// // Copyright (C) 2012 The Android Open Source Project // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // #include "update_engine/payload_consumer/delta_performer.h" #include <endian.h> #include <errno.h> #include <linux/fs.h> #include <algorithm> #include <cstring> #include <memory> #include <string> #include <vector> #include <applypatch/imgpatch.h> #include <base/files/file_util.h> #include <base/format_macros.h> #include <base/strings/string_number_conversions.h> #include <base/strings/string_util.h> #include <base/strings/stringprintf.h> #include <brillo/data_encoding.h> #include <brillo/make_unique_ptr.h> #include <bspatch.h> #include <google/protobuf/repeated_field.h> #include "update_engine/common/constants.h" #include "update_engine/common/hardware_interface.h" #include "update_engine/common/prefs_interface.h" #include "update_engine/common/subprocess.h" #include "update_engine/common/terminator.h" #include "update_engine/payload_consumer/bzip_extent_writer.h" #include "update_engine/payload_consumer/download_action.h" #include "update_engine/payload_consumer/extent_writer.h" #if USE_MTD #include "update_engine/payload_consumer/mtd_file_descriptor.h" #endif #include "update_engine/payload_consumer/payload_constants.h" #include "update_engine/payload_consumer/payload_verifier.h" #include "update_engine/payload_consumer/xz_extent_writer.h" using google::protobuf::RepeatedPtrField; using std::min; using std::string; using std::vector; namespace chromeos_update_engine { const uint64_t DeltaPerformer::kDeltaVersionOffset = sizeof(kDeltaMagic); const uint64_t DeltaPerformer::kDeltaVersionSize = 8; const uint64_t DeltaPerformer::kDeltaManifestSizeOffset = kDeltaVersionOffset + kDeltaVersionSize; const uint64_t DeltaPerformer::kDeltaManifestSizeSize = 8; const uint64_t DeltaPerformer::kDeltaMetadataSignatureSizeSize = 4; const uint64_t DeltaPerformer::kMaxPayloadHeaderSize = 24; const uint64_t DeltaPerformer::kSupportedMajorPayloadVersion = 2; const uint32_t DeltaPerformer::kSupportedMinorPayloadVersion = 3; const unsigned DeltaPerformer::kProgressLogMaxChunks = 10; const unsigned DeltaPerformer::kProgressLogTimeoutSeconds = 30; const unsigned DeltaPerformer::kProgressDownloadWeight = 50; const unsigned DeltaPerformer::kProgressOperationsWeight = 50; namespace { const int kUpdateStateOperationInvalid = -1; const int kMaxResumedUpdateFailures = 10; #if USE_MTD const int kUbiVolumeAttachTimeout = 5 * 60; #endif FileDescriptorPtr CreateFileDescriptor(const char* path) { FileDescriptorPtr ret; #if USE_MTD if (strstr(path, "/dev/ubi") == path) { if (!UbiFileDescriptor::IsUbi(path)) { // The volume might not have been attached at boot time. int volume_no; if (utils::SplitPartitionName(path, nullptr, &volume_no)) { utils::TryAttachingUbiVolume(volume_no, kUbiVolumeAttachTimeout); } } if (UbiFileDescriptor::IsUbi(path)) { LOG(INFO) << path << " is a UBI device."; ret.reset(new UbiFileDescriptor); } } else if (MtdFileDescriptor::IsMtd(path)) { LOG(INFO) << path << " is an MTD device."; ret.reset(new MtdFileDescriptor); } else { LOG(INFO) << path << " is not an MTD nor a UBI device."; #endif ret.reset(new EintrSafeFileDescriptor); #if USE_MTD } #endif return ret; } // Opens path for read/write. On success returns an open FileDescriptor // and sets *err to 0. On failure, sets *err to errno and returns nullptr. FileDescriptorPtr OpenFile(const char* path, int mode, int* err) { // Try to mark the block device read-only based on the mode. Ignore any // failure since this won't work when passing regular files. utils::SetBlockDeviceReadOnly(path, (mode & O_ACCMODE) == O_RDONLY); FileDescriptorPtr fd = CreateFileDescriptor(path); #if USE_MTD // On NAND devices, we can either read, or write, but not both. So here we // use O_WRONLY. if (UbiFileDescriptor::IsUbi(path) || MtdFileDescriptor::IsMtd(path)) { mode = O_WRONLY; } #endif if (!fd->Open(path, mode, 000)) { *err = errno; PLOG(ERROR) << "Unable to open file " << path; return nullptr; } *err = 0; return fd; } // Discard the tail of the block device referenced by |fd|, from the offset // |data_size| until the end of the block device. Returns whether the data was // discarded. bool DiscardPartitionTail(const FileDescriptorPtr& fd, uint64_t data_size) { uint64_t part_size = fd->BlockDevSize(); if (!part_size || part_size <= data_size) return false; struct blkioctl_request { int number; const char* name; }; const vector<blkioctl_request> blkioctl_requests = { {BLKSECDISCARD, "BLKSECDISCARD"}, {BLKDISCARD, "BLKDISCARD"}, #ifdef BLKZEROOUT {BLKZEROOUT, "BLKZEROOUT"}, #endif }; for (const auto& req : blkioctl_requests) { int error = 0; if (fd->BlkIoctl(req.number, data_size, part_size - data_size, &error) && error == 0) { return true; } LOG(WARNING) << "Error discarding the last " << (part_size - data_size) / 1024 << " KiB using ioctl(" << req.name << ")"; } return false; } } // namespace // Computes the ratio of |part| and |total|, scaled to |norm|, using integer // arithmetic. static uint64_t IntRatio(uint64_t part, uint64_t total, uint64_t norm) { return part * norm / total; } void DeltaPerformer::LogProgress(const char* message_prefix) { // Format operations total count and percentage. string total_operations_str("?"); string completed_percentage_str(""); if (num_total_operations_) { total_operations_str = std::to_string(num_total_operations_); // Upcasting to 64-bit to avoid overflow, back to size_t for formatting. completed_percentage_str = base::StringPrintf(" (%" PRIu64 "%%)", IntRatio(next_operation_num_, num_total_operations_, 100)); } // Format download total count and percentage. size_t payload_size = install_plan_->payload_size; string payload_size_str("?"); string downloaded_percentage_str(""); if (payload_size) { payload_size_str = std::to_string(payload_size); // Upcasting to 64-bit to avoid overflow, back to size_t for formatting. downloaded_percentage_str = base::StringPrintf(" (%" PRIu64 "%%)", IntRatio(total_bytes_received_, payload_size, 100)); } LOG(INFO) << (message_prefix ? message_prefix : "") << next_operation_num_ << "/" << total_operations_str << " operations" << completed_percentage_str << ", " << total_bytes_received_ << "/" << payload_size_str << " bytes downloaded" << downloaded_percentage_str << ", overall progress " << overall_progress_ << "%"; } void DeltaPerformer::UpdateOverallProgress(bool force_log, const char* message_prefix) { // Compute our download and overall progress. unsigned new_overall_progress = 0; static_assert(kProgressDownloadWeight + kProgressOperationsWeight == 100, "Progress weights don't add up"); // Only consider download progress if its total size is known; otherwise // adjust the operations weight to compensate for the absence of download // progress. Also, make sure to cap the download portion at // kProgressDownloadWeight, in case we end up downloading more than we // initially expected (this indicates a problem, but could generally happen). // TODO(garnold) the correction of operations weight when we do not have the // total payload size, as well as the conditional guard below, should both be // eliminated once we ensure that the payload_size in the install plan is // always given and is non-zero. This currently isn't the case during unit // tests (see chromium-os:37969). size_t payload_size = install_plan_->payload_size; unsigned actual_operations_weight = kProgressOperationsWeight; if (payload_size) new_overall_progress += min( static_cast<unsigned>(IntRatio(total_bytes_received_, payload_size, kProgressDownloadWeight)), kProgressDownloadWeight); else actual_operations_weight += kProgressDownloadWeight; // Only add completed operations if their total number is known; we definitely // expect an update to have at least one operation, so the expectation is that // this will eventually reach |actual_operations_weight|. if (num_total_operations_) new_overall_progress += IntRatio(next_operation_num_, num_total_operations_, actual_operations_weight); // Progress ratio cannot recede, unless our assumptions about the total // payload size, total number of operations, or the monotonicity of progress // is breached. if (new_overall_progress < overall_progress_) { LOG(WARNING) << "progress counter receded from " << overall_progress_ << "% down to " << new_overall_progress << "%; this is a bug"; force_log = true; } overall_progress_ = new_overall_progress; // Update chunk index, log as needed: if forced by called, or we completed a // progress chunk, or a timeout has expired. base::Time curr_time = base::Time::Now(); unsigned curr_progress_chunk = overall_progress_ * kProgressLogMaxChunks / 100; if (force_log || curr_progress_chunk > last_progress_chunk_ || curr_time > forced_progress_log_time_) { forced_progress_log_time_ = curr_time + forced_progress_log_wait_; LogProgress(message_prefix); } last_progress_chunk_ = curr_progress_chunk; } size_t DeltaPerformer::CopyDataToBuffer(const char** bytes_p, size_t* count_p, size_t max) { const size_t count = *count_p; if (!count) return 0; // Special case shortcut. size_t read_len = min(count, max - buffer_.size()); const char* bytes_start = *bytes_p; const char* bytes_end = bytes_start + read_len; buffer_.insert(buffer_.end(), bytes_start, bytes_end); *bytes_p = bytes_end; *count_p = count - read_len; return read_len; } bool DeltaPerformer::HandleOpResult(bool op_result, const char* op_type_name, ErrorCode* error) { if (op_result) return true; size_t partition_first_op_num = current_partition_ ? acc_num_operations_[current_partition_ - 1] : 0; LOG(ERROR) << "Failed to perform " << op_type_name << " operation " << next_operation_num_ << ", which is the operation " << next_operation_num_ - partition_first_op_num << " in partition \"" << partitions_[current_partition_].partition_name() << "\""; if (*error == ErrorCode::kSuccess) *error = ErrorCode::kDownloadOperationExecutionError; return false; } int DeltaPerformer::Close() { int err = -CloseCurrentPartition(); LOG_IF(ERROR, !payload_hash_calculator_.Finalize() || !signed_hash_calculator_.Finalize()) << "Unable to finalize the hash."; if (!buffer_.empty()) { LOG(INFO) << "Discarding " << buffer_.size() << " unused downloaded bytes"; if (err >= 0) err = 1; } return -err; } int DeltaPerformer::CloseCurrentPartition() { int err = 0; if (source_fd_ && !source_fd_->Close()) { err = errno; PLOG(ERROR) << "Error closing source partition"; if (!err) err = 1; } source_fd_.reset(); source_path_.clear(); if (target_fd_ && !target_fd_->Close()) { err = errno; PLOG(ERROR) << "Error closing target partition"; if (!err) err = 1; } target_fd_.reset(); target_path_.clear(); return -err; } bool DeltaPerformer::OpenCurrentPartition() { if (current_partition_ >= partitions_.size()) return false; const PartitionUpdate& partition = partitions_[current_partition_]; // Open source fds if we have a delta payload with minor version >= 2. if (install_plan_->payload_type == InstallPayloadType::kDelta && GetMinorVersion() != kInPlaceMinorPayloadVersion) { source_path_ = install_plan_->partitions[current_partition_].source_path; int err; source_fd_ = OpenFile(source_path_.c_str(), O_RDONLY, &err); if (!source_fd_) { LOG(ERROR) << "Unable to open source partition " << partition.partition_name() << " on slot " << BootControlInterface::SlotName(install_plan_->source_slot) << ", file " << source_path_; return false; } } target_path_ = install_plan_->partitions[current_partition_].target_path; int err; target_fd_ = OpenFile(target_path_.c_str(), O_RDWR, &err); if (!target_fd_) { LOG(ERROR) << "Unable to open target partition " << partition.partition_name() << " on slot " << BootControlInterface::SlotName(install_plan_->target_slot) << ", file " << target_path_; return false; } LOG(INFO) << "Applying " << partition.operations().size() << " operations to partition \"" << partition.partition_name() << "\""; // Discard the end of the partition, but ignore failures. DiscardPartitionTail( target_fd_, install_plan_->partitions[current_partition_].target_size); return true; } namespace { void LogPartitionInfoHash(const PartitionInfo& info, const string& tag) { string sha256 = brillo::data_encoding::Base64Encode(info.hash()); LOG(INFO) << "PartitionInfo " << tag << " sha256: " << sha256 << " size: " << info.size(); } void LogPartitionInfo(const vector<PartitionUpdate>& partitions) { for (const PartitionUpdate& partition : partitions) { LogPartitionInfoHash(partition.old_partition_info(), "old " + partition.partition_name()); LogPartitionInfoHash(partition.new_partition_info(), "new " + partition.partition_name()); } } } // namespace bool DeltaPerformer::GetMetadataSignatureSizeOffset( uint64_t* out_offset) const { if (GetMajorVersion() == kBrilloMajorPayloadVersion) { *out_offset = kDeltaManifestSizeOffset + kDeltaManifestSizeSize; return true; } return false; } bool DeltaPerformer::GetManifestOffset(uint64_t* out_offset) const { // Actual manifest begins right after the manifest size field or // metadata signature size field if major version >= 2. if (major_payload_version_ == kChromeOSMajorPayloadVersion) { *out_offset = kDeltaManifestSizeOffset + kDeltaManifestSizeSize; return true; } if (major_payload_version_ == kBrilloMajorPayloadVersion) { *out_offset = kDeltaManifestSizeOffset + kDeltaManifestSizeSize + kDeltaMetadataSignatureSizeSize; return true; } LOG(ERROR) << "Unknown major payload version: " << major_payload_version_; return false; } uint64_t DeltaPerformer::GetMetadataSize() const { return metadata_size_; } uint64_t DeltaPerformer::GetMajorVersion() const { return major_payload_version_; } uint32_t DeltaPerformer::GetMinorVersion() const { if (manifest_.has_minor_version()) { return manifest_.minor_version(); } else { return install_plan_->payload_type == InstallPayloadType::kDelta ? kSupportedMinorPayloadVersion : kFullPayloadMinorVersion; } } bool DeltaPerformer::GetManifest(DeltaArchiveManifest* out_manifest_p) const { if (!manifest_parsed_) return false; *out_manifest_p = manifest_; return true; } bool DeltaPerformer::IsHeaderParsed() const { return metadata_size_ != 0; } DeltaPerformer::MetadataParseResult DeltaPerformer::ParsePayloadMetadata( const brillo::Blob& payload, ErrorCode* error) { *error = ErrorCode::kSuccess; uint64_t manifest_offset; if (!IsHeaderParsed()) { // Ensure we have data to cover the major payload version. if (payload.size() < kDeltaManifestSizeOffset) return kMetadataParseInsufficientData; // Validate the magic string. if (memcmp(payload.data(), kDeltaMagic, sizeof(kDeltaMagic)) != 0) { LOG(ERROR) << "Bad payload format -- invalid delta magic."; *error = ErrorCode::kDownloadInvalidMetadataMagicString; return kMetadataParseError; } // Extract the payload version from the metadata. static_assert(sizeof(major_payload_version_) == kDeltaVersionSize, "Major payload version size mismatch"); memcpy(&major_payload_version_, &payload[kDeltaVersionOffset], kDeltaVersionSize); // switch big endian to host major_payload_version_ = be64toh(major_payload_version_); if (major_payload_version_ != supported_major_version_ && major_payload_version_ != kChromeOSMajorPayloadVersion) { LOG(ERROR) << "Bad payload format -- unsupported payload version: " << major_payload_version_; *error = ErrorCode::kUnsupportedMajorPayloadVersion; return kMetadataParseError; } // Get the manifest offset now that we have payload version. if (!GetManifestOffset(&manifest_offset)) { *error = ErrorCode::kUnsupportedMajorPayloadVersion; return kMetadataParseError; } // Check again with the manifest offset. if (payload.size() < manifest_offset) return kMetadataParseInsufficientData; // Next, parse the manifest size. static_assert(sizeof(manifest_size_) == kDeltaManifestSizeSize, "manifest_size size