = ProcessMessage(KM_PURPOSE_DECRYPT, ciphertext2, input_params, update_params, &output_params); EXPECT_EQ(message, plaintext); // Now try with wrong nonce. input_params.Reinitialize(client_params()); input_params.push_back(TAG_BLOCK_MODE, KM_MODE_CBC); input_params.push_back(TAG_PADDING, KM_PAD_NONE); input_params.push_back(TAG_NONCE, "aaaaaaaaaaaaaaaa", 16); plaintext = ProcessMessage(KM_PURPOSE_DECRYPT, ciphertext2, input_params, update_params, &output_params); EXPECT_NE(message, plaintext); EXPECT_EQ(0, GetParam()->keymaster0_calls()); } TEST_P(EncryptionOperationsTest, AesCallerNonceProhibited) { ASSERT_EQ(KM_ERROR_OK, GenerateKey(AuthorizationSetBuilder() .AesEncryptionKey(128) .Authorization(TAG_BLOCK_MODE, KM_MODE_CBC) .Padding(KM_PAD_NONE))); string message = "12345678901234567890123456789012"; string iv1; // Don't specify nonce, should get a random one. string ciphertext1 = EncryptMessage(message, KM_MODE_CBC, KM_PAD_NONE, &iv1); EXPECT_EQ(message.size(), ciphertext1.size()); EXPECT_EQ(16U, iv1.size()); string plaintext = DecryptMessage(ciphertext1, KM_MODE_CBC, KM_PAD_NONE, iv1); EXPECT_EQ(message, plaintext); // Now specify a nonce, should fail. AuthorizationSet input_params(client_params()); AuthorizationSet update_params; AuthorizationSet output_params; input_params.push_back(TAG_NONCE, "abcdefghijklmnop", 16); input_params.push_back(TAG_BLOCK_MODE, KM_MODE_CBC); input_params.push_back(TAG_PADDING, KM_PAD_NONE); EXPECT_EQ(KM_ERROR_CALLER_NONCE_PROHIBITED, BeginOperation(KM_PURPOSE_ENCRYPT, input_params, &output_params)); EXPECT_EQ(0, GetParam()->keymaster0_calls()); } TEST_P(EncryptionOperationsTest, AesCbcIncrementalNoPadding) { ASSERT_EQ(KM_ERROR_OK, GenerateKey(AuthorizationSetBuilder() .AesEncryptionKey(128) .Authorization(TAG_BLOCK_MODE, KM_MODE_CBC) .Padding(KM_PAD_NONE))); int increment = 15; string message(240, 'a'); AuthorizationSet input_params(client_params()); input_params.push_back(TAG_BLOCK_MODE, KM_MODE_CBC); input_params.push_back(TAG_PADDING, KM_PAD_NONE); AuthorizationSet output_params; EXPECT_EQ(KM_ERROR_OK, BeginOperation(KM_PURPOSE_ENCRYPT, input_params, &output_params)); string ciphertext; size_t input_consumed; for (size_t i = 0; i < message.size(); i += increment) EXPECT_EQ(KM_ERROR_OK, UpdateOperation(message.substr(i, increment), &ciphertext, &input_consumed)); EXPECT_EQ(KM_ERROR_OK, FinishOperation(&ciphertext)); EXPECT_EQ(message.size(), ciphertext.size()); // Move TAG_NONCE into input_params input_params.Reinitialize(output_params); input_params.push_back(client_params()); input_params.push_back(TAG_BLOCK_MODE, KM_MODE_CBC); input_params.push_back(TAG_PADDING, KM_PAD_NONE); output_params.Clear(); EXPECT_EQ(KM_ERROR_OK, BeginOperation(KM_PURPOSE_DECRYPT, input_params, &output_params)); string plaintext; for (size_t i = 0; i < ciphertext.size(); i += increment) EXPECT_EQ(KM_ERROR_OK, UpdateOperation(ciphertext.substr(i, increment), &plaintext, &input_consumed)); EXPECT_EQ(KM_ERROR_OK, FinishOperation(&plaintext)); EXPECT_EQ(ciphertext.size(), plaintext.size()); EXPECT_EQ(message, plaintext); EXPECT_EQ(0, GetParam()->keymaster0_calls()); } TEST_P(EncryptionOperationsTest, AesCbcPkcs7Padding) { ASSERT_EQ(KM_ERROR_OK, GenerateKey(AuthorizationSetBuilder() .AesEncryptionKey(128) .Authorization(TAG_BLOCK_MODE, KM_MODE_CBC) .Authorization(TAG_PADDING, KM_PAD_PKCS7))); // Try various message lengths; all should work. for (size_t i = 0; i < 32; ++i) { string message(i, 'a'); string iv; string ciphertext = EncryptMessage(message, KM_MODE_CBC, KM_PAD_PKCS7, &iv); EXPECT_EQ(i + 16 - (i % 16), ciphertext.size()); string plaintext = DecryptMessage(ciphertext, KM_MODE_CBC, KM_PAD_PKCS7, iv); EXPECT_EQ(message, plaintext); } EXPECT_EQ(0, GetParam()->keymaster0_calls()); } TEST_P(EncryptionOperationsTest, AesGcmRoundTripSuccess) { ASSERT_EQ(KM_ERROR_OK, GenerateKey(AuthorizationSetBuilder() .AesEncryptionKey(128) .Authorization(TAG_BLOCK_MODE, KM_MODE_GCM) .Authorization(TAG_PADDING, KM_PAD_NONE) .Authorization(TAG_MIN_MAC_LENGTH, 128))); string aad = "foobar"; string message = "123456789012345678901234567890123456"; AuthorizationSet begin_params(client_params()); begin_params.push_back(TAG_BLOCK_MODE, KM_MODE_GCM); begin_params.push_back(TAG_PADDING, KM_PAD_NONE); begin_params.push_back(TAG_MAC_LENGTH, 128); AuthorizationSet update_params; update_params.push_back(TAG_ASSOCIATED_DATA, aad.data(), aad.size()); // Encrypt AuthorizationSet begin_out_params; EXPECT_EQ(KM_ERROR_OK, BeginOperation(KM_PURPOSE_ENCRYPT, begin_params, &begin_out_params)); string ciphertext; size_t input_consumed; AuthorizationSet update_out_params; EXPECT_EQ(KM_ERROR_OK, UpdateOperation(update_params, message, &update_out_params, &ciphertext, &input_consumed)); EXPECT_EQ(message.size(), input_consumed); EXPECT_EQ(KM_ERROR_OK, FinishOperation(&ciphertext)); // Grab nonce EXPECT_NE(-1, begin_out_params.find(TAG_NONCE)); begin_params.push_back(begin_out_params); // Decrypt. EXPECT_EQ(KM_ERROR_OK, BeginOperation(KM_PURPOSE_DECRYPT, begin_params)); string plaintext; EXPECT_EQ(KM_ERROR_OK, UpdateOperation(update_params, ciphertext, &update_out_params, &plaintext, &input_consumed)); EXPECT_EQ(ciphertext.size(), input_consumed); EXPECT_EQ(KM_ERROR_OK, FinishOperation(&plaintext)); EXPECT_EQ(message, plaintext); EXPECT_EQ(0, GetParam()->keymaster0_calls()); } TEST_P(EncryptionOperationsTest, AesGcmTooShortTag) { ASSERT_EQ(KM_ERROR_OK, GenerateKey(AuthorizationSetBuilder() .AesEncryptionKey(128) .Authorization(TAG_BLOCK_MODE, KM_MODE_GCM) .Authorization(TAG_PADDING, KM_PAD_NONE) .Authorization(TAG_MIN_MAC_LENGTH, 