HELLO·Android
系统源代码
IT资讯
技术文章
我的收藏
注册
登录
-
我收藏的文章
创建代码块
我的代码块
我的账号
Oreo
|
8.0.0_r4
下载
查看原文件
收藏
根目录
art
compiler
optimizing
code_generator_arm.cc
/* * Copyright (C) 2014 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "code_generator_arm.h" #include "arch/arm/instruction_set_features_arm.h" #include "art_method.h" #include "code_generator_utils.h" #include "common_arm.h" #include "compiled_method.h" #include "entrypoints/quick/quick_entrypoints.h" #include "gc/accounting/card_table.h" #include "intrinsics.h" #include "intrinsics_arm.h" #include "mirror/array-inl.h" #include "mirror/class-inl.h" #include "thread.h" #include "utils/arm/assembler_arm.h" #include "utils/arm/managed_register_arm.h" #include "utils/assembler.h" #include "utils/stack_checks.h" namespace art { template
class GcRoot; namespace arm { static bool ExpectedPairLayout(Location location) { // We expected this for both core and fpu register pairs. return ((location.low() & 1) == 0) && (location.low() + 1 == location.high()); } static constexpr int kCurrentMethodStackOffset = 0; static constexpr Register kMethodRegisterArgument = R0; static constexpr Register kCoreAlwaysSpillRegister = R5; static constexpr Register kCoreCalleeSaves[] = { R5, R6, R7, R8, R10, R11, LR }; static constexpr SRegister kFpuCalleeSaves[] = { S16, S17, S18, S19, S20, S21, S22, S23, S24, S25, S26, S27, S28, S29, S30, S31 }; // D31 cannot be split into two S registers, and the register allocator only works on // S registers. Therefore there is no need to block it. static constexpr DRegister DTMP = D31; static constexpr uint32_t kPackedSwitchCompareJumpThreshold = 7; // NOLINT on __ macro to suppress wrong warning/fix (misc-macro-parentheses) from clang-tidy. #define __ down_cast
(codegen->GetAssembler())-> // NOLINT #define QUICK_ENTRY_POINT(x) QUICK_ENTRYPOINT_OFFSET(kArmPointerSize, x).Int32Value() static constexpr int kRegListThreshold = 4; // SaveLiveRegisters and RestoreLiveRegisters from SlowPathCodeARM operate on sets of S registers, // for each live D registers they treat two corresponding S registers as live ones. // // Two following functions (SaveContiguousSRegisterList, RestoreContiguousSRegisterList) build // from a list of contiguous S registers a list of contiguous D registers (processing first/last // S registers corner cases) and save/restore this new list treating them as D registers. // - decreasing code size // - avoiding hazards on Cortex-A57, when a pair of S registers for an actual live D register is // restored and then used in regular non SlowPath code as D register. // // For the following example (v means the S register is live): // D names: | D0 | D1 | D2 | D4 | ... // S names: | S0 | S1 | S2 | S3 | S4 | S5 | S6 | S7 | ... // Live? | | v | v | v | v | v | v | | ... // // S1 and S6 will be saved/restored independently; D registers list (D1, D2) will be processed // as D registers. static size_t SaveContiguousSRegisterList(size_t first, size_t last, CodeGenerator* codegen, size_t stack_offset) { DCHECK_LE(first, last); if ((first == last) && (first == 0)) { stack_offset += codegen->SaveFloatingPointRegister(stack_offset, first); return stack_offset; } if (first % 2 == 1) { stack_offset += codegen->SaveFloatingPointRegister(stack_offset, first++); } bool save_last = false; if (last % 2 == 0) { save_last = true; --last; } if (first < last) { DRegister d_reg = static_cast
(first / 2); DCHECK_EQ((last - first + 1) % 2, 0u); size_t number_of_d_regs = (last - first + 1) / 2; if (number_of_d_regs == 1) { __ StoreDToOffset(d_reg, SP, stack_offset); } else if (number_of_d_regs > 1) { __ add(IP, SP, ShifterOperand(stack_offset)); __ vstmiad(IP, d_reg, number_of_d_regs); } stack_offset += number_of_d_regs * kArmWordSize * 2; } if (save_last) { stack_offset += codegen->SaveFloatingPointRegister(stack_offset, last + 1); } return stack_offset; } static size_t RestoreContiguousSRegisterList(size_t first, size_t last, CodeGenerator* codegen, size_t stack_offset) { DCHECK_LE(first, last); if ((first == last) && (first == 0)) { stack_offset += codegen->RestoreFloatingPointRegister(stack_offset, first); return stack_offset; } if (first % 2 == 1) { stack_offset += codegen->RestoreFloatingPointRegister(stack_offset, first++); } bool restore_last = false; if (last % 2 == 0) { restore_last = true; --last; } if (first < last) { DRegister d_reg = static_cast