mismatch"); memcpy(&manifest_size_, &payload[kDeltaManifestSizeOffset], kDeltaManifestSizeSize); manifest_size_ = be64toh(manifest_size_); // switch big endian to host if (GetMajorVersion() == kBrilloMajorPayloadVersion) { // Parse the metadata signature size. static_assert(sizeof(metadata_signature_size_) == kDeltaMetadataSignatureSizeSize, "metadata_signature_size size mismatch"); uint64_t metadata_signature_size_offset; if (!GetMetadataSignatureSizeOffset(&metadata_signature_size_offset)) { *error = ErrorCode::kError; return kMetadataParseError; } memcpy(&metadata_signature_size_, &payload[metadata_signature_size_offset], kDeltaMetadataSignatureSizeSize); metadata_signature_size_ = be32toh(metadata_signature_size_); } // If the metadata size is present in install plan, check for it immediately // even before waiting for that many number of bytes to be downloaded in the // payload. This will prevent any attack which relies on us downloading data // beyond the expected metadata size. metadata_size_ = manifest_offset + manifest_size_; if (install_plan_->hash_checks_mandatory) { if (install_plan_->metadata_size != metadata_size_) { LOG(ERROR) << "Mandatory metadata size in Omaha response (" << install_plan_->metadata_size << ") is missing/incorrect, actual = " << metadata_size_; *error = ErrorCode::kDownloadInvalidMetadataSize; return kMetadataParseError; } } } // Now that we have validated the metadata size, we should wait for the full // metadata and its signature (if exist) to be read in before we can parse it. if (payload.size() < metadata_size_ + metadata_signature_size_) return kMetadataParseInsufficientData; // Log whether we validated the size or simply trusting what's in the payload // here. This is logged here (after we received the full metadata data) so // that we just log once (instead of logging n times) if it takes n // DeltaPerformer::Write calls to download the full manifest. if (install_plan_->metadata_size == metadata_size_) { LOG(INFO) << "Manifest size in payload matches expected value from Omaha"; } else { // For mandatory-cases, we'd have already returned a kMetadataParseError // above. We'll be here only for non-mandatory cases. Just send a UMA stat. LOG(WARNING) << "Ignoring missing/incorrect metadata size (" << install_plan_->metadata_size << ") in Omaha response as validation is not mandatory. " << "Trusting metadata size in payload = " << metadata_size_; } // We have the full metadata in |payload|. Verify its integrity // and authenticity based on the information we have in Omaha response. *error = ValidateMetadataSignature(payload); if (*error != ErrorCode::kSuccess) { if (install_plan_->hash_checks_mandatory) { // The autoupdate_CatchBadSignatures test checks for this string // in log-files. Keep in sync. LOG(ERROR) << "Mandatory metadata signature validation failed"; return kMetadataParseError; } // For non-mandatory cases, just send a UMA stat. LOG(WARNING) << "Ignoring metadata signature validation failures"; *error = ErrorCode::kSuccess; } if (!GetManifestOffset(&manifest_offset)) { *error = ErrorCode::kUnsupportedMajorPayloadVersion; return kMetadataParseError; } // The payload metadata is deemed valid, it's safe to parse the protobuf. if (!manifest_.ParseFromArray(&payload[manifest_offset], manifest_size_)) { LOG(ERROR) << "Unable to parse manifest in update file."; *error = ErrorCode::kDownloadManifestParseError; return kMetadataParseError; } manifest_parsed_ = true; return kMetadataParseSuccess; } // Wrapper around write. Returns true if all requested bytes // were written, or false on any error, regardless of progress // and stores an action exit code in |error|. bool DeltaPerformer::Write(const void* bytes, size_t count, ErrorCode *error) { *error = ErrorCode::kSuccess; const char* c_bytes = reinterpret_cast<const char*>(bytes); // Update the total byte downloaded count and the progress logs. total_bytes_received_ += count; UpdateOverallProgress(false, "Completed "); while (!manifest_valid_) { // Read data up to the needed limit; this is either maximium payload header // size, or the full metadata size (once it becomes known). const bool do_read_header = !IsHeaderParsed(); CopyDataToBuffer(&c_bytes, &count, (do_read_header ? kMaxPayloadHeaderSize : metadata_size_ + metadata_signature_size_)); MetadataParseResult result = ParsePayloadMetadata(buffer_, error); if (result == kMetadataParseError) return false; if (result == kMetadataParseInsufficientData) { // If we just processed the header, make an attempt on the manifest. if (do_read_header && IsHeaderParsed()) continue; return true; } // Checks the integrity of the payload manifest. if ((*error = ValidateManifest()) != ErrorCode::kSuccess) return false; manifest_valid_ = true; // Clear the download buffer. DiscardBuffer(false, metadata_size_); // This populates |partitions_| and the |install_plan.partitions| with the // list of partitions from the manifest. if (!ParseManifestPartitions(error)) return false; num_total_operations_ = 0; for (const auto& partition : partitions_) { num_total_operations_ += partition.operations_size(); acc_num_operations_.push_back(num_total_operations_); } LOG_IF(WARNING, !prefs_->SetInt64(kPrefsManifestMetadataSize, metadata_size_)) << "Unable to save the manifest metadata size."; LOG_IF(WARNING, !prefs_->SetInt64(kPrefsManifestSignatureSize, metadata_signature_size_)) << "Unable to save the manifest signature size."; if (!PrimeUpdateState()) { *error = ErrorCode::kDownloadStateInitializationError; LOG(ERROR) << "Unable to prime the update state."; return false; } if (!OpenCurrentPartition()) { *error = ErrorCode::kInstallDeviceOpenError; return false; } if (next_operation_num_ > 0) UpdateOverallProgress(true, "Resuming after "); LOG(INFO) << "Starting to apply update payload operations"; } while (next_operation_num_ < num_total_operations_) { // Check if we should cancel the current attempt for any reason. // In this case, *error will have already been populated with the reason // why we're canceling. if (download_delegate_ && download_delegate_->ShouldCancel(error)) return false; // We know there are more operations to perform because we didn't reach the // |num_total_operations_| limit yet. while (next_operation_num_ >= acc_num_operations_[current_partition_]) { CloseCurrentPartition(); current_partition_++; if (!OpenCurrentPartition()) { *error = ErrorCode::kInstallDeviceOpenError; return false; } } const size_t partition_operation_num = next_operation_num_ - ( current_partition_ ? acc_num_operations_[current_partition_ - 1] : 0); const InstallOperation& op = partitions_[current_partition_].operations(partition_operation_num); CopyDataToBuffer(&c_bytes, &count, op.data_length()); // Check whether we received all of the next operation's data payload. if (!CanPerformInstallOperation(op)) return true; // Validate the operation only if the metadata signature is present. // Otherwise, keep the old behavior. This serves as a knob to disable // the validation logic in case we find some regression after rollout. // NOTE: If hash checks are mandatory and if metadata_signature is empty, // we would have already failed in ParsePayloadMetadata method and thus not // even be here. So no need to handle that case again here. if (!install_plan_->metadata_signature.empty()) { // Note: Validate must be called only if CanPerformInstallOperation is // called. Otherwise, we might be failing operations before even if there // isn't sufficient data to compute the proper hash. *error = ValidateOperationHash(op); if (*error != ErrorCode::kSuccess) { if (install_plan_->hash_checks_mandatory) { LOG(ERROR) << "Mandatory operation hash check failed"; return false; } // For non-mandatory cases, just send a UMA stat. LOG(WARNING) << "Ignoring operation validation errors"; *error = ErrorCode::kSuccess; } } // Makes sure we unblock exit when this operation completes. ScopedTerminatorExitUnblocker