128))); string aad = "foobar"; string message = "123456789012345678901234567890123456"; AuthorizationSet begin_params(client_params()); begin_params.push_back(TAG_BLOCK_MODE, KM_MODE_GCM); begin_params.push_back(TAG_PADDING, KM_PAD_NONE); begin_params.push_back(TAG_MAC_LENGTH, 96); AuthorizationSet update_params; update_params.push_back(TAG_ASSOCIATED_DATA, aad.data(), aad.size()); AuthorizationSet begin_out_params; EXPECT_EQ(KM_ERROR_INVALID_MAC_LENGTH, BeginOperation(KM_PURPOSE_ENCRYPT, begin_params, &begin_out_params)); EXPECT_EQ(0, GetParam()->keymaster0_calls()); } TEST_P(EncryptionOperationsTest, AesGcmTooShortTagOnDecrypt) { ASSERT_EQ(KM_ERROR_OK, GenerateKey(AuthorizationSetBuilder() .AesEncryptionKey(128) .Authorization(TAG_BLOCK_MODE, KM_MODE_GCM) .Authorization(TAG_PADDING, KM_PAD_NONE) .Authorization(TAG_MIN_MAC_LENGTH, 128))); string aad = "foobar"; string message = "123456789012345678901234567890123456"; AuthorizationSet begin_params(client_params()); begin_params.push_back(TAG_BLOCK_MODE, KM_MODE_GCM); begin_params.push_back(TAG_PADDING, KM_PAD_NONE); begin_params.push_back(TAG_MAC_LENGTH, 128); AuthorizationSet update_params; update_params.push_back(TAG_ASSOCIATED_DATA, aad.data(), aad.size()); // Encrypt AuthorizationSet begin_out_params; EXPECT_EQ(KM_ERROR_OK, BeginOperation(KM_PURPOSE_ENCRYPT, begin_params, &begin_out_params)); string ciphertext; size_t input_consumed; AuthorizationSet update_out_params; EXPECT_EQ(KM_ERROR_OK, UpdateOperation(update_params, message, &update_out_params, &ciphertext, &input_consumed)); EXPECT_EQ(message.size(), input_consumed); EXPECT_EQ(KM_ERROR_OK, FinishOperation(&ciphertext)); // Grab nonce EXPECT_NE(-1, begin_out_params.find(TAG_NONCE)); begin_params.Reinitialize(client_params()); begin_params.push_back(begin_out_params); begin_params.push_back(TAG_BLOCK_MODE, KM_MODE_GCM); begin_params.push_back(TAG_PADDING, KM_PAD_NONE); begin_params.push_back(TAG_MAC_LENGTH, 96); // Decrypt. EXPECT_EQ(KM_ERROR_INVALID_MAC_LENGTH, BeginOperation(KM_PURPOSE_DECRYPT, begin_params)); EXPECT_EQ(0, GetParam()->keymaster0_calls()); } TEST_P(EncryptionOperationsTest, AesGcmCorruptKey) { uint8_t nonce[] = { 0xb7, 0x94, 0x37, 0xae, 0x08, 0xff, 0x35, 0x5d, 0x7d, 0x8a, 0x4d, 0x0f, }; uint8_t ciphertext[] = { 0xb3, 0xf6, 0x79, 0x9e, 0x8f, 0x93, 0x26, 0xf2, 0xdf, 0x1e, 0x80, 0xfc, 0xd2, 0xcb, 0x16, 0xd7, 0x8c, 0x9d, 0xc7, 0xcc, 0x14, 0xbb, 0x67, 0x78, 0x62, 0xdc, 0x6c, 0x63, 0x9b, 0x3a, 0x63, 0x38, 0xd2, 0x4b, 0x31, 0x2d, 0x39, 0x89, 0xe5, 0x92, 0x0b, 0x5d, 0xbf, 0xc9, 0x76, 0x76, 0x5e, 0xfb, 0xfe, 0x57, 0xbb, 0x38, 0x59, 0x40, 0xa7, 0xa4, 0x3b, 0xdf, 0x05, 0xbd, 0xda, 0xe3, 0xc9, 0xd6, 0xa2, 0xfb, 0xbd, 0xfc, 0xc0, 0xcb, 0xa0, }; string ciphertext_str(reinterpret_cast<char*>(ciphertext), sizeof(ciphertext)); AuthorizationSet begin_params(client_params()); begin_params.push_back(TAG_BLOCK_MODE, KM_MODE_GCM); begin_params.push_back(TAG_PADDING, KM_PAD_NONE); begin_params.push_back(TAG_MAC_LENGTH, 128); begin_params.push_back(TAG_NONCE, nonce, sizeof(nonce)); string plaintext; size_t input_consumed; // Import correct key and decrypt uint8_t good_key[] = { 0xba, 0x76, 0x35, 0x4f, 0x0a, 0xed, 0x6e, 0x8d, 0x91, 0xf4, 0x5c, 0x4f, 0xf5, 0xa0, 0x62, 0xdb, }; string good_key_str(reinterpret_cast<char*>(good_key), sizeof(good_key)); ASSERT_EQ(KM_ERROR_OK, ImportKey(AuthorizationSetBuilder() .AesEncryptionKey(128) .Authorization(TAG_BLOCK_MODE, KM_MODE_GCM) .Authorization(TAG_PADDING, KM_PAD_NONE) .Authorization(TAG_CALLER_NONCE) .Authorization(TAG_MIN_MAC_LENGTH, 128), KM_KEY_FORMAT_RAW, good_key_str)); EXPECT_EQ(KM_ERROR_OK, BeginOperation(KM_PURPOSE_DECRYPT, begin_params)); EXPECT_EQ(KM_ERROR_OK, UpdateOperation(ciphertext_str, &plaintext, &input_consumed)); EXPECT_EQ(KM_ERROR_OK, FinishOperation(&plaintext)); // Import bad key and decrypt uint8_t bad_key[] = { 0xbb, 0x76, 0x35, 0x4f, 0x0a, 0xed, 0x6e, 0x8d, 0x91, 0xf4, 0x5c, 0x4f, 0xf5, 0xa0, 0x62, 0xdb, }; string bad_key_str(reinterpret_cast<char*>(bad_key), sizeof(bad_key)); ASSERT_EQ(KM_ERROR_OK, ImportKey(AuthorizationSetBuilder() .AesEncryptionKey(128) .Authorization(TAG_BLOCK_MODE, KM_MODE_GCM) .Authorization(TAG_PADDING, KM_PAD_NONE) .Authorization(TAG_MIN_MAC_LENGTH, 128), KM_KEY_FORMAT_RAW, bad_key_str)); EXPECT_EQ(KM_ERROR_OK, BeginOperation(KM_PURPOSE_DECRYPT, begin_params)); EXPECT_EQ(KM_ERROR_OK, UpdateOperation(ciphertext_str, &plaintext, &input_consumed)); EXPECT_EQ(KM_ERROR_VERIFICATION_FAILED, FinishOperation(&plaintext)); EXPECT_EQ(0, GetParam()->keymaster0_calls()); } TEST_P(EncryptionOperationsTest, AesGcmAadNoData) { ASSERT_EQ(KM_ERROR_OK, GenerateKey(AuthorizationSetBuilder() .AesEncryptionKey(128) .Authorization(TAG_BLOCK_MODE, KM_MODE_GCM) .Authorization(TAG_PADDING, KM_PAD_NONE) .Authorization(TAG_MIN_MAC_LENGTH, 128))); string aad = "123456789012345678"; string empty_message; AuthorizationSet begin_params(client_params()); begin_params.push_back(TAG_BLOCK_MODE, KM_MODE_GCM); begin_params.push_back(TAG_PADDING, KM_PAD_NONE); begin_params.push_back(TAG_MAC_LENGTH, 128); AuthorizationSet update_params; update_params.push_back(TAG_ASSOCIATED_DATA, aad.data(), aad.size()); // Encrypt