/* * Copyright (C) 2016 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #define LOG_TAG "connect_benchmark" /* * See README.md for general notes. * * This set of benchmarks measures the throughput of connect() calls on a single thread for IPv4 and * IPv6 under the following scenarios: * * - FWmark disabled (::ANDROID_NO_USE_FWMARK_CLIENT). * * The control case for other high load benchmarks. Essentially just testing performance of * the kernel connect call. In real world use fwmark should stay on in order for traffic to * be routed properly. * * - FWmark enabled only for metrics (::ANDROID_FWMARK_METRICS_ONLY). * * The default mode up to and including 7.1. Every time connect() is called on an AF_INET or * AF_INET6 socket, netdclient sends a synchronous message to fwmarkserver to get the socket * marked. Only the fields that are useful for marking or for metrics are sent in this mode; * other fields are set to null for the RPC and ignored. * * - FWmark enabled for all events. * * The default mode starting from 7.1.2. As well as the normal connect() reporting, extra * fields are filled in to log the IP and port of the connection. * * A second synchronous message is sent to fwmarkserver after the connection completes, to * record latency. This message is forwarded to the system server over a oneway binder call. * * Realtime timed tests * ==================== * * The tests named *_high_load record the following useful information: * * - real_time: the mean roundtrip time for one connect() call under load * * - iterations: the number of times the test was run within the timelimit --- approximately * MinTime / real_time * * Manually timed tests * ==================== * * All other sets of tests apart from *_high_load run with manual timing. The purpose of these is to * measure 90th-percentile latency for connect() calls compared to mean latency. * * (TODO: ideally this should be against median latency, but google-benchmark only supports one * custom 'label' output for graphing. Stddev isn't appropriate because the latency * distribution is usually spiky, not in a nice neat normal-like distribution.) * * The manually timed tests record the following useful information: * * - real_time: the average time taken to complete a test run. Unlike the real_time used in high * load tests, this is calculated from before-and-after values of the realtime clock * over many iterations so may be less accurate than the under-load times. * * - iterations: the number of times the test was run within the timelimit --- approximately * MinTime / real_time, although as explained, may not be as meaningful because of * overhead from timing. * * - label: a manually-recorded time giving the 90th-percentile value of real_time over all * individual runs. Should be compared to real_time. * */ #include <arpa/inet.h> #include <cutils/sockets.h> #include <errno.h> #include <netinet/in.h> #include <time.h> #include <map> #include <functional> #include <thread> #include <android-base/stringprintf.h> #include <benchmark/benchmark.h> #include <log/log.h> #include <utils/StrongPointer.h> #include "FwmarkClient.h" #include "SockDiag.h" #include "Stopwatch.h" #include "android/net/metrics/INetdEventListener.h" using android::base::StringPrintf; using android::net::metrics::INetdEventListener; static int bindAndListen(int s) { sockaddr_in6 sin6 = { .sin6_family = AF_INET6 }; if (bind(s, (sockaddr*) &sin6, sizeof(sin6)) == 0) { if (listen(s, 1)) { return -1; } sockaddr_in sin = {}; socklen_t len = sizeof(sin); if (getsockname(s, (sockaddr*) &sin, &len)) { return -1; } return ntohs(sin.sin_port); } else { return -1; } } static void ipv4_loopback(benchmark::State& state, const bool waitBetweenRuns) { const int