exit_unblocker = ScopedTerminatorExitUnblocker(); // Avoids a compiler unused var bug. bool op_result; switch (op.type()) { case InstallOperation::REPLACE: case InstallOperation::REPLACE_BZ: case InstallOperation::REPLACE_XZ: op_result = PerformReplaceOperation(op); break; case InstallOperation::ZERO: case InstallOperation::DISCARD: op_result = PerformZeroOrDiscardOperation(op); break; case InstallOperation::MOVE: op_result = PerformMoveOperation(op); break; case InstallOperation::BSDIFF: op_result = PerformBsdiffOperation(op); break; case InstallOperation::SOURCE_COPY: op_result = PerformSourceCopyOperation(op, error); break; case InstallOperation::SOURCE_BSDIFF: op_result = PerformSourceBsdiffOperation(op, error); break; case InstallOperation::IMGDIFF: op_result = PerformImgdiffOperation(op, error); break; default: op_result = false; } if (!HandleOpResult(op_result, InstallOperationTypeName(op.type()), error)) return false; next_operation_num_++; UpdateOverallProgress(false, "Completed "); CheckpointUpdateProgress(); } // In major version 2, we don't add dummy operation to the payload. // If we already extracted the signature we should skip this step. if (major_payload_version_ == kBrilloMajorPayloadVersion && manifest_.has_signatures_offset() && manifest_.has_signatures_size() && signatures_message_data_.empty()) { if (manifest_.signatures_offset() != buffer_offset_) { LOG(ERROR) << "Payload signatures offset points to blob offset " << manifest_.signatures_offset() << " but signatures are expected at offset " << buffer_offset_; *error = ErrorCode::kDownloadPayloadVerificationError; return false; } CopyDataToBuffer(&c_bytes, &count, manifest_.signatures_size()); // Needs more data to cover entire signature. if (buffer_.size() < manifest_.signatures_size()) return true; if (!ExtractSignatureMessage()) { LOG(ERROR) << "Extract payload signature failed."; *error = ErrorCode::kDownloadPayloadVerificationError; return false; } DiscardBuffer(true, 0); // Since we extracted the SignatureMessage we need to advance the // checkpoint, otherwise we would reload the signature and try to extract // it again. CheckpointUpdateProgress(); } return true; } bool DeltaPerformer::IsManifestValid() { return manifest_valid_; } bool DeltaPerformer::ParseManifestPartitions(ErrorCode* error) { if (major_payload_version_ == kBrilloMajorPayloadVersion) { partitions_.clear(); for (const PartitionUpdate& partition : manifest_.partitions()) { partitions_.push_back(partition); } manifest_.clear_partitions(); } else if (major_payload_version_ == kChromeOSMajorPayloadVersion) { LOG(INFO) << "Converting update information from old format."; PartitionUpdate root_part; root_part.set_partition_name(kLegacyPartitionNameRoot); #ifdef __ANDROID__ LOG(WARNING) << "Legacy payload major version provided to an Android " "build. Assuming no post-install. Please use major version " "2 or newer."; root_part.set_run_postinstall(false); #else root_part.set_run_postinstall(true); #endif // __ANDROID__ if (manifest_.has_old_rootfs_info()) { *root_part.mutable_old_partition_info() = manifest_.old_rootfs_info(); manifest_.clear_old_rootfs_info(); } if (manifest_.has_new_rootfs_info()) { *root_part.mutable_new_partition_info() = manifest_.new_rootfs_info(); manifest_.clear_new_rootfs_info(); } *root_part.mutable_operations() = manifest_.install_operations(); manifest_.clear_install_operations(); partitions_.push_back(std::move(root_part)); PartitionUpdate kern_part; kern_part.set_partition_name(kLegacyPartitionNameKernel); kern_part.set_run_postinstall(false); if (manifest_.has_old_kernel_info()) { *kern_part.mutable_old_partition_info() = manifest_.old_kernel_info(); manifest_.clear_old_kernel_info(); } if (manifest_.has_new_kernel_info()) { *kern_part.mutable_new_partition_info() = manifest_.new_kernel_info(); manifest_.clear_new_kernel_info(); } *kern_part.mutable_operations() = manifest_.kernel_install_operations(); manifest_.clear_kernel_install_operations(); partitions_.push_back(std::move(kern_part)); } // Fill in the InstallPlan::partitions based on the partitions from the // payload. install_plan_->partitions.clear(); for (const auto& partition : partitions_) { InstallPlan::Partition install_part; install_part.name = partition.partition_name(); install_part.run_postinstall = partition.has_run_postinstall() && partition.run_postinstall(); if (install_part.run_postinstall) { install_part.postinstall_path = (partition.has_postinstall_path() ? partition.postinstall_path() : kPostinstallDefaultScript); install_part.filesystem_type = partition.filesystem_type(); install_part.postinstall_optional = partition.postinstall_optional(); } if (partition.has_old_partition_info()) { const PartitionInfo& info = partition.old_partition_info(); install_part.source_size = info.size(); install_part.source_hash.assign(info.hash().begin(), info.hash().end()); } if (!partition.has_new_partition_info()) { LOG(ERROR) << "Unable to get new partition hash info on partition " << install_part.name << "."; *error = ErrorCode::kDownloadNewPartitionInfoError; return false; } const PartitionInfo& info = partition.new_partition_info(); install_part.target_size = info.size(); install_part.target_hash.assign(info.hash().begin(), info.hash().end()); install_plan_->partitions.push_back(install_part); } if (!install_plan_->LoadPartitionsFromSlots(boot_control_)) { LOG(ERROR) << "Unable to determine all the partition devices."; *error = ErrorCode::kInstallDeviceOpenError; return false; } LogPartitionInfo(partitions_); return true; } bool DeltaPerformer::CanPerformInstallOperation( const chromeos_update_engine::InstallOperation& operation) { // If we don't have a data blob we can apply it right away. if (!operation.has_data_offset() && !operation.has_data_length()) return true; // See if we have the entire data blob in the buffer if (operation.data_offset() < buffer_offset_) { LOG(ERROR) << "we threw away data it seems?"; return false; } return (operation.data_offset() + operation.data_length() <= buffer_offset_ + buffer_.size()); } bool DeltaPerformer::PerformReplaceOperation( const InstallOperation& operation) { CHECK(operation.type() == InstallOperation::REPLACE || operation.type() == InstallOperation::REPLACE_BZ || operation.type() == InstallOperation::REPLACE_XZ); // Since we delete data off the beginning of the buffer as we use it, // the data we need should be exactly at the beginning of the buffer. TEST_AND_RETURN_FALSE(buffer_offset_ == operation.data_offset()); TEST_AND_RETURN_FALSE(buffer_.size() >= operation.data_length()); // Extract the signature message if it's in this operation. if (ExtractSignatureMessageFromOperation(operation)) { // If this is dummy replace operation, we ignore it after extracting the // signature. DiscardBuffer(true, 0); return true; } // Setup the ExtentWriter stack based on the operation type. std::unique_ptr<ExtentWriter> writer = brillo::make_unique_ptr(new ZeroPadExtentWriter( brillo::make_unique_ptr(new DirectExtentWriter()))); if (operation.type() == InstallOperation::REPLACE_BZ) { writer.reset(new BzipExtentWriter(std::move(writer))); } else if (operation.type() == InstallOperation::REPLACE_XZ) { writer.reset(new XzExtentWriter(std::move(writer))); } // Create a vector of extents to pass to the ExtentWriter. vector<Extent> extents; for (int i = 0; i < operation.dst_extents_size(); i++) { extents.push_back(operation.dst_extents(i)); } TEST_AND_RETURN_FALSE(writer->Init(target_fd_, extents, block_size_)); TEST_AND_RETURN_FALSE(writer->Write(buffer_.data(), operation.data_length())); TEST_AND_RETURN_FALSE(writer->End()); // Update buffer DiscardBuffer(true, buffer_.size()); return true; } bool DeltaPerformer::PerformZeroOrDiscardOperation( const InstallOperation& operation) { CHECK(operation.type() == InstallOperation::DISCARD || operation.type() == InstallOperation::ZERO); // These