AuthorizationSet begin_out_params; EXPECT_EQ(KM_ERROR_OK, BeginOperation(KM_PURPOSE_ENCRYPT, begin_params, &begin_out_params)); string ciphertext; size_t input_consumed; AuthorizationSet update_out_params; EXPECT_EQ(KM_ERROR_OK, UpdateOperation(update_params, empty_message, &update_out_params, &ciphertext, &input_consumed)); EXPECT_EQ(0U, input_consumed); EXPECT_EQ(KM_ERROR_OK, FinishOperation(&ciphertext)); // Grab nonce EXPECT_NE(-1, begin_out_params.find(TAG_NONCE)); begin_params.push_back(begin_out_params); // Decrypt. EXPECT_EQ(KM_ERROR_OK, BeginOperation(KM_PURPOSE_DECRYPT, begin_params)); string plaintext; EXPECT_EQ(KM_ERROR_OK, UpdateOperation(update_params, ciphertext, &update_out_params, &plaintext, &input_consumed)); EXPECT_EQ(ciphertext.size(), input_consumed); EXPECT_EQ(KM_ERROR_OK, FinishOperation(&plaintext)); EXPECT_EQ(empty_message, plaintext); EXPECT_EQ(0, GetParam()->keymaster0_calls()); } TEST_P(EncryptionOperationsTest, AesGcmIncremental) { ASSERT_EQ(KM_ERROR_OK, GenerateKey(AuthorizationSetBuilder() .AesEncryptionKey(128) .Authorization(TAG_BLOCK_MODE, KM_MODE_GCM) .Authorization(TAG_PADDING, KM_PAD_NONE) .Authorization(TAG_MIN_MAC_LENGTH, 128))); AuthorizationSet begin_params(client_params()); begin_params.push_back(TAG_BLOCK_MODE, KM_MODE_GCM); begin_params.push_back(TAG_PADDING, KM_PAD_NONE); begin_params.push_back(TAG_MAC_LENGTH, 128); AuthorizationSet update_params; update_params.push_back(TAG_ASSOCIATED_DATA, "b", 1); // Encrypt AuthorizationSet begin_out_params; EXPECT_EQ(KM_ERROR_OK, BeginOperation(KM_PURPOSE_ENCRYPT, begin_params, &begin_out_params)); string ciphertext; size_t input_consumed; AuthorizationSet update_out_params; // Send AAD, incrementally for (int i = 0; i < 1000; ++i) { EXPECT_EQ(KM_ERROR_OK, UpdateOperation(update_params, "", &update_out_params, &ciphertext, &input_consumed)); EXPECT_EQ(0U, input_consumed); EXPECT_EQ(0U, ciphertext.size()); } // Now send data, incrementally, no data. AuthorizationSet empty_params; for (int i = 0; i < 1000; ++i) { EXPECT_EQ(KM_ERROR_OK, UpdateOperation(empty_params, "a", &update_out_params, &ciphertext, &input_consumed)); EXPECT_EQ(1U, input_consumed); } EXPECT_EQ(1000U, ciphertext.size()); // And finish. EXPECT_EQ(KM_ERROR_OK, FinishOperation(&ciphertext)); EXPECT_EQ(1016U, ciphertext.size()); // Grab nonce EXPECT_NE(-1, begin_out_params.find(TAG_NONCE)); begin_params.push_back(begin_out_params); // Decrypt. EXPECT_EQ(KM_ERROR_OK, BeginOperation(KM_PURPOSE_DECRYPT, begin_params)); string plaintext; // Send AAD, incrementally, no data for (int i = 0; i < 1000; ++i) { EXPECT_EQ(KM_ERROR_OK, UpdateOperation(update_params, "", &update_out_params, &plaintext, &input_consumed)); EXPECT_EQ(0U, input_consumed); EXPECT_EQ(0U, plaintext.size()); } // Now send data, incrementally. for (size_t i = 0; i < ciphertext.length(); ++i) { EXPECT_EQ(KM_ERROR_OK, UpdateOperation(empty_params, string(ciphertext.data() + i, 1), &update_out_params, &plaintext, &input_consumed)); EXPECT_EQ(1U, input_consumed); } EXPECT_EQ(1000U, plaintext.size()); EXPECT_EQ(KM_ERROR_OK, FinishOperation(&plaintext)); EXPECT_EQ(0, GetParam()->keymaster0_calls()); } TEST_P(EncryptionOperationsTest, AesGcmMultiPartAad) { ASSERT_EQ(KM_ERROR_OK, GenerateKey(AuthorizationSetBuilder() .AesEncryptionKey(128) .Authorization(TAG_BLOCK_MODE, KM_MODE_GCM) .Authorization(TAG_PADDING, KM_PAD_NONE) .Authorization(TAG_MIN_MAC_LENGTH, 128))); string message = "123456789012345678901234567890123456"; AuthorizationSet begin_params(client_params()); begin_params.push_back(TAG_BLOCK_MODE, KM_MODE_GCM); begin_params.push_back(TAG_PADDING, KM_PAD_NONE); begin_params.push_back(TAG_MAC_LENGTH, 128); AuthorizationSet begin_out_params; AuthorizationSet update_params; update_params.push_back(TAG_ASSOCIATED_DATA, "foo", 3); EXPECT_EQ(KM_ERROR_OK, BeginOperation(KM_PURPOSE_ENCRYPT, begin_params, &begin_out_params)); // No data, AAD only. string ciphertext; size_t input_consumed; AuthorizationSet update_out_params; EXPECT_EQ(KM_ERROR_OK, UpdateOperation(update_params, "" /* message */, &update_out_params, &ciphertext, &input_consumed)); EXPECT_EQ(0U, input_consumed); // AAD and data. EXPECT_EQ(KM_ERROR_OK, UpdateOperation(update_params, message, &update_out_params, &ciphertext, &input_consumed)); EXPECT_EQ(message.size(), input_consumed); EXPECT_EQ(KM_ERROR_OK, FinishOperation(&ciphertext)); // Grab nonce. EXPECT_NE(-1, begin_out_params.find(TAG_NONCE)); begin_params.push_back(begin_out_params); // Decrypt update_params.Clear(); update_params.push_back(TAG_ASSOCIATED_DATA, "foofoo", 6); EXPECT_EQ(KM_ERROR_OK, BeginOperation(KM_PURPOSE_DECRYPT, begin_params)); string plaintext; EXPECT_EQ(KM_ERROR_OK, UpdateOperation(update_params, ciphertext, &update_out_params, &plaintext, &input_consumed)); EXPECT_EQ(ciphertext.size(), input_consumed); EXPECT_EQ(KM_ERROR_OK, FinishOperation(&plaintext)); EXPECT_EQ(message, plaintext); EXPECT_EQ(0, GetParam()->keymaster0_calls()); } TEST_P(EncryptionOperationsTest, AesGcmBadAad) { ASSERT_EQ(KM_ERROR_OK, GenerateKey(AuthorizationSetBuilder() .AesEncryptionKey(128) .Authorization(TAG_BLOCK_MODE, KM_MODE_GCM) .Authorization(TAG_PADDING, KM_PAD_NONE) .Authorization(TAG_MIN_MAC_LENGTH, 128))); string message = "12345678901234567890123456789012"; AuthorizationSet