(first / 2); DCHECK_EQ((last - first + 1) % 2, 0u); size_t number_of_d_regs = (last - first + 1) / 2; if (number_of_d_regs == 1) { __ LoadDFromOffset(d_reg, SP, stack_offset); } else if (number_of_d_regs > 1) { __ add(IP, SP, ShifterOperand(stack_offset)); __ vldmiad(IP, d_reg, number_of_d_regs); } stack_offset += number_of_d_regs * kArmWordSize * 2; } if (restore_last) { stack_offset += codegen->RestoreFloatingPointRegister(stack_offset, last + 1); } return stack_offset; } void SlowPathCodeARM::SaveLiveRegisters(CodeGenerator* codegen, LocationSummary* locations) { size_t stack_offset = codegen->GetFirstRegisterSlotInSlowPath(); size_t orig_offset = stack_offset; const uint32_t core_spills = codegen->GetSlowPathSpills(locations, /* core_registers */ true); for (uint32_t i : LowToHighBits(core_spills)) { // If the register holds an object, update the stack mask. if (locations->RegisterContainsObject(i)) { locations->SetStackBit(stack_offset / kVRegSize); } DCHECK_LT(stack_offset, codegen->GetFrameSize() - codegen->FrameEntrySpillSize()); DCHECK_LT(i, kMaximumNumberOfExpectedRegisters); saved_core_stack_offsets_[i] = stack_offset; stack_offset += kArmWordSize; } int reg_num = POPCOUNT(core_spills); if (reg_num != 0) { if (reg_num > kRegListThreshold) { __ StoreList(RegList(core_spills), orig_offset); } else { stack_offset = orig_offset; for (uint32_t i : LowToHighBits(core_spills)) { stack_offset += codegen->SaveCoreRegister(stack_offset, i); } } } uint32_t fp_spills = codegen->GetSlowPathSpills(locations, /* core_registers */ false); orig_offset = stack_offset; for (uint32_t i : LowToHighBits(fp_spills)) { DCHECK_LT(i, kMaximumNumberOfExpectedRegisters); saved_fpu_stack_offsets_[i] = stack_offset; stack_offset += kArmWordSize; } stack_offset = orig_offset; while (fp_spills != 0u) { uint32_t begin = CTZ(fp_spills); uint32_t tmp = fp_spills + (1u << begin); fp_spills &= tmp; // Clear the contiguous range of 1s. uint32_t end = (tmp == 0u) ? 32u : CTZ(tmp); // CTZ(0) is undefined. stack_offset = SaveContiguousSRegisterList(begin, end - 1, codegen, stack_offset); } DCHECK_LE(stack_offset, codegen->GetFrameSize() - codegen->FrameEntrySpillSize()); } void SlowPathCodeARM::RestoreLiveRegisters(CodeGenerator* codegen, LocationSummary* locations) { size_t stack_offset = codegen->GetFirstRegisterSlotInSlowPath(); size_t orig_offset = stack_offset; const uint32_t core_spills = codegen->GetSlowPathSpills(locations, /* core_registers */ true); for (uint32_t i : LowToHighBits(core_spills)) { DCHECK_LT(stack_offset, codegen->GetFrameSize() - codegen->FrameEntrySpillSize()); DCHECK_LT(i, kMaximumNumberOfExpectedRegisters); stack_offset += kArmWordSize; } int reg_num = POPCOUNT(core_spills); if (reg_num != 0) { if (reg_num > kRegListThreshold) { __ LoadList(RegList(core_spills), orig_offset); } else { stack_offset = orig_offset; for (uint32_t i : LowToHighBits(core_spills)) { stack_offset += codegen->RestoreCoreRegister(stack_offset, i); } } } uint32_t fp_spills = codegen->GetSlowPathSpills(locations, /* core_registers */ false); while (fp_spills != 0u) { uint32_t begin = CTZ(fp_spills); uint32_t tmp = fp_spills + (1u << begin); fp_spills &= tmp; // Clear the contiguous range of 1s. uint32_t end = (tmp == 0u) ? 32u : CTZ(tmp); // CTZ(0) is undefined. stack_offset = RestoreContiguousSRegisterList(begin, end - 1, codegen, stack_offset); } DCHECK_LE(stack_offset, codegen->GetFrameSize() - codegen->FrameEntrySpillSize()); } class NullCheckSlowPathARM : public SlowPathCodeARM { public: explicit NullCheckSlowPathARM(HNullCheck* instruction) : SlowPathCodeARM(instruction) {} void EmitNativeCode(CodeGenerator* codegen) OVERRIDE { CodeGeneratorARM* arm_codegen = down_cast
(codegen); __ Bind(GetEntryLabel()); if (instruction_->CanThrowIntoCatchBlock()) { // Live registers will be restored in the catch block if caught. SaveLiveRegisters(codegen, instruction_->GetLocations()); } arm_codegen->InvokeRuntime(kQuickThrowNullPointer, instruction_, instruction_->GetDexPc(), this); CheckEntrypointTypes