operations have no blob. TEST_AND_RETURN_FALSE(!operation.has_data_offset()); TEST_AND_RETURN_FALSE(!operation.has_data_length()); #ifdef BLKZEROOUT bool attempt_ioctl = true; int request = (operation.type() == InstallOperation::ZERO ? BLKZEROOUT : BLKDISCARD); #else // !defined(BLKZEROOUT) bool attempt_ioctl = false; int request = 0; #endif // !defined(BLKZEROOUT) brillo::Blob zeros; for (const Extent& extent : operation.dst_extents()) { const uint64_t start = extent.start_block() * block_size_; const uint64_t length = extent.num_blocks() * block_size_; if (attempt_ioctl) { int result = 0; if (target_fd_->BlkIoctl(request, start, length, &result) && result == 0) continue; attempt_ioctl = false; zeros.resize(16 * block_size_); } // In case of failure, we fall back to writing 0 to the selected region. for (uint64_t offset = 0; offset < length; offset += zeros.size()) { uint64_t chunk_length = min(length - offset, static_cast<uint64_t>(zeros.size())); TEST_AND_RETURN_FALSE( utils::PWriteAll(target_fd_, zeros.data(), chunk_length, start + offset)); } } return true; } bool DeltaPerformer::PerformMoveOperation(const InstallOperation& operation) { // Calculate buffer size. Note, this function doesn't do a sliding // window to copy in case the source and destination blocks overlap. // If we wanted to do a sliding window, we could program the server // to generate deltas that effectively did a sliding window. uint64_t blocks_to_read = 0; for (int i = 0; i < operation.src_extents_size(); i++) blocks_to_read += operation.src_extents(i).num_blocks(); uint64_t blocks_to_write = 0; for (int i = 0; i < operation.dst_extents_size(); i++) blocks_to_write += operation.dst_extents(i).num_blocks(); DCHECK_EQ(blocks_to_write, blocks_to_read); brillo::Blob buf(blocks_to_write * block_size_); // Read in bytes. ssize_t bytes_read = 0; for (int i = 0; i < operation.src_extents_size(); i++) { ssize_t bytes_read_this_iteration = 0; const Extent& extent = operation.src_extents(i); const size_t bytes = extent.num_blocks() * block_size_; TEST_AND_RETURN_FALSE(extent.start_block() != kSparseHole); TEST_AND_RETURN_FALSE(utils::PReadAll(target_fd_, &buf[bytes_read], bytes, extent.start_block() * block_size_, &bytes_read_this_iteration)); TEST_AND_RETURN_FALSE( bytes_read_this_iteration == static_cast<ssize_t>(bytes)); bytes_read += bytes_read_this_iteration; } // Write bytes out. ssize_t bytes_written = 0; for (int i = 0; i < operation.dst_extents_size(); i++) { const Extent& extent = operation.dst_extents(i); const size_t bytes = extent.num_blocks() * block_size_; TEST_AND_RETURN_FALSE(extent.start_block() != kSparseHole); TEST_AND_RETURN_FALSE(utils::PWriteAll(target_fd_, &buf[bytes_written], bytes, extent.start_block() * block_size_)); bytes_written += bytes; } DCHECK_EQ(bytes_written, bytes_read); DCHECK_EQ(bytes_written, static_cast<ssize_t>(buf.size())); return true; } namespace { // Takes |extents| and fills an empty vector |blocks| with a block index for // each block in |extents|. For example, [(3, 2), (8, 1)] would give [3, 4, 8]. void ExtentsToBlocks(const RepeatedPtrField<Extent>& extents, vector<uint64_t>* blocks) { for (const Extent& ext : extents) { for (uint64_t j = 0; j < ext.num_blocks(); j++) blocks->push_back(ext.start_block() + j); } } // Takes |extents| and returns the number of blocks in those extents. uint64_t GetBlockCount(const RepeatedPtrField<Extent>& extents) { uint64_t sum = 0; for (const Extent& ext : extents) { sum += ext.num_blocks(); } return sum; } // Compare |calculated_hash| with source hash in |operation|, return false and // dump hash and set |error| if don't match. bool ValidateSourceHash(const brillo::Blob& calculated_hash, const InstallOperation& operation, ErrorCode* error) { brillo::Blob expected_source_hash(operation.src_sha256_hash().begin(), operation.src_sha256_hash().end()); if (calculated_hash != expected_source_hash) { LOG(ERROR) << "The hash of the source data on disk for this operation " << "doesn't match the expected value. This could mean that the " << "delta update payload was targeted for another version, or " << "that the source partition was modified after it was " << "installed, for example, by mounting a filesystem."; LOG(ERROR) << "Expected: sha256|hex = " << base::HexEncode(expected_source_hash.data(), expected_source_hash.size()); LOG(ERROR) << "Calculated: sha256|hex = " << base::HexEncode(calculated_hash.data(), calculated_hash.size()); vector<string> source_extents; for (const Extent& ext : operation.src_extents()) { source_extents.push_back( base::StringPrintf("%" PRIu64 ":%" PRIu64, static_cast<uint64_t>(ext.start_block()), static_cast<uint64_t>(ext.num_blocks()))); } LOG(ERROR) << "Operation source (offset:size) in blocks: " << base::JoinString(source_extents, ","); *error = ErrorCode::kDownloadStateInitializationError; return false; } return true; } } // namespace bool DeltaPerformer::PerformSourceCopyOperation( const InstallOperation& operation, ErrorCode* error) { if (operation.has_src_length()) TEST_AND_RETURN_FALSE(operation.src_length() % block_size_ == 0); if (operation.has_dst_length()) TEST_AND_RETURN_FALSE(operation.dst_length() % block_size_ == 0); uint64_t blocks_to_read = GetBlockCount(operation.src_extents()); uint64_t blocks_to_write = GetBlockCount(operation.dst_extents()); TEST_AND_RETURN_FALSE(blocks_to_write == blocks_to_read); // Create vectors of all the individual src/dst blocks. vector<uint64_t> src_blocks; vector<uint64_t> dst_blocks; ExtentsToBlocks(operation.src_extents(), &src_blocks); ExtentsToBlocks(operation.dst_extents(), &dst_blocks); DCHECK_EQ(src_blocks.size(), blocks_to_read); DCHECK_EQ(src_blocks.size(), dst_blocks.size()); brillo::Blob buf(block_size_); ssize_t bytes_read = 0; HashCalculator source_hasher; // Read/write one block at a time. for (uint64_t i = 0; i < blocks_to_read; i++) { ssize_t bytes_read_this_iteration = 0; uint64_t src_block = src_blocks[i]; uint64_t dst_block = dst_blocks[i]; // Read in bytes. TEST_AND_RETURN_FALSE( utils::PReadAll(source_fd_, buf.data(), block_size_, src_block * block_size_, &bytes_read_this_iteration)); // Write bytes out. TEST_AND_RETURN_FALSE( utils::PWriteAll(target_fd_, buf.data(), block_size_, dst_block * block_size_)); bytes_read += bytes_read_this_iteration; TEST_AND_RETURN_FALSE(bytes_read_this_iteration == static_cast<ssize_t>(block_size_)); if (operation.has_src_sha256_hash()) TEST_AND_RETURN_FALSE(source_hasher.Update(buf.data(), buf.size())); } if (operation.has_src_sha256_hash()) { TEST_AND_RETURN_FALSE(source_hasher.Finalize()); TEST_AND_RETURN_FALSE( ValidateSourceHash(source_hasher.raw_hash(), operation, error)); } DCHECK_EQ(bytes_read, static_cast<ssize_t>(blocks_to_read * block_size_)); return true; } bool DeltaPerformer::ExtentsToBsdiffPositionsString( const RepeatedPtrField<Extent>& extents, uint64_t block_size, uint64_t full_length, string* positions_string) { string ret; uint64_t length = 0; for (const Extent& extent : extents) { int64_t start = extent.start_block() * block_size; uint64_t this_length = min(full_length - length, static_cast<uint64_t>(extent.num_blocks()) * block_size); ret += base::StringPrintf("%" PRIi64 ":%" PRIu64 ",", start, this_length); length += this_length; } TEST_AND_RETURN_FALSE(length == full_length); if (!ret.empty()) ret.resize(ret.size() - 1); // Strip trailing comma off *positions_string = ret; return true; } bool DeltaPerformer::PerformBsdiffOperation(const InstallOperation& operation) { // Since we delete data off the beginning of the buffer as we use it, // the data we need should be exactly at the beginning of the buffer. TEST_AND_RETURN_FALSE(buffer_offset_ == operation.data_offset()); TEST_AND_RETURN_FALSE(buffer_.size() >= operation.data_length()); string input_positions; TEST_AND_RETURN_FALSE(ExtentsToBsdiffPositionsString(operation.src_extents(), block_size_, operation.src_length(), &input_positions)); string