begin_params(client_params()); begin_params.push_back(TAG_BLOCK_MODE, KM_MODE_GCM); begin_params.push_back(TAG_PADDING, KM_PAD_NONE); begin_params.push_back(TAG_MAC_LENGTH, 128); AuthorizationSet update_params; update_params.push_back(TAG_ASSOCIATED_DATA, "foobar", 6); AuthorizationSet finish_params; AuthorizationSet finish_out_params; // Encrypt AuthorizationSet begin_out_params; EXPECT_EQ(KM_ERROR_OK, BeginOperation(KM_PURPOSE_ENCRYPT, begin_params, &begin_out_params)); AuthorizationSet update_out_params; string ciphertext; size_t input_consumed; EXPECT_EQ(KM_ERROR_OK, UpdateOperation(update_params, message, &update_out_params, &ciphertext, &input_consumed)); EXPECT_EQ(message.size(), input_consumed); EXPECT_EQ(KM_ERROR_OK, FinishOperation(&ciphertext)); // Grab nonce EXPECT_NE(-1, begin_out_params.find(TAG_NONCE)); begin_params.push_back(begin_out_params); update_params.Clear(); update_params.push_back(TAG_ASSOCIATED_DATA, "barfoo" /* Wrong AAD */, 6); // Decrypt. EXPECT_EQ(KM_ERROR_OK, BeginOperation(KM_PURPOSE_DECRYPT, begin_params, &begin_out_params)); string plaintext; EXPECT_EQ(KM_ERROR_OK, UpdateOperation(update_params, ciphertext, &update_out_params, &plaintext, &input_consumed)); EXPECT_EQ(ciphertext.size(), input_consumed); EXPECT_EQ(KM_ERROR_VERIFICATION_FAILED, FinishOperation(&plaintext)); EXPECT_EQ(0, GetParam()->keymaster0_calls()); } TEST_P(EncryptionOperationsTest, AesGcmWrongNonce) { ASSERT_EQ(KM_ERROR_OK, GenerateKey(AuthorizationSetBuilder() .AesEncryptionKey(128) .Authorization(TAG_BLOCK_MODE, KM_MODE_GCM) .Authorization(TAG_PADDING, KM_PAD_NONE) .Authorization(TAG_MIN_MAC_LENGTH, 128))); string message = "12345678901234567890123456789012"; AuthorizationSet begin_params(client_params()); begin_params.push_back(TAG_BLOCK_MODE, KM_MODE_GCM); begin_params.push_back(TAG_PADDING, KM_PAD_NONE); begin_params.push_back(TAG_MAC_LENGTH, 128); AuthorizationSet update_params; update_params.push_back(TAG_ASSOCIATED_DATA, "foobar", 6); // Encrypt AuthorizationSet begin_out_params; EXPECT_EQ(KM_ERROR_OK, BeginOperation(KM_PURPOSE_ENCRYPT, begin_params, &begin_out_params)); AuthorizationSet update_out_params; string ciphertext; size_t input_consumed; EXPECT_EQ(KM_ERROR_OK, UpdateOperation(update_params, message, &update_out_params, &ciphertext, &input_consumed)); EXPECT_EQ(message.size(), input_consumed); EXPECT_EQ(KM_ERROR_OK, FinishOperation(&ciphertext)); begin_params.push_back(TAG_NONCE, "123456789012", 12); // Decrypt EXPECT_EQ(KM_ERROR_OK, BeginOperation(KM_PURPOSE_DECRYPT, begin_params, &begin_out_params)); string plaintext; EXPECT_EQ(KM_ERROR_OK, UpdateOperation(update_params, ciphertext, &update_out_params, &plaintext, &input_consumed)); EXPECT_EQ(ciphertext.size(), input_consumed); EXPECT_EQ(KM_ERROR_VERIFICATION_FAILED, FinishOperation(&plaintext)); // With wrong nonce, should have gotten garbage plaintext. EXPECT_NE(message, plaintext); EXPECT_EQ(0, GetParam()->keymaster0_calls()); } TEST_P(EncryptionOperationsTest, AesGcmCorruptTag) { ASSERT_EQ(KM_ERROR_OK, GenerateKey(AuthorizationSetBuilder() .AesEncryptionKey(128) .Authorization(TAG_BLOCK_MODE, KM_MODE_GCM) .Authorization(TAG_PADDING, KM_PAD_NONE) .Authorization(TAG_MIN_MAC_LENGTH, 128))); string aad = "foobar"; string message = "123456789012345678901234567890123456"; AuthorizationSet begin_params(client_params()); begin_params.push_back(TAG_BLOCK_MODE, KM_MODE_GCM); begin_params.push_back(TAG_PADDING, KM_PAD_NONE); begin_params.push_back(TAG_MAC_LENGTH, 128); AuthorizationSet begin_out_params; AuthorizationSet update_params; update_params.push_back(TAG_ASSOCIATED_DATA, aad.data(), aad.size()); // Encrypt EXPECT_EQ(KM_ERROR_OK, BeginOperation(KM_PURPOSE_ENCRYPT, begin_params, &begin_out_params)); AuthorizationSet update_out_params; string ciphertext; size_t input_consumed; EXPECT_EQ(KM_ERROR_OK, UpdateOperation(update_params, message, &update_out_params, &ciphertext, &input_consumed)); EXPECT_EQ(message.size(), input_consumed); EXPECT_EQ(KM_ERROR_OK, FinishOperation(&ciphertext)); // Corrupt tag (*ciphertext.rbegin())++; // Grab nonce. EXPECT_NE(-1, begin_out_params.find(TAG_NONCE)); begin_params.push_back(begin_out_params); // Decrypt. EXPECT_EQ(KM_ERROR_OK, BeginOperation(KM_PURPOSE_DECRYPT, begin_params, &begin_out_params)); string plaintext; EXPECT_EQ(KM_ERROR_OK, UpdateOperation(update_params, ciphertext, &update_out_params, &plaintext, &input_consumed)); EXPECT_EQ(ciphertext.size(), input_consumed); EXPECT_EQ(KM_ERROR_VERIFICATION_FAILED, FinishOperation(&plaintext)); EXPECT_EQ(message, plaintext); EXPECT_EQ(0, GetParam()->keymaster0_calls()); } typedef Keymaster2Test MaxOperationsTest; INSTANTIATE_TEST_CASE_P(AndroidKeymasterTest, MaxOperationsTest, test_params); TEST_P(MaxOperationsTest, TestLimit) { ASSERT_EQ(KM_ERROR_OK, GenerateKey(AuthorizationSetBuilder() .AesEncryptionKey(128) .EcbMode() .Authorization(TAG_PADDING, KM_PAD_NONE) .Authorization(TAG_MAX_USES_PER_BOOT, 3))); string message = "1234567890123456"; string ciphertext1 = EncryptMessage(message, KM_MODE_ECB, KM_PAD_NONE); string ciphertext2 = EncryptMessage(message, KM_MODE_ECB, KM_PAD_NONE); string ciphertext3 = EncryptMessage(message, KM_MODE_ECB, KM_PAD_NONE); // Fourth time should fail. AuthorizationSet