(); } bool IsFatal() const OVERRIDE { return true; } const char* GetDescription() const OVERRIDE { return "NullCheckSlowPathARM"; } private: DISALLOW_COPY_AND_ASSIGN(NullCheckSlowPathARM); }; class DivZeroCheckSlowPathARM : public SlowPathCodeARM { public: explicit DivZeroCheckSlowPathARM(HDivZeroCheck* instruction) : SlowPathCodeARM(instruction) {} void EmitNativeCode(CodeGenerator* codegen) OVERRIDE { CodeGeneratorARM* arm_codegen = down_cast
(codegen); __ Bind(GetEntryLabel()); arm_codegen->InvokeRuntime(kQuickThrowDivZero, instruction_, instruction_->GetDexPc(), this); CheckEntrypointTypes
(); } bool IsFatal() const OVERRIDE { return true; } const char* GetDescription() const OVERRIDE { return "DivZeroCheckSlowPathARM"; } private: DISALLOW_COPY_AND_ASSIGN(DivZeroCheckSlowPathARM); }; class SuspendCheckSlowPathARM : public SlowPathCodeARM { public: SuspendCheckSlowPathARM(HSuspendCheck* instruction, HBasicBlock* successor) : SlowPathCodeARM(instruction), successor_(successor) {} void EmitNativeCode(CodeGenerator* codegen) OVERRIDE { CodeGeneratorARM* arm_codegen = down_cast
(codegen); __ Bind(GetEntryLabel()); arm_codegen->InvokeRuntime(kQuickTestSuspend, instruction_, instruction_->GetDexPc(), this); CheckEntrypointTypes
(); if (successor_ == nullptr) { __ b(GetReturnLabel()); } else { __ b(arm_codegen->GetLabelOf(successor_)); } } Label* GetReturnLabel() { DCHECK(successor_ == nullptr); return &return_label_; } HBasicBlock* GetSuccessor() const { return successor_; } const char* GetDescription() const OVERRIDE { return "SuspendCheckSlowPathARM"; } private: // If not null, the block to branch to after the suspend check. HBasicBlock* const successor_; // If `successor_` is null, the label to branch to after the suspend check. Label return_label_; DISALLOW_COPY_AND_ASSIGN(SuspendCheckSlowPathARM); }; class BoundsCheckSlowPathARM : public SlowPathCodeARM { public: explicit BoundsCheckSlowPathARM(HBoundsCheck* instruction) : SlowPathCodeARM(instruction) {} void EmitNativeCode(CodeGenerator* codegen) OVERRIDE { CodeGeneratorARM* arm_codegen = down_cast
(codegen); LocationSummary* locations = instruction_->GetLocations(); __ Bind(GetEntryLabel()); if (instruction_->CanThrowIntoCatchBlock()) { // Live registers will be restored in the catch block if caught. SaveLiveRegisters(codegen, instruction_->GetLocations()); } // We're moving two locations to locations that could overlap, so we need a parallel // move resolver. InvokeRuntimeCallingConvention calling_convention; codegen->EmitParallelMoves( locations->InAt(0), Location::RegisterLocation(calling_convention.GetRegisterAt(0)), Primitive::kPrimInt, locations->InAt(1), Location::RegisterLocation(calling_convention.GetRegisterAt(1)), Primitive::kPrimInt); QuickEntrypointEnum entrypoint = instruction_->AsBoundsCheck()->IsStringCharAt() ? kQuickThrowStringBounds : kQuickThrowArrayBounds; arm_codegen->InvokeRuntime(entrypoint, instruction_, instruction_->GetDexPc(), this); CheckEntrypointTypes
(); CheckEntrypointTypes
(); } bool IsFatal() const OVERRIDE { return true; } const char* GetDescription() const OVERRIDE { return "BoundsCheckSlowPathARM"; } private: DISALLOW_COPY_AND_ASSIGN(BoundsCheckSlowPathARM); }; class LoadClassSlowPathARM : public SlowPathCodeARM { public: LoadClassSlowPathARM(HLoadClass* cls, HInstruction* at, uint32_t dex_pc, bool do_clinit) : SlowPathCodeARM(at), cls_(cls), dex_pc_(dex_pc), do_clinit_(do_clinit) { DCHECK(at->IsLoadClass() || at->IsClinitCheck()); } void EmitNativeCode(CodeGenerator* codegen) OVERRIDE { LocationSummary* locations = instruction_->GetLocations(); Location out = locations->Out(); constexpr bool call_saves_everything_except_r0 = (!kUseReadBarrier || kUseBakerReadBarrier); CodeGeneratorARM* arm_codegen = down_cast
(codegen); __ Bind(GetEntryLabel()); SaveLiveRegisters(codegen, locations); InvokeRuntimeCallingConvention calling_convention; // For HLoadClass/kBssEntry/kSaveEverything, make sure we preserve the address of the entry. DCHECK_EQ(instruction_->IsLoadClass(), cls_ == instruction_); bool is_load_class_bss_entry = (cls_ == instruction_) && (cls_->GetLoadKind() == HLoadClass::LoadKind::kBssEntry); Register entry_address = kNoRegister; if (is_load_class_bss_entry && call_saves_everything_except_r0) { Register temp = locations->GetTemp(0).AsRegister