output_positions; TEST_AND_RETURN_FALSE(ExtentsToBsdiffPositionsString(operation.dst_extents(), block_size_, operation.dst_length(), &output_positions)); TEST_AND_RETURN_FALSE(bsdiff::bspatch(target_path_.c_str(), target_path_.c_str(), buffer_.data(), buffer_.size(), input_positions.c_str(), output_positions.c_str()) == 0); DiscardBuffer(true, buffer_.size()); if (operation.dst_length() % block_size_) { // Zero out rest of final block. // TODO(adlr): build this into bspatch; it's more efficient that way. const Extent& last_extent = operation.dst_extents(operation.dst_extents_size() - 1); const uint64_t end_byte = (last_extent.start_block() + last_extent.num_blocks()) * block_size_; const uint64_t begin_byte = end_byte - (block_size_ - operation.dst_length() % block_size_); brillo::Blob zeros(end_byte - begin_byte); TEST_AND_RETURN_FALSE( utils::PWriteAll(target_fd_, zeros.data(), end_byte - begin_byte, begin_byte)); } return true; } bool DeltaPerformer::PerformSourceBsdiffOperation( const InstallOperation& operation, ErrorCode* error) { // Since we delete data off the beginning of the buffer as we use it, // the data we need should be exactly at the beginning of the buffer. TEST_AND_RETURN_FALSE(buffer_offset_ == operation.data_offset()); TEST_AND_RETURN_FALSE(buffer_.size() >= operation.data_length()); if (operation.has_src_length()) TEST_AND_RETURN_FALSE(operation.src_length() % block_size_ == 0); if (operation.has_dst_length()) TEST_AND_RETURN_FALSE(operation.dst_length() % block_size_ == 0); if (operation.has_src_sha256_hash()) { HashCalculator source_hasher; const uint64_t kMaxBlocksToRead = 512; // 2MB if block size is 4KB brillo::Blob buf(kMaxBlocksToRead * block_size_); for (const Extent& extent : operation.src_extents()) { for (uint64_t i = 0; i < extent.num_blocks(); i += kMaxBlocksToRead) { uint64_t blocks_to_read = min( kMaxBlocksToRead, static_cast<uint64_t>(extent.num_blocks()) - i); ssize_t bytes_to_read = blocks_to_read * block_size_; ssize_t bytes_read_this_iteration = 0; TEST_AND_RETURN_FALSE( utils::PReadAll(source_fd_, buf.data(), bytes_to_read, (extent.start_block() + i) * block_size_, &bytes_read_this_iteration)); TEST_AND_RETURN_FALSE(bytes_read_this_iteration == bytes_to_read); TEST_AND_RETURN_FALSE(source_hasher.Update(buf.data(), bytes_to_read)); } } TEST_AND_RETURN_FALSE(source_hasher.Finalize()); TEST_AND_RETURN_FALSE( ValidateSourceHash(source_hasher.raw_hash(), operation, error)); } string input_positions; TEST_AND_RETURN_FALSE(ExtentsToBsdiffPositionsString(operation.src_extents(), block_size_, operation.src_length(), &input_positions)); string output_positions; TEST_AND_RETURN_FALSE(ExtentsToBsdiffPositionsString(operation.dst_extents(), block_size_, operation.dst_length(), &output_positions)); TEST_AND_RETURN_FALSE(bsdiff::bspatch(source_path_.c_str(), target_path_.c_str(), buffer_.data(), buffer_.size(), input_positions.c_str(), output_positions.c_str()) == 0); DiscardBuffer(true, buffer_.size()); return true; } bool DeltaPerformer::PerformImgdiffOperation(const InstallOperation& operation, ErrorCode* error) { // Since we delete data off the beginning of the buffer as we use it, // the data we need should be exactly at the beginning of the buffer. TEST_AND_RETURN_FALSE(buffer_offset_ == operation.data_offset()); TEST_AND_RETURN_FALSE(buffer_.size() >= operation.data_length()); uint64_t src_blocks = GetBlockCount(operation.src_extents()); brillo::Blob src_data(src_blocks * block_size_); ssize_t bytes_read = 0; for (const Extent& extent : operation.src_extents()) { ssize_t bytes_read_this_iteration = 0; ssize_t bytes_to_read = extent.num_blocks() * block_size_; TEST_AND_RETURN_FALSE(utils::PReadAll(source_fd_, &src_data[bytes_read], bytes_to_read, extent.start_block() * block_size_, &bytes_read_this_iteration)); TEST_AND_RETURN_FALSE(bytes_read_this_iteration == bytes_to_read); bytes_read += bytes_read_this_iteration; } if (operation.has_src_sha256_hash()) { brillo::Blob src_hash; TEST_AND_RETURN_FALSE(HashCalculator::RawHashOfData(src_data, &src_hash)); TEST_AND_RETURN_FALSE(ValidateSourceHash(src_hash, operation, error)); } vector<Extent> target_extents(operation.dst_extents().begin(), operation.dst_extents().end()); DirectExtentWriter writer; TEST_AND_RETURN_FALSE(writer.Init(target_fd_, target_extents, block_size_)); TEST_AND_RETURN_FALSE( ApplyImagePatch(src_data.data(), src_data.size(), buffer_.data(), operation.data_length(), [](const unsigned char* data, ssize_t len, void* token) { return reinterpret_cast<ExtentWriter*>(token) ->Write(data, len) ? len : 0; }, &writer) == 0); TEST_AND_RETURN_FALSE(writer.End()); DiscardBuffer(true, buffer_.size()); return true; } bool DeltaPerformer::ExtractSignatureMessageFromOperation( const InstallOperation& operation) { if (operation.type() != InstallOperation::REPLACE || !manifest_.has_signatures_offset() || manifest_.signatures_offset() != operation.data_offset()) { return false; } TEST_AND_RETURN_FALSE(manifest_.has_signatures_size() && manifest_.signatures_size() == operation.data_length()); TEST_AND_RETURN_FALSE(ExtractSignatureMessage()); return true; } bool DeltaPerformer::ExtractSignatureMessage() { TEST_AND_RETURN_FALSE(signatures_message_data_.empty()); TEST_AND_RETURN_FALSE(buffer_offset_ == manifest_.signatures_offset()); TEST_AND_RETURN_FALSE(buffer_.size() >= manifest_.signatures_size()); signatures_message_data_.assign( buffer_.begin(), buffer_.begin() + manifest_.signatures_size()); // Save the signature blob because if the update is interrupted after the // download phase we don't go through this path anymore. Some alternatives to // consider: // // 1. On resume, re-download the signature blob from the server and re-verify // it. // // 2. Verify the signature as soon as it's received and don't checkpoint the // blob and the signed sha-256 context. LOG_IF(WARNING, !prefs_->SetString(kPrefsUpdateStateSignatureBlob, string(signatures_message_data_.begin(), signatures_message_data_.end()))) << "Unable to store the signature blob."; LOG(INFO) << "Extracted signature data of size " << manifest_.signatures_size() << " at " << manifest_.signatures_offset(); return true; } bool DeltaPerformer::GetPublicKeyFromResponse(base::FilePath *out_tmp_key) { if (hardware_->IsOfficialBuild() || utils::FileExists(public_key_path_.c_str()) || install_plan_->public_key_rsa.empty()) return false; if (!utils::DecodeAndStoreBase64String(install_plan_->public_key_rsa, out_tmp_key)) return false; return true; } ErrorCode DeltaPerformer::ValidateMetadataSignature( const brillo::Blob& payload) { if (payload.size() < metadata_size_ + metadata_signature_size_) return ErrorCode::kDownloadMetadataSignatureError; brillo::Blob metadata_signature_blob, metadata_signature_protobuf_blob; if (!install_plan_->metadata_signature.empty()) { // Convert base64-encoded signature to raw bytes. if (!brillo::data_encoding::Base64Decode( install_plan_->metadata_signature, &metadata_signature_blob)) { LOG(ERROR) << "Unable to decode base64 metadata signature: " << install_plan_->metadata_signature; return ErrorCode::kDownloadMetadataSignatureError; } } else if (major_payload_version_ == kBrilloMajorPayloadVersion) { metadata_signature_protobuf_blob.assign(payload.begin() + metadata_size_, payload.begin() + metadata_size_ + metadata_signature_size_); } if (metadata_signature_blob.empty() && metadata_signature_protobuf_blob.empty()) { if (install_plan_->hash_checks_mandatory) { LOG(ERROR) << "Missing mandatory metadata signature in both Omaha " << "response and payload."; return ErrorCode::kDownloadMetadataSignatureMissingError; } LOG(WARNING) << "Cannot validate metadata as the signature is empty"; return ErrorCode::kSuccess; } // See if we should use the public RSA key in the Omaha response. base::FilePath path_to_public_key(public_key_path_); base::FilePath