begin_params(client_params()); begin_params.push_back(TAG_BLOCK_MODE, KM_MODE_ECB); begin_params.push_back(TAG_PADDING, KM_PAD_NONE); EXPECT_EQ(KM_ERROR_KEY_MAX_OPS_EXCEEDED, BeginOperation(KM_PURPOSE_ENCRYPT, begin_params)); EXPECT_EQ(0, GetParam()->keymaster0_calls()); } TEST_P(MaxOperationsTest, TestAbort) { ASSERT_EQ(KM_ERROR_OK, GenerateKey(AuthorizationSetBuilder() .AesEncryptionKey(128) .EcbMode() .Authorization(TAG_PADDING, KM_PAD_NONE) .Authorization(TAG_MAX_USES_PER_BOOT, 3))); string message = "1234567890123456"; string ciphertext1 = EncryptMessage(message, KM_MODE_ECB, KM_PAD_NONE); string ciphertext2 = EncryptMessage(message, KM_MODE_ECB, KM_PAD_NONE); string ciphertext3 = EncryptMessage(message, KM_MODE_ECB, KM_PAD_NONE); // Fourth time should fail. AuthorizationSet begin_params(client_params()); begin_params.push_back(TAG_BLOCK_MODE, KM_MODE_ECB); begin_params.push_back(TAG_PADDING, KM_PAD_NONE); EXPECT_EQ(KM_ERROR_KEY_MAX_OPS_EXCEEDED, BeginOperation(KM_PURPOSE_ENCRYPT, begin_params)); EXPECT_EQ(0, GetParam()->keymaster0_calls()); } typedef Keymaster2Test AddEntropyTest; INSTANTIATE_TEST_CASE_P(AndroidKeymasterTest, AddEntropyTest, test_params); TEST_P(AddEntropyTest, AddEntropy) { // There's no obvious way to test that entropy is actually added, but we can test that the API // doesn't blow up or return an error. EXPECT_EQ(KM_ERROR_OK, device()->add_rng_entropy(device(), reinterpret_cast<const uint8_t*>("foo"), 3)); EXPECT_EQ(0, GetParam()->keymaster0_calls()); } typedef Keymaster2Test Keymaster0AdapterTest; INSTANTIATE_TEST_CASE_P( AndroidKeymasterTest, Keymaster0AdapterTest, ::testing::Values( InstanceCreatorPtr(new Keymaster0AdapterTestInstanceCreator(true /* support_ec */)), InstanceCreatorPtr(new Keymaster0AdapterTestInstanceCreator(false /* support_ec */)))); TEST_P(Keymaster0AdapterTest, OldSoftwareKeymaster1RsaBlob) { // Load and use an old-style Keymaster1 software key blob. These blobs contain OCB-encrypted // key data. string km1_sw = read_file("km1_sw_rsa_512.blob"); EXPECT_EQ(486U, km1_sw.length()); uint8_t* key_data = reinterpret_cast<uint8_t*>(malloc(km1_sw.length())); memcpy(key_data, km1_sw.data(), km1_sw.length()); set_key_blob(key_data, km1_sw.length()); string message(64, 'a'); string signature; SignMessage(message, &signature, KM_DIGEST_NONE, KM_PAD_NONE); EXPECT_EQ(0, GetParam()->keymaster0_calls()); } TEST_P(Keymaster0AdapterTest, UnversionedSoftwareKeymaster1RsaBlob) { // Load and use an old-style Keymaster1 software key blob, without the version byte. These // blobs contain OCB-encrypted key data. string km1_sw = read_file("km1_sw_rsa_512_unversioned.blob"); EXPECT_EQ(477U, km1_sw.length()); uint8_t* key_data = reinterpret_cast<uint8_t*>(malloc(km1_sw.length())); memcpy(key_data, km1_sw.data(), km1_sw.length()); set_key_blob(key_data, km1_sw.length()); string message(64, 'a'); string signature; SignMessage(message, &signature, KM_DIGEST_NONE, KM_PAD_NONE); EXPECT_EQ(0, GetParam()->keymaster0_calls()); } TEST_P(Keymaster0AdapterTest, OldSoftwareKeymaster1EcdsaBlob) { // Load and use an old-style Keymaster1 software key blob. These blobs contain OCB-encrypted // key data. string km1_sw = read_file("km1_sw_ecdsa_256.blob"); EXPECT_EQ(270U, km1_sw.length()); uint8_t* key_data = reinterpret_cast<uint8_t*>(malloc(km1_sw.length())); memcpy(key_data, km1_sw.data(), km1_sw.length()); set_key_blob(key_data, km1_sw.length()); string message(32, static_cast<char>(0xFF)); string signature; SignMessage(message, &signature, KM_DIGEST_NONE, KM_PAD_NONE); EXPECT_EQ(0, GetParam()->keymaster0_calls()); } struct Malloc_Delete { void operator()(void* p) { free(p); } }; TEST_P(Keymaster0AdapterTest, OldSoftwareKeymaster0RsaBlob) { // Load and use an old softkeymaster blob. These blobs contain PKCS#8 key data. string km0_sw = read_file("km0_sw_rsa_512.blob"); EXPECT_EQ(333U, km0_sw.length()); uint8_t* key_data = reinterpret_cast<uint8_t*>(malloc(km0_sw.length())); memcpy(key_data, km0_sw.data(), km0_sw.length()); set_key_blob(key_data, km0_sw.length()); string message(64, 'a'); string signature; SignMessage(message, &signature, KM_DIGEST_NONE, KM_PAD_NONE); EXPECT_EQ(0, GetParam()->keymaster0_calls()); } TEST_P(Keymaster0AdapterTest, OldSwKeymaster0RsaBlobGetCharacteristics) { // Load and use an old softkeymaster blob. These blobs contain PKCS#8 key data. string km0_sw = read_file("km0_sw_rsa_512.blob"); EXPECT_EQ(333U, km0_sw.length()); uint8_t* key_data = reinterpret_cast<uint8_t*>(malloc(km0_sw.length())); memcpy(key_data, km0_sw.data(), km0_sw.length()); set_key_blob(key_data, km0_sw.length()); EXPECT_EQ(KM_ERROR_OK, GetCharacteristics()); EXPECT_TRUE(contains(sw_enforced(), TAG_ALGORITHM, KM_ALGORITHM_RSA)); EXPECT_TRUE(contains(sw_enforced(), TAG_KEY_SIZE, 512)); EXPECT_TRUE(contains(sw_enforced(), TAG_RSA_PUBLIC_EXPONENT, 3)); EXPECT_TRUE(contains(sw_enforced(), TAG_DIGEST, KM_DIGEST_NONE)); EXPECT_TRUE(contains(sw_enforced(), TAG_PADDING, KM_PAD_NONE)); EXPECT_TRUE(contains(sw_enforced(), TAG_PURPOSE, KM_PURPOSE_SIGN)); EXPECT_TRUE(contains(sw_enforced(), TAG_PURPOSE, KM_PURPOSE_VERIFY)); EXPECT_TRUE(sw_enforced().GetTagValue(TAG_ALL_USERS)); EXPECT_TRUE(sw_enforced().GetTagValue(TAG_NO_AUTH_REQUIRED)); EXPECT_EQ(0, GetParam()->keymaster0_calls()); } TEST_P(Keymaster0AdapterTest, OldHwKeymaster0RsaBlob) { // Load and use an old softkeymaster blob. These blobs contain PKCS#8 key data. string km0_sw = read_file("km0_sw_rsa_512.blob"); EXPECT_EQ(333U, km0_sw.length()); // The keymaster0 wrapper