(); // In the unlucky case that the `temp` is R0, we preserve the address in `out` across // the kSaveEverything call. bool temp_is_r0 = (temp == calling_convention.GetRegisterAt(0)); entry_address = temp_is_r0 ? out.AsRegister
() : temp; DCHECK_NE(entry_address, calling_convention.GetRegisterAt(0)); if (temp_is_r0) { __ mov(entry_address, ShifterOperand(temp)); } } dex::TypeIndex type_index = cls_->GetTypeIndex(); __ LoadImmediate(calling_convention.GetRegisterAt(0), type_index.index_); QuickEntrypointEnum entrypoint = do_clinit_ ? kQuickInitializeStaticStorage : kQuickInitializeType; arm_codegen->InvokeRuntime(entrypoint, instruction_, dex_pc_, this); if (do_clinit_) { CheckEntrypointTypes
(); } else { CheckEntrypointTypes
(); } // For HLoadClass/kBssEntry, store the resolved Class to the BSS entry. if (is_load_class_bss_entry) { if (call_saves_everything_except_r0) { // The class entry address was preserved in `entry_address` thanks to kSaveEverything. __ str(R0, Address(entry_address)); } else { // For non-Baker read barrier, we need to re-calculate the address of the string entry. Register temp = IP; CodeGeneratorARM::PcRelativePatchInfo* labels = arm_codegen->NewTypeBssEntryPatch(cls_->GetDexFile(), type_index); __ BindTrackedLabel(&labels->movw_label); __ movw(temp, /* placeholder */ 0u); __ BindTrackedLabel(&labels->movt_label); __ movt(temp, /* placeholder */ 0u); __ BindTrackedLabel(&labels->add_pc_label); __ add(temp, temp, ShifterOperand(PC)); __ str(R0, Address(temp)); } } // Move the class to the desired location. if (out.IsValid()) { DCHECK(out.IsRegister() && !locations->GetLiveRegisters()->ContainsCoreRegister(out.reg())); arm_codegen->Move32(locations->Out(), Location::RegisterLocation(R0)); } RestoreLiveRegisters(codegen, locations); __ b(GetExitLabel()); } const char* GetDescription() const OVERRIDE { return "LoadClassSlowPathARM"; } private: // The class this slow path will load. HLoadClass* const cls_; // The dex PC of `at_`. const uint32_t dex_pc_; // Whether to initialize the class. const bool do_clinit_; DISALLOW_COPY_AND_ASSIGN(LoadClassSlowPathARM); }; class LoadStringSlowPathARM : public SlowPathCodeARM { public: explicit LoadStringSlowPathARM(HLoadString* instruction) : SlowPathCodeARM(instruction) {} void EmitNativeCode(CodeGenerator* codegen) OVERRIDE { DCHECK(instruction_->IsLoadString()); DCHECK_EQ(instruction_->AsLoadString()->GetLoadKind(), HLoadString::LoadKind::kBssEntry); LocationSummary* locations = instruction_->GetLocations(); DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(locations->Out().reg())); HLoadString* load = instruction_->AsLoadString(); const dex::StringIndex string_index = load->GetStringIndex(); Register out = locations->Out().AsRegister
(); constexpr bool call_saves_everything_except_r0 = (!kUseReadBarrier || kUseBakerReadBarrier); CodeGeneratorARM* arm_codegen = down_cast
(codegen); __ Bind(GetEntryLabel()); SaveLiveRegisters(codegen, locations); InvokeRuntimeCallingConvention calling_convention; // In the unlucky case that the `temp` is R0, we preserve the address in `out` across // the kSaveEverything call. Register entry_address = kNoRegister; if (call_saves_everything_except_r0) { Register temp = locations->GetTemp(0).AsRegister
(); bool temp_is_r0 = (temp == calling_convention.GetRegisterAt(0)); entry_address = temp_is_r0 ? out : temp; DCHECK_NE(entry_address, calling_convention.GetRegisterAt(0)); if (temp_is_r0) { __ mov(entry_address, ShifterOperand(temp)); } } __ LoadImmediate(calling_convention.GetRegisterAt(0), string_index.index_); arm_codegen->InvokeRuntime(kQuickResolveString, instruction_, instruction_->GetDexPc(), this); CheckEntrypointTypes