tmp_key; if (GetPublicKeyFromResponse(&tmp_key)) path_to_public_key = tmp_key; ScopedPathUnlinker tmp_key_remover(tmp_key.value()); if (tmp_key.empty()) tmp_key_remover.set_should_remove(false); LOG(INFO) << "Verifying metadata hash signature using public key: " << path_to_public_key.value(); HashCalculator metadata_hasher; metadata_hasher.Update(payload.data(), metadata_size_); if (!metadata_hasher.Finalize()) { LOG(ERROR) << "Unable to compute actual hash of manifest"; return ErrorCode::kDownloadMetadataSignatureVerificationError; } brillo::Blob calculated_metadata_hash = metadata_hasher.raw_hash(); PayloadVerifier::PadRSA2048SHA256Hash(&calculated_metadata_hash); if (calculated_metadata_hash.empty()) { LOG(ERROR) << "Computed actual hash of metadata is empty."; return ErrorCode::kDownloadMetadataSignatureVerificationError; } if (!metadata_signature_blob.empty()) { brillo::Blob expected_metadata_hash; if (!PayloadVerifier::GetRawHashFromSignature(metadata_signature_blob, path_to_public_key.value(), &expected_metadata_hash)) { LOG(ERROR) << "Unable to compute expected hash from metadata signature"; return ErrorCode::kDownloadMetadataSignatureError; } if (calculated_metadata_hash != expected_metadata_hash) { LOG(ERROR) << "Manifest hash verification failed. Expected hash = "; utils::HexDumpVector(expected_metadata_hash); LOG(ERROR) << "Calculated hash = "; utils::HexDumpVector(calculated_metadata_hash); return ErrorCode::kDownloadMetadataSignatureMismatch; } } else { if (!PayloadVerifier::VerifySignature(metadata_signature_protobuf_blob, path_to_public_key.value(), calculated_metadata_hash)) { LOG(ERROR) << "Manifest hash verification failed."; return ErrorCode::kDownloadMetadataSignatureMismatch; } } // The autoupdate_CatchBadSignatures test checks for this string in // log-files. Keep in sync. LOG(INFO) << "Metadata hash signature matches value in Omaha response."; return ErrorCode::kSuccess; } ErrorCode DeltaPerformer::ValidateManifest() { // Perform assorted checks to sanity check the manifest, make sure it // matches data from other sources, and that it is a supported version. bool has_old_fields = (manifest_.has_old_kernel_info() || manifest_.has_old_rootfs_info()); for (const PartitionUpdate& partition : manifest_.partitions()) { has_old_fields = has_old_fields || partition.has_old_partition_info(); } // The presence of an old partition hash is the sole indicator for a delta // update. InstallPayloadType actual_payload_type = has_old_fields ? InstallPayloadType::kDelta : InstallPayloadType::kFull; if (install_plan_->payload_type == InstallPayloadType::kUnknown) { LOG(INFO) << "Detected a '" << InstallPayloadTypeToString(actual_payload_type) << "' payload."; install_plan_->payload_type = actual_payload_type; } else if (install_plan_->payload_type != actual_payload_type) { LOG(ERROR) << "InstallPlan expected a '" << InstallPayloadTypeToString(install_plan_->payload_type) << "' payload but the downloaded manifest contains a '" << InstallPayloadTypeToString(actual_payload_type) << "' payload."; return ErrorCode::kPayloadMismatchedType; } // Check that the minor version is compatible. if (actual_payload_type == InstallPayloadType::kFull) { if (manifest_.minor_version() != kFullPayloadMinorVersion) { LOG(ERROR) << "Manifest contains minor version " << manifest_.minor_version() << ", but all full payloads should have version " << kFullPayloadMinorVersion << "."; return ErrorCode::kUnsupportedMinorPayloadVersion; } } else { if (manifest_.minor_version() != supported_minor_version_) { LOG(ERROR) << "Manifest contains minor version " << manifest_.minor_version() << " not the supported " << supported_minor_version_; return ErrorCode::kUnsupportedMinorPayloadVersion; } } if (major_payload_version_ != kChromeOSMajorPayloadVersion) { if (manifest_.has_old_rootfs_info() || manifest_.has_new_rootfs_info() || manifest_.has_old_kernel_info() || manifest_.has_new_kernel_info() || manifest_.install_operations_size() != 0 || manifest_.kernel_install_operations_size() != 0) { LOG(ERROR) << "Manifest contains deprecated field only supported in " << "major payload version 1, but the payload major version is " << major_payload_version_; return ErrorCode::kPayloadMismatchedType; } } // TODO(garnold) we should be adding more and more manifest checks, such as // partition boundaries etc (see chromium-os:37661). return ErrorCode::kSuccess; } ErrorCode DeltaPerformer::ValidateOperationHash( const InstallOperation& operation) { if (!operation.data_sha256_hash().size()) { if (!operation.data_length()) { // Operations that do not have any data blob won't have any operation hash // either. So, these operations are always considered validated since the // metadata that contains all the non-data-blob portions of the operation // has already been validated. This is true for both HTTP and HTTPS cases. return ErrorCode::kSuccess; } // No hash is present for an operation that has data blobs. This shouldn't // happen normally for any client that has this code, because the // corresponding update should have been produced with the operation // hashes. So if it happens it means either we've turned operation hash // generation off in DeltaDiffGenerator or it's a regression of some sort. // One caveat though: The last operation is a dummy signature operation // that doesn't have a hash at the time the manifest is created. So we // should not complaint about that operation. This operation can be // recognized by the fact that it's offset is mentioned in the manifest. if (manifest_.signatures_offset() && manifest_.signatures_offset() == operation.data_offset()) { LOG(INFO) << "Skipping hash verification for signature operation " << next_operation_num_ + 1; } else { if (install_plan_->hash_checks_mandatory) { LOG(ERROR) << "Missing mandatory operation hash for operation " << next_operation_num_ + 1; return ErrorCode::kDownloadOperationHashMissingError; } LOG(WARNING) << "Cannot validate operation " << next_operation_num_ + 1 << " as there's no operation hash in manifest"; } return ErrorCode::kSuccess; } brillo::Blob expected_op_hash; expected_op_hash.assign(operation.data_sha256_hash().data(), (operation.data_sha256_hash().data() + operation.data_sha256_hash().size())); HashCalculator operation_hasher; operation_hasher.Update(buffer_.data(), operation.data_length()); if (!operation_hasher.Finalize()) { LOG(ERROR) << "Unable to compute actual hash of operation " << next_operation_num_; return ErrorCode::kDownloadOperationHashVerificationError; } brillo::Blob calculated_op_hash = operation_hasher.raw_hash(); if (calculated_op_hash != expected_op_hash) { LOG(ERROR) << "Hash verification failed for operation " << next_operation_num_ << ". Expected hash = "; utils::HexDumpVector(expected_op_hash); LOG(ERROR) << "Calculated hash over " << operation.data_length() << " bytes at offset: " << operation.data_offset() << " = "; utils::HexDumpVector(calculated_op_hash); return ErrorCode::kDownloadOperationHashMismatch; } return ErrorCode::kSuccess; } #define TEST_AND_RETURN_VAL(_retval, _condition) \ do { \ if (!