swaps the old softkeymaster leading 'P' for a 'Q' to make the key not // be recognized as a software key. Do the same here to pretend this is a hardware key. EXPECT_EQ('P', km0_sw[0]); km0_sw[0] = 'Q'; uint8_t* key_data = reinterpret_cast<uint8_t*>(malloc(km0_sw.length())); memcpy(key_data, km0_sw.data(), km0_sw.length()); set_key_blob(key_data, km0_sw.length()); string message(64, 'a'); string signature; SignMessage(message, &signature, KM_DIGEST_NONE, KM_PAD_NONE); VerifyMessage(message, signature, KM_DIGEST_NONE, KM_PAD_NONE); EXPECT_EQ(5, GetParam()->keymaster0_calls()); } TEST_P(Keymaster0AdapterTest, OldHwKeymaster0RsaBlobGetCharacteristics) { // Load and use an old softkeymaster blob. These blobs contain PKCS#8 key data. string km0_sw = read_file("km0_sw_rsa_512.blob"); EXPECT_EQ(333U, km0_sw.length()); // The keymaster0 wrapper swaps the old softkeymaster leading 'P' for a 'Q' to make the key not // be recognized as a software key. Do the same here to pretend this is a hardware key. EXPECT_EQ('P', km0_sw[0]); km0_sw[0] = 'Q'; uint8_t* key_data = reinterpret_cast<uint8_t*>(malloc(km0_sw.length())); memcpy(key_data, km0_sw.data(), km0_sw.length()); set_key_blob(key_data, km0_sw.length()); EXPECT_EQ(KM_ERROR_OK, GetCharacteristics()); EXPECT_TRUE(contains(hw_enforced(), TAG_ALGORITHM, KM_ALGORITHM_RSA)); EXPECT_TRUE(contains(hw_enforced(), TAG_KEY_SIZE, 512)); EXPECT_TRUE(contains(hw_enforced(), TAG_RSA_PUBLIC_EXPONENT, 3)); EXPECT_TRUE(contains(hw_enforced(), TAG_DIGEST, KM_DIGEST_NONE)); EXPECT_TRUE(contains(hw_enforced(), TAG_DIGEST, KM_DIGEST_MD5)); EXPECT_TRUE(contains(hw_enforced(), TAG_DIGEST, KM_DIGEST_SHA1)); EXPECT_TRUE(contains(hw_enforced(), TAG_DIGEST, KM_DIGEST_SHA_2_224)); EXPECT_TRUE(contains(hw_enforced(), TAG_DIGEST, KM_DIGEST_SHA_2_256)); EXPECT_TRUE(contains(hw_enforced(), TAG_DIGEST, KM_DIGEST_SHA_2_384)); EXPECT_TRUE(contains(hw_enforced(), TAG_DIGEST, KM_DIGEST_SHA_2_512)); EXPECT_TRUE(contains(hw_enforced(), TAG_PADDING, KM_PAD_NONE)); EXPECT_TRUE(contains(hw_enforced(), TAG_PADDING, KM_PAD_RSA_PKCS1_1_5_ENCRYPT)); EXPECT_TRUE(contains(hw_enforced(), TAG_PADDING, KM_PAD_RSA_PKCS1_1_5_SIGN)); EXPECT_TRUE(contains(hw_enforced(), TAG_PADDING, KM_PAD_RSA_OAEP)); EXPECT_TRUE(contains(hw_enforced(), TAG_PADDING, KM_PAD_RSA_PSS)); EXPECT_EQ(15U, hw_enforced().size()); EXPECT_TRUE(contains(sw_enforced(), TAG_PURPOSE, KM_PURPOSE_SIGN)); EXPECT_TRUE(contains(sw_enforced(), TAG_PURPOSE, KM_PURPOSE_VERIFY)); EXPECT_TRUE(sw_enforced().GetTagValue(TAG_ALL_USERS)); EXPECT_TRUE(sw_enforced().GetTagValue(TAG_NO_AUTH_REQUIRED)); EXPECT_FALSE(contains(sw_enforced(), TAG_ALGORITHM, KM_ALGORITHM_RSA)); EXPECT_FALSE(contains(sw_enforced(), TAG_KEY_SIZE, 512)); EXPECT_FALSE(contains(sw_enforced(), TAG_RSA_PUBLIC_EXPONENT, 3)); EXPECT_FALSE(contains(sw_enforced(), TAG_DIGEST, KM_DIGEST_NONE)); EXPECT_FALSE(contains(sw_enforced(), TAG_PADDING, KM_PAD_NONE)); EXPECT_EQ(1, GetParam()->keymaster0_calls()); } typedef Keymaster2Test AttestationTest; INSTANTIATE_TEST_CASE_P(AndroidKeymasterTest, AttestationTest, test_params); static X509* parse_cert_blob(const keymaster_blob_t& blob) { const uint8_t* p = blob.data; return d2i_X509(nullptr, &p, blob.data_length); } static bool verify_chain(const keymaster_cert_chain_t& chain) { for (size_t i = 0; i < chain.entry_count - 1; ++i) { keymaster_blob_t& key_cert_blob = chain.entries[i]; keymaster_blob_t& signing_cert_blob = chain.entries[i + 1]; X509_Ptr key_cert(parse_cert_blob(key_cert_blob)); X509_Ptr signing_cert(parse_cert_blob(signing_cert_blob)); EXPECT_TRUE(!!key_cert.get() && !!signing_cert.get()); if (!key_cert.get() || !signing_cert.get()) return false; EVP_PKEY_Ptr signing_pubkey(X509_get_pubkey(signing_cert.get())); EXPECT_TRUE(!!signing_pubkey.get()); if (!signing_pubkey.get()) return false; EXPECT_EQ(1, X509_verify(key_cert.get(), signing_pubkey.get())) << "Verification of certificate " << i << " failed"; } return true; } // Extract attestation record from cert. Returned object is still part of cert; don't free it // separately. static ASN1_OCTET_STRING* get_attestation_record(X509* certificate) { ASN1_OBJECT_Ptr oid(OBJ_txt2obj(kAttestionRecordOid, 1 /* dotted string format */)); EXPECT_TRUE(!!oid.get()); if (!oid.get()) return nullptr; int location = X509_get_ext_by_OBJ(certificate, oid.get(), -1 /* search from beginning */); EXPECT_NE(-1, location); if (location == -1) return nullptr; X509_EXTENSION* attest_rec_ext = X509_get_ext(certificate, location); EXPECT_TRUE(!!attest_rec_ext); if (!attest_rec_ext) return nullptr; ASN1_OCTET_STRING* attest_rec = X509_EXTENSION_get_data(attest_rec_ext); EXPECT_TRUE(!!attest_rec); return attest_rec; } static bool verify_attestation_record(const string& challenge, AuthorizationSet expected_sw_enforced, AuthorizationSet expected_tee_enforced, uint32_t expected_keymaster_version, keymaster_security_level_t expected_keymaster_security_level, const keymaster_blob_t& attestation_cert) { X509_Ptr cert(parse_cert_blob(attestation_cert)); EXPECT_TRUE(!!cert.get()); if (!cert.get()) return false; ASN1_OCTET_STRING* attest_rec = get_attestation_record(cert.get()); EXPECT_TRUE(!!attest_rec); if (!attest_rec) return false; AuthorizationSet att_sw_enforced; AuthorizationSet att_tee_enforced; uint32_t att_attestation_version; uint32_t att_keymaster_version; keymaster_security_level_t