(); // Store the resolved String to the .bss entry. if (call_saves_everything_except_r0) { // The string entry address was preserved in `entry_address` thanks to kSaveEverything. __ str(R0, Address(entry_address)); } else { // For non-Baker read barrier, we need to re-calculate the address of the string entry. Register temp = IP; CodeGeneratorARM::PcRelativePatchInfo* labels = arm_codegen->NewPcRelativeStringPatch(load->GetDexFile(), string_index); __ BindTrackedLabel(&labels->movw_label); __ movw(temp, /* placeholder */ 0u); __ BindTrackedLabel(&labels->movt_label); __ movt(temp, /* placeholder */ 0u); __ BindTrackedLabel(&labels->add_pc_label); __ add(temp, temp, ShifterOperand(PC)); __ str(R0, Address(temp)); } arm_codegen->Move32(locations->Out(), Location::RegisterLocation(R0)); RestoreLiveRegisters(codegen, locations); __ b(GetExitLabel()); } const char* GetDescription() const OVERRIDE { return "LoadStringSlowPathARM"; } private: DISALLOW_COPY_AND_ASSIGN(LoadStringSlowPathARM); }; class TypeCheckSlowPathARM : public SlowPathCodeARM { public: TypeCheckSlowPathARM(HInstruction* instruction, bool is_fatal) : SlowPathCodeARM(instruction), is_fatal_(is_fatal) {} void EmitNativeCode(CodeGenerator* codegen) OVERRIDE { LocationSummary* locations = instruction_->GetLocations(); DCHECK(instruction_->IsCheckCast() || !locations->GetLiveRegisters()->ContainsCoreRegister(locations->Out().reg())); CodeGeneratorARM* arm_codegen = down_cast
(codegen); __ Bind(GetEntryLabel()); if (!is_fatal_) { SaveLiveRegisters(codegen, locations); } // We're moving two locations to locations that could overlap, so we need a parallel // move resolver. InvokeRuntimeCallingConvention calling_convention; codegen->EmitParallelMoves(locations->InAt(0), Location::RegisterLocation(calling_convention.GetRegisterAt(0)), Primitive::kPrimNot, locations->InAt(1), Location::RegisterLocation(calling_convention.GetRegisterAt(1)), Primitive::kPrimNot); if (instruction_->IsInstanceOf()) { arm_codegen->InvokeRuntime(kQuickInstanceofNonTrivial, instruction_, instruction_->GetDexPc(), this); CheckEntrypointTypes
(); arm_codegen->Move32(locations->Out(), Location::RegisterLocation(R0)); } else { DCHECK(instruction_->IsCheckCast()); arm_codegen->InvokeRuntime(kQuickCheckInstanceOf, instruction_, instruction_->GetDexPc(), this); CheckEntrypointTypes
(); } if (!is_fatal_) { RestoreLiveRegisters(codegen, locations); __ b(GetExitLabel()); } } const char* GetDescription() const OVERRIDE { return "TypeCheckSlowPathARM"; } bool IsFatal() const OVERRIDE { return is_fatal_; } private: const bool is_fatal_; DISALLOW_COPY_AND_ASSIGN(TypeCheckSlowPathARM); }; class DeoptimizationSlowPathARM : public SlowPathCodeARM { public: explicit DeoptimizationSlowPathARM(HDeoptimize* instruction) : SlowPathCodeARM(instruction) {} void EmitNativeCode(CodeGenerator* codegen) OVERRIDE { CodeGeneratorARM* arm_codegen = down_cast
(codegen); __ Bind(GetEntryLabel()); LocationSummary* locations = instruction_->GetLocations(); SaveLiveRegisters(codegen, locations); InvokeRuntimeCallingConvention calling_convention; __ LoadImmediate(calling_convention.GetRegisterAt(0), static_cast
(instruction_->AsDeoptimize()->GetDeoptimizationKind())); arm_codegen->InvokeRuntime(kQuickDeoptimize, instruction_, instruction_->GetDexPc(), this); CheckEntrypointTypes
(); } const char* GetDescription() const OVERRIDE { return "DeoptimizationSlowPathARM"; } private: DISALLOW_COPY_AND_ASSIGN(DeoptimizationSlowPathARM); }; class ArraySetSlowPathARM : public SlowPathCodeARM { public: explicit ArraySetSlowPathARM(HInstruction* instruction) : SlowPathCodeARM(instruction) {} void EmitNativeCode(CodeGenerator* codegen) OVERRIDE { LocationSummary* locations = instruction_->GetLocations(); __ Bind(GetEntryLabel()); SaveLiveRegisters(codegen, locations); InvokeRuntimeCallingConvention calling_convention; HParallelMove parallel_move(codegen->GetGraph()->GetArena()); parallel_move.AddMove( locations->InAt(0), Location::RegisterLocation(calling_convention.GetRegisterAt(0)), Primitive::kPrimNot, nullptr); parallel_move.AddMove( locations->InAt(1), Location::RegisterLocation(calling_convention.GetRegisterAt(1)), Primitive::kPrimInt, nullptr); parallel_move.AddMove( locations->InAt(2), Location::RegisterLocation(calling_convention.GetRegisterAt(2)), Primitive::kPrimNot, nullptr); codegen->GetMoveResolver()->EmitNativeCode(¶llel_move); CodeGeneratorARM* arm_codegen = down_cast
(codegen); arm_codegen->InvokeRuntime(kQuickAputObject, instruction_, instruction_->GetDexPc(), this); CheckEntrypointTypes