listensocket = socket(AF_INET6, SOCK_STREAM, 0); const int port = bindAndListen(listensocket); if (port == -1) { state.SkipWithError("Unable to bind server socket"); return; } // ALOGW("Listening on port = %d", port); std::vector<uint64_t> latencies(state.max_iterations); uint64_t iterations = 0; while (state.KeepRunning()) { int sock = socket(AF_INET, SOCK_STREAM, 0); if (sock < 0) { state.SkipWithError(StringPrintf("socket() failed with errno=%d", errno).c_str()); break; } const Stopwatch stopwatch; sockaddr_in server = { .sin_family = AF_INET, .sin_port = htons(port) }; if (connect(sock, (sockaddr*) &server, sizeof(server))) { state.SkipWithError(StringPrintf("connect() failed with errno=%d", errno).c_str()); close(sock); break; } if (waitBetweenRuns) { latencies[iterations] = stopwatch.timeTaken() * 1e6L; state.SetIterationTime(latencies[iterations] / 1e9L); std::this_thread::sleep_for(std::chrono::milliseconds(10)); ++iterations; } sockaddr_in6 client; socklen_t clientlen = sizeof(client); int accepted = accept(listensocket, (sockaddr *) &client, &clientlen); if (accepted < 0) { state.SkipWithError(StringPrintf("accept() failed with errno=%d", errno).c_str()); close(sock); break; } close(accepted); close(sock); } close(listensocket); // ALOGI("Finished test on port = %d", port); if (iterations > 0) { latencies.resize(iterations); sort(latencies.begin(), latencies.end()); state.SetLabel(StringPrintf("%lld", (long long) latencies[iterations * 9 / 10])); } } static void ipv6_loopback(benchmark::State& state, const bool waitBetweenRuns) { const int listensocket = socket(AF_INET6, SOCK_STREAM, 0); const int port = bindAndListen(listensocket); if (port == -1) { state.SkipWithError("Unable to bind server socket"); return; } // ALOGW("Listening on port = %d", port); std::vector<uint64_t> latencies(state.max_iterations); uint64_t iterations = 0; while (state.KeepRunning()) { int sock = socket(AF_INET6, SOCK_STREAM, 0); if (sock < 0) { state.SkipWithError(StringPrintf("socket() failed with errno=%d", errno).c_str()); break; } const Stopwatch stopwatch; sockaddr_in6 server = { .sin6_family = AF_INET6, .sin6_port = htons(port) }; if (connect(sock, (sockaddr*) &server, sizeof(server))) { state.SkipWithError(StringPrintf("connect() failed with errno=%d", errno).c_str()); close(sock); break; } if (waitBetweenRuns) { latencies[iterations] = stopwatch.timeTaken() * 1e6L; state.SetIterationTime(latencies[iterations] / 1e9L); std::this_thread::sleep_for(std::chrono::milliseconds(10)); ++iterations; } sockaddr_in6 client; socklen_t clientlen = sizeof(client); int accepted = accept(listensocket, (sockaddr *) &client, &clientlen); if (accepted < 0) { state.SkipWithError(StringPrintf("accept() failed with errno=%d", errno).c_str()); close(sock); break; } close(accepted); close(sock); } close(listensocket); // ALOGI("Finished test on port = %d", port); if (iterations > 0) { latencies.resize(iterations); sort(latencies.begin(), latencies.end()); state.SetLabel(StringPrintf("%lld", (long long) latencies[iterations * 9 / 10])); } } static void run_at_reporting_level(decltype(ipv4_loopback) benchmarkFunction, ::benchmark::State& state, const int reportingLevel, const bool waitBetweenRuns) { // Our master thread (thread_index == 0) will control setup and teardown for other threads. const bool isMaster = (state.thread_index == 0); // Previous values of env variables used by fwmarkclient (only read/written by master thread) const std::string savedSettings[] = { FwmarkClient::ANDROID_NO_USE_FWMARK_CLIENT, FwmarkClient::ANDROID_FWMARK_METRICS_ONLY }; std::map<std::string, std::string> prevSettings; // SETUP if (isMaster) { for (const auto setting : savedSettings) { const char* prevEnvStr = getenv(setting.c_str()); if (prevEnvStr != nullptr) { prevSettings[setting.c_str()] = prevEnvStr; } } switch (reportingLevel) { case INetdEventListener::REPORTING_LEVEL_NONE: setenv(FwmarkClient::ANDROID_NO_USE_FWMARK_CLIENT, "", 1); break; case INetdEventListener::REPORTING_LEVEL_METRICS: unsetenv(FwmarkClient::ANDROID_NO_USE_FWMARK_CLIENT); setenv(FwmarkClient::ANDROID_FWMARK_METRICS_ONLY, "", 1); break; case INetdEventListener::REPORTING_LEVEL_FULL: unsetenv(FwmarkClient::ANDROID_NO_USE_FWMARK_CLIENT); unsetenv(FwmarkClient::ANDROID_FWMARK_METRICS_ONLY); break; } } // TEST benchmarkFunction(state, waitBetweenRuns); // TEARDOWN if (isMaster) { for (const auto setting : savedSettings) { if (prevSettings.count(setting)) { setenv(setting.c_str(), prevSettings[setting].c_str(), 1); } else { unsetenv(setting.c_str()); } } } } constexpr int MIN_THREADS = 1; constexpr int MAX_THREADS = 1; constexpr double MIN_TIME = 0.5 /* seconds */; static void ipv4_metrics_reporting_no_fwmark(::benchmark::State& state) { run_at_reporting_level(ipv4_loopback, state, INetdEventListener::REPORTING_LEVEL_NONE, true); } BENCHMARK(ipv4_metrics_reporting_no_fwmark)->MinTime(MIN_TIME)->UseManualTime(); // IPv4 metrics under low load static void ipv4_metrics_reporting_no_load(::benchmark::State& state) { run_at_reporting_level(ipv4_loopback, state, INetdEventListener::REPORTING_LEVEL_METRICS, true); } BENCHMARK(ipv4_metrics_reporting_no_load)->MinTime(MIN_TIME)->UseManualTime(); static void ipv4_full_reporting_no_load(::benchmark::State& state) { run_at_reporting_level(ipv4_loopback, state, INetdEventListener::REPORTING_LEVEL_FULL, true); } BENCHMARK(ipv4_full_reporting_no_load)->MinTime(MIN_TIME)->UseManualTime(); // IPv4 benchmarks under high load static void ipv4_metrics_reporting_high_load(::benchmark::State& state) { run_at_reporting_level(ipv4_loopback, state, INetdEventListener::REPORTING_LEVEL_METRICS, false); } BENCHMARK(ipv4_metrics_reporting_high_load) ->ThreadRange(MIN_THREADS, MAX_THREADS)->MinTime(MIN_TIME)->UseRealTime(); static void ipv4_full_reporting_high_load(::benchmark::State& state) { run_at_reporting_level(ipv4_loopback, state, INetdEventListener::REPORTING_LEVEL_FULL, false); } BENCHMARK(ipv4_full_reporting_high_load) ->ThreadRange(MIN_THREADS, MAX_THREADS)->MinTime(MIN_TIME)->UseRealTime(); // IPv6 raw connect() without using fwmark static void ipv6_metrics_reporting_no_fwmark(::benchmark::State& state) { run_at_reporting_level(ipv6_loopback, state, INetdEventListener::REPORTING_LEVEL_NONE, true); } BENCHMARK(ipv6_metrics_reporting_no_fwmark)->MinTime(MIN_TIME)->UseManualTime(); // IPv6 metrics under low load static void ipv6_metrics_reporting_no_load(::benchmark::State& state) { run_at_reporting_level(ipv6_loopback, state, INetdEventListener::REPORTING_LEVEL_METRICS, true); } BENCHMARK(ipv6_metrics_reporting_no_load)->MinTime(MIN_TIME)->UseManualTime(); static void ipv6_full_reporting_no_load(::benchmark::State& state) { run_at_reporting_level(ipv6_loopback, state, INetdEventListener::REPORTING_LEVEL_FULL, true); } BENCHMARK(ipv6_full_reporting_no_load)->MinTime(MIN_TIME)->UseManualTime(); // IPv6 benchmarks under high load static void ipv6_metrics_reporting_high_load(::benchmark::State& state) { run_at_reporting_level(ipv6_loopback, state, INetdEventListener::REPORTING_LEVEL_METRICS, false); } BENCHMARK(ipv6_metrics_reporting_high_load) ->ThreadRange(MIN_THREADS, MAX_THREADS)->MinTime(MIN_TIME)->UseRealTime(); static void ipv6_full_reporting_high_load(::benchmark::State& state) { run_at_reporting_level(ipv6_loopback, state, INetdEventListener::REPORTING_LEVEL_FULL, false); } BENCHMARK(ipv6_full_reporting_high_load) ->ThreadRange(MIN_THREADS, MAX_THREADS)->MinTime(MIN_TIME)->UseRealTime();