att_attestation_security_level; keymaster_security_level_t att_keymaster_security_level; keymaster_blob_t att_challenge = {}; keymaster_blob_t att_unique_id = {}; EXPECT_EQ(KM_ERROR_OK, parse_attestation_record( attest_rec->data, attest_rec->length, &att_attestation_version, &att_attestation_security_level, &att_keymaster_version, &att_keymaster_security_level, &att_challenge, &att_sw_enforced, &att_tee_enforced, &att_unique_id)); EXPECT_EQ(1U, att_attestation_version); EXPECT_EQ(KM_SECURITY_LEVEL_SOFTWARE, att_attestation_security_level); EXPECT_EQ(expected_keymaster_version, att_keymaster_version); EXPECT_EQ(expected_keymaster_security_level, att_keymaster_security_level); EXPECT_EQ(challenge.length(), att_challenge.data_length); EXPECT_EQ(0, memcmp(challenge.data(), att_challenge.data, challenge.length())); // Add TAG_USER_ID to the relevant attestation list, because user IDs are not included in // attestations, since they're meaningless off-device. uint32_t user_id; if (expected_sw_enforced.GetTagValue(TAG_USER_ID, &user_id)) att_sw_enforced.push_back(TAG_USER_ID, user_id); if (expected_tee_enforced.GetTagValue(TAG_USER_ID, &user_id)) att_tee_enforced.push_back(TAG_USER_ID, user_id); // Add TAG_INCLUDE_UNIQUE_ID to the relevant attestation list, because that tag is not included // in the attestation. if (expected_sw_enforced.GetTagValue(TAG_INCLUDE_UNIQUE_ID)) att_sw_enforced.push_back(TAG_INCLUDE_UNIQUE_ID); if (expected_tee_enforced.GetTagValue(TAG_INCLUDE_UNIQUE_ID)) att_tee_enforced.push_back(TAG_INCLUDE_UNIQUE_ID); att_sw_enforced.Sort(); expected_sw_enforced.Sort(); EXPECT_EQ(expected_sw_enforced, att_sw_enforced); att_tee_enforced.Sort(); expected_tee_enforced.Sort(); EXPECT_EQ(expected_tee_enforced, att_tee_enforced); delete[] att_challenge.data; delete[] att_unique_id.data; return true; } TEST_P(AttestationTest, RsaAttestation) { ASSERT_EQ(KM_ERROR_OK, GenerateKey(AuthorizationSetBuilder() .RsaSigningKey(256, 3) .Digest(KM_DIGEST_NONE) .Padding(KM_PAD_NONE) .Authorization(TAG_INCLUDE_UNIQUE_ID))); keymaster_cert_chain_t cert_chain; EXPECT_EQ(KM_ERROR_OK, AttestKey("challenge", &cert_chain)); EXPECT_EQ(3U, cert_chain.entry_count); EXPECT_TRUE(verify_chain(cert_chain)); uint32_t expected_keymaster_version; keymaster_security_level_t expected_keymaster_security_level; // TODO(swillden): Add a test KM1 that claims to be hardware. if (GetParam()->algorithm_in_km0_hardware(KM_ALGORITHM_RSA)) { expected_keymaster_version = 0; expected_keymaster_security_level = KM_SECURITY_LEVEL_TRUSTED_ENVIRONMENT; } else { expected_keymaster_version = 2; expected_keymaster_security_level = KM_SECURITY_LEVEL_SOFTWARE; } EXPECT_TRUE(verify_attestation_record( "challenge", sw_enforced(), hw_enforced(), expected_keymaster_version, expected_keymaster_security_level, cert_chain.entries[0])); keymaster_free_cert_chain(&cert_chain); } TEST_P(AttestationTest, EcAttestation) { ASSERT_EQ(KM_ERROR_OK, GenerateKey(AuthorizationSetBuilder().EcdsaSigningKey(256).Digest( KM_DIGEST_SHA_2_256))); uint32_t expected_keymaster_version; keymaster_security_level_t expected_keymaster_security_level; // TODO(swillden): Add a test KM1 that claims to be hardware. if (GetParam()->algorithm_in_km0_hardware(KM_ALGORITHM_EC)) { expected_keymaster_version = 0; expected_keymaster_security_level = KM_SECURITY_LEVEL_TRUSTED_ENVIRONMENT; } else { expected_keymaster_version = 2; expected_keymaster_security_level = KM_SECURITY_LEVEL_SOFTWARE; } keymaster_cert_chain_t cert_chain; EXPECT_EQ(KM_ERROR_OK, AttestKey("challenge", &cert_chain)); EXPECT_EQ(3U, cert_chain.entry_count); EXPECT_TRUE(verify_chain(cert_chain)); EXPECT_TRUE(verify_attestation_record( "challenge", sw_enforced(), hw_enforced(), expected_keymaster_version, expected_keymaster_security_level, cert_chain.entries[0])); keymaster_free_cert_chain(&cert_chain); } typedef Keymaster2Test KeyUpgradeTest; INSTANTIATE_TEST_CASE_P(AndroidKeymasterTest, KeyUpgradeTest, test_params); TEST_P(KeyUpgradeTest, AesVersionUpgrade) { GetParam()->keymaster_context()->SetSystemVersion(1, 1); ASSERT_EQ(KM_ERROR_OK, GenerateKey(AuthorizationSetBuilder() .AesEncryptionKey(128) .Authorization(TAG_BLOCK_MODE, KM_MODE_ECB) .Padding(KM_PAD_NONE))); // Key should operate fine. string message = "1234567890123456"; string ciphertext = EncryptMessage(message, KM_MODE_ECB, KM_PAD_NONE); EXPECT_EQ(message, DecryptMessage(ciphertext, KM_MODE_ECB, KM_PAD_NONE)); // Increase patch level. Key usage should fail with KM_ERROR_KEY_REQUIRES_UPGRADE. GetParam()->keymaster_context()->SetSystemVersion(1, 2); AuthorizationSet begin_params(client_params()); begin_params.push_back(TAG_BLOCK_MODE, KM_MODE_ECB); begin_params.push_back(TAG_PADDING, KM_PAD_NONE); if (GetParam()->is_keymaster1_hw()) { // Keymaster1 hardware can't support version binding. The key will work regardless // of system version. Just abort the remainder of the test. EXPECT_EQ(KM_ERROR_OK, BeginOperation(KM_PURPOSE_ENCRYPT, begin_params)); EXPECT_EQ(KM_ERROR_OK, AbortOperation()); return; } EXPECT_EQ(KM_ERROR_KEY_REQUIRES_UPGRADE, BeginOperation(KM_PURPOSE_ENCRYPT, begin_params)); // Getting characteristics should also fail EXPECT_EQ(KM_ERROR_KEY_REQUIRES_UPGRADE, GetCharacteristics()); // Upgrade key. EXPECT_EQ(KM_ERROR_OK, UpgradeKey(client_params())); // Key should work again ciphertext = EncryptMessage(message, KM_MODE_ECB, KM_PAD_NONE); EXPECT_EQ(message, DecryptMessage(ciphertext, KM_MODE_ECB, KM_PAD_NONE)); // Decrease patch level. Key usage should fail with KM_ERROR_INVALID_KEY_BLOB. GetParam()->keymaster_context()->SetSystemVersion(1, 1); EXPECT_EQ(KM_ERROR_INVALID_KEY_BLOB, BeginOperation(KM_PURPOSE_ENCRYPT, begin_params)); EXPECT_EQ(KM_ERROR_INVALID_KEY_BLOB, GetCharacteristics()); // Upgrade should fail EXPECT_EQ(KM_ERROR_INVALID_ARGUMENT, UpgradeKey(client_params())); EXPECT_EQ(0, GetParam()->keymaster0_calls()); } TEST_P(KeyUpgradeTest, RsaVersionUpgrade) { GetParam()->keymaster_context()->SetSystemVersion(1, 1); ASSERT_EQ(KM_ERROR_OK, GenerateKey(AuthorizationSetBuilder().RsaEncryptionKey(128, 3).Padding(KM_PAD_NONE))); // Key should operate fine. string message = "1234567890123456"; string ciphertext = EncryptMessage(message, KM_PAD_NONE); EXPECT_EQ(message, DecryptMessage(ciphertext, KM_PAD_NONE)); // Increase patch level. Key usage should fail with KM_ERROR_KEY_REQUIRES_UPGRADE. GetParam()->keymaster_context()->SetSystemVersion(1, 2); AuthorizationSet begin_params(client_params()); begin_params.push_back(TAG_PADDING, KM_PAD_NONE); if (GetParam()->is_keymaster1_hw()) { // Keymaster1 hardware can't support version binding. The key will work regardless // of system version. Just abort the remainder of the test. EXPECT_EQ(KM_ERROR_OK, BeginOperation(KM_PURPOSE_ENCRYPT, begin_params)); EXPECT_EQ(KM_ERROR_OK, AbortOperation()); return; } EXPECT_EQ(KM_ERROR_KEY_REQUIRES_UPGRADE, BeginOperation(KM_PURPOSE_ENCRYPT, begin_params)); // Getting characteristics should also fail EXPECT_EQ(KM_ERROR_KEY_REQUIRES_UPGRADE, GetCharacteristics()); // Upgrade key. EXPECT_EQ(KM_ERROR_OK, UpgradeKey(client_params())); // Key should work again ciphertext = EncryptMessage(message, KM_PAD_NONE); EXPECT_EQ(message, DecryptMessage(ciphertext, KM_PAD_NONE)); // Decrease patch level. Key usage should fail with KM_ERROR_INVALID_KEY_BLOB. GetParam()->keymaster_context()->SetSystemVersion(1, 1); EXPECT_EQ(KM_ERROR_INVALID_KEY_BLOB, BeginOperation(KM_PURPOSE_ENCRYPT, begin_params)); EXPECT_EQ(KM_ERROR_INVALID_KEY_BLOB, GetCharacteristics()); // Upgrade should fail EXPECT_EQ(KM_ERROR_INVALID_ARGUMENT, UpgradeKey(client_params())); if (GetParam()->algorithm_in_km0_hardware(KM_ALGORITHM_RSA)) EXPECT_EQ(7, GetParam()->keymaster0_calls()); } TEST_P(KeyUpgradeTest, EcVersionUpgrade) { GetParam()->keymaster_context()->SetSystemVersion(1, 1); ASSERT_EQ(KM_ERROR_OK, GenerateKey(AuthorizationSetBuilder().EcdsaSigningKey(256).Digest( KM_DIGEST_SHA_2_256))); // Key should operate fine. string message = "1234567890123456"; string signature; SignMessage(message, &signature, KM_DIGEST_SHA_2_256); VerifyMessage(message, signature, KM_DIGEST_SHA_2_256); // Increase patch level. Key usage should fail with KM_ERROR_KEY_REQUIRES_UPGRADE. GetParam()->keymaster_context()->SetSystemVersion(1, 2); AuthorizationSet begin_params(client_params()); begin_params.push_back(TAG_DIGEST, KM_DIGEST_SHA_2_256); if (GetParam()->is_keymaster1_hw()) { // Keymaster1 hardware can't support version binding. The key will work regardless // of system version. Just abort the remainder of the test. EXPECT_EQ(KM_ERROR_OK, BeginOperation(KM_PURPOSE_SIGN, begin_params)); EXPECT_EQ(KM_ERROR_OK, AbortOperation()); return; } EXPECT_EQ(KM_ERROR_KEY_REQUIRES_UPGRADE, BeginOperation(KM_PURPOSE_SIGN, begin_params)); // Getting characteristics should also fail EXPECT_EQ(KM_ERROR_KEY_REQUIRES_UPGRADE, GetCharacteristics()); // Upgrade key. EXPECT_EQ(KM_ERROR_OK, UpgradeKey(client_params())); // Key should work again SignMessage(message, &signature, KM_DIGEST_SHA_2_256); VerifyMessage(message, signature, KM_DIGEST_SHA_2_256); // Decrease patch level. Key usage should fail with KM_ERROR_INVALID_KEY_BLOB. GetParam()->keymaster_context()->SetSystemVersion(1, 1); EXPECT_EQ(KM_ERROR_INVALID_KEY_BLOB, BeginOperation(KM_PURPOSE_ENCRYPT, begin_params)); EXPECT_EQ(KM_ERROR_INVALID_KEY_BLOB, GetCharacteristics()); // Upgrade should fail EXPECT_EQ(KM_ERROR_INVALID_ARGUMENT, UpgradeKey(client_params())); if (GetParam()->algorithm_in_km0_hardware(KM_ALGORITHM_EC)) EXPECT_EQ(7, GetParam()->keymaster0_calls()); } TEST(SoftKeymasterWrapperTest, CheckKeymaster2Device) { // Make a good fake device, and wrap it. SoftKeymasterDevice* good_fake(new SoftKeymasterDevice(new TestKeymasterContext)); // Wrap it and check it. SoftKeymasterDevice* good_fake_wrapper(new SoftKeymasterDevice(new TestKeymasterContext)); good_fake_wrapper->SetHardwareDevice(good_fake->keymaster_device()); EXPECT_TRUE(good_fake_wrapper->Keymaster1DeviceIsGood()); // Close and clean up wrapper and wrapped good_fake_wrapper->keymaster_device()->common.close(good_fake_wrapper->hw_device()); // Make a "bad" (doesn't support all digests) device; keymaster1_device_t* sha256_only_fake = make_device_sha256_only( (new SoftKeymasterDevice(new TestKeymasterContext("256")))->keymaster_device()); // Wrap it and check it. SoftKeymasterDevice* sha256_only_fake_wrapper( (new SoftKeymasterDevice(new TestKeymasterContext))); sha256_only_fake_wrapper->SetHardwareDevice(sha256_only_fake); EXPECT_FALSE(sha256_only_fake_wrapper->Keymaster1DeviceIsGood()); // Close and clean up wrapper and wrapped sha256_only_fake_wrapper->keymaster_device()->common.close( sha256_only_fake_wrapper->hw_device()); } } // namespace test } // namespace keymaster