(); RestoreLiveRegisters(codegen, locations); __ b(GetExitLabel()); } const char* GetDescription() const OVERRIDE { return "ArraySetSlowPathARM"; } private: DISALLOW_COPY_AND_ASSIGN(ArraySetSlowPathARM); }; // Abstract base class for read barrier slow paths marking a reference // `ref`. // // Argument `entrypoint` must be a register location holding the read // barrier marking runtime entry point to be invoked. class ReadBarrierMarkSlowPathBaseARM : public SlowPathCodeARM { protected: ReadBarrierMarkSlowPathBaseARM(HInstruction* instruction, Location ref, Location entrypoint) : SlowPathCodeARM(instruction), ref_(ref), entrypoint_(entrypoint) { DCHECK(kEmitCompilerReadBarrier); } const char* GetDescription() const OVERRIDE { return "ReadBarrierMarkSlowPathBaseARM"; } // Generate assembly code calling the read barrier marking runtime // entry point (ReadBarrierMarkRegX). void GenerateReadBarrierMarkRuntimeCall(CodeGenerator* codegen) { Register ref_reg = ref_.AsRegister
(); // No need to save live registers; it's taken care of by the // entrypoint. Also, there is no need to update the stack mask, // as this runtime call will not trigger a garbage collection. CodeGeneratorARM* arm_codegen = down_cast
(codegen); DCHECK_NE(ref_reg, SP); DCHECK_NE(ref_reg, LR); DCHECK_NE(ref_reg, PC); // IP is used internally by the ReadBarrierMarkRegX entry point // as a temporary, it cannot be the entry point's input/output. DCHECK_NE(ref_reg, IP); DCHECK(0 <= ref_reg && ref_reg < kNumberOfCoreRegisters) << ref_reg; // "Compact" slow path, saving two moves. // // Instead of using the standard runtime calling convention (input // and output in R0): // // R0 <- ref // R0 <- ReadBarrierMark(R0) // ref <- R0 // // we just use rX (the register containing `ref`) as input and output // of a dedicated entrypoint: // // rX <- ReadBarrierMarkRegX(rX) // if (entrypoint_.IsValid()) { arm_codegen->ValidateInvokeRuntimeWithoutRecordingPcInfo(instruction_, this); __ blx(entrypoint_.AsRegister
()); } else { // Entrypoint is not already loaded, load from the thread. int32_t entry_point_offset = CodeGenerator::GetReadBarrierMarkEntryPointsOffset
(ref_reg); // This runtime call does not require a stack map. arm_codegen->InvokeRuntimeWithoutRecordingPcInfo(entry_point_offset, instruction_, this); } } // The location (register) of the marked object reference. const Location ref_; // The location of the entrypoint if it is already loaded. const Location entrypoint_; private: DISALLOW_COPY_AND_ASSIGN(ReadBarrierMarkSlowPathBaseARM); }; // Slow path marking an object reference `ref` during a read // barrier. The field `obj.field` in the object `obj` holding this // reference does not get updated by this slow path after marking. // // This means that after the execution of this slow path, `ref` will // always be up-to-date, but `obj.field` may not; i.e., after the // flip, `ref` will be a to-space reference, but `obj.field` will // probably still be a from-space reference (unless it gets updated by // another thread, or if another thread installed another object // reference (different from `ref`) in `obj.field`). // // If `entrypoint` is a valid location it is assumed to already be // holding the entrypoint. The case where the entrypoint is passed in // is when the decision to mark is based on whether the GC is marking. class ReadBarrierMarkSlowPathARM : public ReadBarrierMarkSlowPathBaseARM { public: ReadBarrierMarkSlowPathARM(HInstruction* instruction, Location ref, Location entrypoint = Location::NoLocation()) : ReadBarrierMarkSlowPathBaseARM(instruction, ref, entrypoint) { DCHECK(kEmitCompilerReadBarrier); } const char* GetDescription() const OVERRIDE { return "ReadBarrierMarkSlowPathARM"; } void EmitNativeCode(CodeGenerator* codegen) OVERRIDE { LocationSummary* locations = instruction_->GetLocations(); DCHECK(locations->CanCall()); if (kIsDebugBuild) { Register ref_reg = ref_.AsRegister
(); DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(ref_reg)) << ref_reg; } DCHECK(instruction_->IsLoadClass() || instruction_->IsLoadString()) << "Unexpected instruction in read barrier marking slow path: " << instruction_->DebugName(); __ Bind(GetEntryLabel()); GenerateReadBarrierMarkRuntimeCall(codegen); __ b(GetExitLabel()); } private: DISALLOW_COPY_AND_ASSIGN(ReadBarrierMarkSlowPathARM); }; // Slow path loading `obj`'s lock word, loading a reference from // object `*(obj + offset + (index << scale_factor))` into `ref`, and // marking `ref` if `obj` is gray according to the lock word (Baker // read barrier). The field `obj.field` in the object `obj` holding // this reference does not get updated by this slow path after marking // (see LoadReferenceWithBakerReadBarrierAndUpdateFieldSlowPathARM // below for that). // // This means that after the execution of this slow path, `ref` will // always be up-to-date, but `obj.field` may not; i.e., after the // flip, `ref` will be a to-space reference, but `obj.field` will // probably still be a from-space reference (unless it gets updated by // another thread, or if another thread installed another object // reference (different from `ref`) in `obj.field`). // // Argument `entrypoint` must be a register location holding the read // barrier marking runtime entry point to be invoked. class LoadReferenceWithBakerReadBarrierSlowPathARM : public ReadBarrierMarkSlowPathBaseARM { public: LoadReferenceWithBakerReadBarrierSlowPathARM(HInstruction* instruction, Location ref, Register obj, uint32_t offset, Location index, ScaleFactor scale_factor, bool needs_null_check, Register temp, Location entrypoint) : ReadBarrierMarkSlowPathBaseARM(instruction, ref, entrypoint), obj_(obj), offset_(offset), index_(index), scale_factor_(scale_factor), needs_null_check_(needs_null_check), temp_(temp) { DCHECK(kEmitCompilerReadBarrier); DCHECK(kUseBakerReadBarrier); } const char* GetDescription() const OVERRIDE { return "LoadReferenceWithBakerReadBarrierSlowPathARM"; } void EmitNativeCode(CodeGenerator* codegen) OVERRIDE { LocationSummary* locations = instruction_->GetLocations(); Register ref_reg = ref_.AsRegister
(); DCHECK(locations->CanCall()); DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(ref_reg)) << ref_reg; DCHECK_NE(ref_reg, temp_); DCHECK(instruction_->IsInstanceFieldGet() || instruction_->IsStaticFieldGet() || instruction_->IsArrayGet() || instruction_->IsArraySet() || instruction_->IsInstanceOf() || instruction_->IsCheckCast() || (instruction_->IsInvokeVirtual() && instruction_->GetLocations()->Intrinsified()) || (instruction_->IsInvokeStaticOrDirect() && instruction_->GetLocations()->Intrinsified())) << "Unexpected instruction in read barrier marking slow path: " << instruction_->DebugName(); // The read barrier instrumentation of object ArrayGet // instructions does not support the HIntermediateAddress // instruction. DCHECK(!(instruction_->IsArrayGet() && instruction_->AsArrayGet()->GetArray()->IsIntermediateAddress())); __ Bind(GetEntryLabel()); // When using MaybeGenerateReadBarrierSlow, the read barrier call is // inserted after the original load. However, in fast path based // Baker's read barriers, we need to perform the load of // mirror::Object::monitor_ *before* the original reference load. // This load-load ordering is required by the read barrier. // The fast path/slow path (for Baker's algorithm) should look like: // // uint32_t rb_state = Lockword(obj->monitor_).ReadBarrierState(); // lfence; // Load fence or artificial data dependency to prevent load-load reordering // HeapReference
ref = *src; // Original reference load. // bool is_gray = (rb_state == ReadBarrier::GrayState()); // if (is_gray) { // ref = entrypoint(ref); // ref = ReadBarrier::Mark(ref); // Runtime entry point call. // } // // Note: the original implementation in ReadBarrier::Barrier is // slightly more complex as it performs additional checks that we do // not do here for performance reasons. // /* int32_t */ monitor = obj->monitor_ uint32_t monitor_offset = mirror::Object::MonitorOffset().Int32Value(); __ LoadFromOffset(kLoadWord, temp_, obj_, monitor_offset); if (needs_null_check_) { codegen->MaybeRecordImplicitNullCheck(instruction_); } // /* LockWord */ lock_word = LockWord(monitor) static_assert(sizeof(LockWord) == sizeof(int32_t), "art::LockWord and int32_t have different sizes."); // Introduce a dependency on the lock_word including the rb_state, // which shall prevent load-load reordering without using // a memory barrier (which would be more expensive). // `obj` is unchanged by this operation, but its value now depends // on `temp`. __ add(obj_, obj_, ShifterOperand(temp_, LSR, 32)); // The actual reference load. // A possible implicit null check has already been handled above. CodeGeneratorARM* arm_codegen = down_cast