(_condition)) { \ LOG(ERROR) << "VerifyPayload failure: " << #_condition; \ return _retval; \ } \ } while (0); ErrorCode DeltaPerformer::VerifyPayload( const string& update_check_response_hash, const uint64_t update_check_response_size) { // See if we should use the public RSA key in the Omaha response. base::FilePath path_to_public_key(public_key_path_); base::FilePath tmp_key; if (GetPublicKeyFromResponse(&tmp_key)) path_to_public_key = tmp_key; ScopedPathUnlinker tmp_key_remover(tmp_key.value()); if (tmp_key.empty()) tmp_key_remover.set_should_remove(false); LOG(INFO) << "Verifying payload using public key: " << path_to_public_key.value(); // Verifies the download size. TEST_AND_RETURN_VAL(ErrorCode::kPayloadSizeMismatchError, update_check_response_size == metadata_size_ + metadata_signature_size_ + buffer_offset_); // Verifies the payload hash. const string& payload_hash_data = payload_hash_calculator_.hash(); TEST_AND_RETURN_VAL(ErrorCode::kDownloadPayloadVerificationError, !payload_hash_data.empty()); TEST_AND_RETURN_VAL(ErrorCode::kPayloadHashMismatchError, payload_hash_data == update_check_response_hash); // Verifies the signed payload hash. if (!utils::FileExists(path_to_public_key.value().c_str())) { LOG(WARNING) << "Not verifying signed delta payload -- missing public key."; return ErrorCode::kSuccess; } TEST_AND_RETURN_VAL(ErrorCode::kSignedDeltaPayloadExpectedError, !signatures_message_data_.empty()); brillo::Blob hash_data = signed_hash_calculator_.raw_hash(); TEST_AND_RETURN_VAL(ErrorCode::kDownloadPayloadPubKeyVerificationError, PayloadVerifier::PadRSA2048SHA256Hash(&hash_data)); TEST_AND_RETURN_VAL(ErrorCode::kDownloadPayloadPubKeyVerificationError, !hash_data.empty()); if (!PayloadVerifier::VerifySignature( signatures_message_data_, path_to_public_key.value(), hash_data)) { // The autoupdate_CatchBadSignatures test checks for this string // in log-files. Keep in sync. LOG(ERROR) << "Public key verification failed, thus update failed."; return ErrorCode::kDownloadPayloadPubKeyVerificationError; } LOG(INFO) << "Payload hash matches value in payload."; // At this point, we are guaranteed to have downloaded a full payload, i.e // the one whose size matches the size mentioned in Omaha response. If any // errors happen after this, it's likely a problem with the payload itself or // the state of the system and not a problem with the URL or network. So, // indicate that to the download delegate so that AU can backoff // appropriately. if (download_delegate_) download_delegate_->DownloadComplete(); return ErrorCode::kSuccess; } void DeltaPerformer::DiscardBuffer(bool do_advance_offset, size_t signed_hash_buffer_size) { // Update the buffer offset. if (do_advance_offset) buffer_offset_ += buffer_.size(); // Hash the content. payload_hash_calculator_.Update(buffer_.data(), buffer_.size()); signed_hash_calculator_.Update(buffer_.data(), signed_hash_buffer_size); // Swap content with an empty vector to ensure that all memory is released. brillo::Blob().swap(buffer_); } bool DeltaPerformer::CanResumeUpdate(PrefsInterface* prefs, const string& update_check_response_hash) { int64_t next_operation = kUpdateStateOperationInvalid; if (!(prefs->GetInt64(kPrefsUpdateStateNextOperation, &next_operation) && next_operation != kUpdateStateOperationInvalid && next_operation > 0)) return false; string interrupted_hash; if (!(prefs->GetString(kPrefsUpdateCheckResponseHash, &interrupted_hash) && !interrupted_hash.empty() && interrupted_hash == update_check_response_hash)) return false; int64_t resumed_update_failures; // Note that storing this value is optional, but if it is there it should not // be more than the limit. if (prefs->GetInt64(kPrefsResumedUpdateFailures, &resumed_update_failures) && resumed_update_failures > kMaxResumedUpdateFailures) return false; // Sanity check the rest. int64_t next_data_offset = -1; if (!(prefs->GetInt64(kPrefsUpdateStateNextDataOffset, &next_data_offset) && next_data_offset >= 0)) return false; string sha256_context; if (!(prefs->GetString(kPrefsUpdateStateSHA256Context, &sha256_context) && !sha256_context.empty())) return false; int64_t manifest_metadata_size = 0; if (!(prefs->GetInt64(kPrefsManifestMetadataSize, &manifest_metadata_size) && manifest_metadata_size > 0)) return false; int64_t manifest_signature_size = 0; if (!(prefs->GetInt64(kPrefsManifestSignatureSize, &manifest_signature_size) && manifest_signature_size >= 0)) return false; return true; } bool DeltaPerformer::ResetUpdateProgress(PrefsInterface* prefs, bool quick) { TEST_AND_RETURN_FALSE(prefs->SetInt64(kPrefsUpdateStateNextOperation, kUpdateStateOperationInvalid)); if (!quick) { prefs->SetString(kPrefsUpdateCheckResponseHash, ""); prefs->SetInt64(kPrefsUpdateStateNextDataOffset, -1); prefs->SetInt64(kPrefsUpdateStateNextDataLength, 0); prefs->SetString(kPrefsUpdateStateSHA256Context, ""); prefs->SetString(kPrefsUpdateStateSignedSHA256Context, ""); prefs->SetString(kPrefsUpdateStateSignatureBlob, ""); prefs->SetInt64(kPrefsManifestMetadataSize, -1); prefs->SetInt64(kPrefsManifestSignatureSize, -1); prefs->SetInt64(kPrefsResumedUpdateFailures, 0); } return true; } bool DeltaPerformer::CheckpointUpdateProgress() { Terminator::set_exit_blocked(true); if (last_updated_buffer_offset_ != buffer_offset_) { // Resets the progress in case we die in the middle of the state update. ResetUpdateProgress(prefs_, true); TEST_AND_RETURN_FALSE( prefs_->SetString(kPrefsUpdateStateSHA256Context, payload_hash_calculator_.GetContext())); TEST_AND_RETURN_FALSE( prefs_->SetString(kPrefsUpdateStateSignedSHA256Context, signed_hash_calculator_.GetContext())); TEST_AND_RETURN_FALSE(prefs_->SetInt64(kPrefsUpdateStateNextDataOffset, buffer_offset_)); last_updated_buffer_offset_ = buffer_offset_; if (next_operation_num_ < num_total_operations_) { size_t partition_index = current_partition_; while (next_operation_num_ >= acc_num_operations_[partition_index]) partition_index++; const size_t partition_operation_num = next_operation_num_ - ( partition_index ? acc_num_operations_[partition_index - 1] : 0); const InstallOperation& op = partitions_[partition_index].operations(partition_operation_num); TEST_AND_RETURN_FALSE(prefs_->SetInt64(kPrefsUpdateStateNextDataLength, op.data_length())); } else { TEST_AND_RETURN_FALSE(prefs_->SetInt64(kPrefsUpdateStateNextDataLength, 0)); } } TEST_AND_RETURN_FALSE(prefs_->SetInt64(kPrefsUpdateStateNextOperation, next_operation_num_)); return true; } bool DeltaPerformer::PrimeUpdateState() { CHECK(manifest_valid_); block_size_ = manifest_.block_size(); int64_t next_operation = kUpdateStateOperationInvalid; if (!prefs_->GetInt64(kPrefsUpdateStateNextOperation, &next_operation) || next_operation == kUpdateStateOperationInvalid || next_operation <= 0) { // Initiating a new update, no more state needs to be initialized. return true; } next_operation_num_ = next_operation; // Resuming an update -- load the rest of the update state. int64_t next_data_offset = -1; TEST_AND_RETURN_FALSE(prefs_->GetInt64(kPrefsUpdateStateNextDataOffset, &next_data_offset) && next_data_offset >= 0); buffer_offset_ = next_data_offset; // The signed hash context and the signature blob may be empty if the // interrupted update didn't reach the signature. string signed_hash_context; if (prefs_->GetString(kPrefsUpdateStateSignedSHA256Context, &signed_hash_context)) { TEST_AND_RETURN_FALSE( signed_hash_calculator_.SetContext(signed_hash_context)); } string signature_blob; if (prefs_->GetString(kPrefsUpdateStateSignatureBlob, &signature_blob)) { signatures_message_data_.assign(signature_blob.begin(), signature_blob.end()); } string hash_context; TEST_AND_RETURN_FALSE(prefs_->GetString(kPrefsUpdateStateSHA256Context, &hash_context) && payload_hash_calculator_.SetContext(hash_context)); int64_t manifest_metadata_size = 0; TEST_AND_RETURN_FALSE(prefs_->GetInt64(kPrefsManifestMetadataSize, &manifest_metadata_size) && manifest_metadata_size > 0); metadata_size_ = manifest_metadata_size; int64_t manifest_signature_size = 0; TEST_AND_RETURN_FALSE( prefs_->GetInt64(kPrefsManifestSignatureSize, &manifest_signature_size) && manifest_signature_size >= 0); metadata_signature_size_ = manifest_signature_size; // Advance the download progress to reflect what doesn't need to be // re-downloaded. total_bytes_received_ += buffer_offset_; // Speculatively count the resume as a failure. int64_t resumed_update_failures; if (prefs_->GetInt64(kPrefsResumedUpdateFailures, &resumed_update_failures)) { resumed_update_failures++; } else { resumed_update_failures = 1; } prefs_->SetInt64(kPrefsResumedUpdateFailures, resumed_update_failures); return true; } } // namespace chromeos_update_engine