(codegen); arm_codegen->GenerateRawReferenceLoad( instruction_, ref_, obj_, offset_, index_, scale_factor_, /* needs_null_check */ false); // Mark the object `ref` when `obj` is gray. // // if (rb_state == ReadBarrier::GrayState()) // ref = ReadBarrier::Mark(ref); // // Given the numeric representation, it's enough to check the low bit of the // rb_state. We do that by shifting the bit out of the lock word with LSRS // which can be a 16-bit instruction unlike the TST immediate. static_assert(ReadBarrier::WhiteState() == 0, "Expecting white to have value 0"); static_assert(ReadBarrier::GrayState() == 1, "Expecting gray to have value 1"); __ Lsrs(temp_, temp_, LockWord::kReadBarrierStateShift + 1); __ b(GetExitLabel(), CC); // Carry flag is the last bit shifted out by LSRS. GenerateReadBarrierMarkRuntimeCall(codegen); __ b(GetExitLabel()); } private: // The register containing the object holding the marked object reference field. Register obj_; // The offset, index and scale factor to access the reference in `obj_`. uint32_t offset_; Location index_; ScaleFactor scale_factor_; // Is a null check required? bool needs_null_check_; // A temporary register used to hold the lock word of `obj_`. Register temp_; DISALLOW_COPY_AND_ASSIGN(LoadReferenceWithBakerReadBarrierSlowPathARM); }; // Slow path loading `obj`'s lock word, loading a reference from // object `*(obj + offset + (index << scale_factor))` into `ref`, and // marking `ref` if `obj` is gray according to the lock word (Baker // read barrier). If needed, this slow path also atomically updates // the field `obj.field` in the object `obj` holding this reference // after marking (contrary to // LoadReferenceWithBakerReadBarrierSlowPathARM above, which never // tries to update `obj.field`). // // This means that after the execution of this slow path, both `ref` // and `obj.field` will be up-to-date; i.e., after the flip, both will // hold the same to-space reference (unless another thread installed // another object reference (different from `ref`) in `obj.field`). // // Argument `entrypoint` must be a register location holding the read // barrier marking runtime entry point to be invoked. class LoadReferenceWithBakerReadBarrierAndUpdateFieldSlowPathARM : public ReadBarrierMarkSlowPathBaseARM { public: LoadReferenceWithBakerReadBarrierAndUpdateFieldSlowPathARM(HInstruction* instruction, Location ref, Register obj, uint32_t offset, Location index, ScaleFactor scale_factor, bool needs_null_check, Register temp1, Register temp2, Location entrypoint) : ReadBarrierMarkSlowPathBaseARM(instruction, ref, entrypoint), obj_(obj), offset_(offset), index_(index), scale_factor_(scale_factor), needs_null_check_(needs_null_check), temp1_(temp1), temp2_(temp2) { DCHECK(kEmitCompilerReadBarrier); DCHECK(kUseBakerReadBarrier); } const char* GetDescription() const OVERRIDE { return "LoadReferenceWithBakerReadBarrierAndUpdateFieldSlowPathARM"; } void EmitNativeCode(CodeGenerator* codegen) OVERRIDE { LocationSummary* locations = instruction_->GetLocations(); Register ref_reg = ref_.AsRegister
(); DCHECK(locations->CanCall()); DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(ref_reg)) << ref_reg; DCHECK_NE(ref_reg, temp1_); // This slow path is only used by the UnsafeCASObject intrinsic at the moment. DCHECK((instruction_->IsInvokeVirtual() && instruction_->GetLocations()->Intrinsified())) << "Unexpected instruction in read barrier marking and field updating slow path: " << instruction_->DebugName(); DCHECK(instruction_->GetLocations()->Intrinsified()); DCHECK_EQ(instruction_->AsInvoke()->GetIntrinsic(), Intrinsics::kUnsafeCASObject); DCHECK_EQ(offset_, 0u); DCHECK_EQ(scale_factor_, ScaleFactor::TIMES_1); // The location of the offset of the marked reference field within `obj_`. Location field_offset = index_; DCHECK(field_offset.IsRegisterPair()) << field_offset; __ Bind(GetEntryLabel()); // /* int32_t */ monitor = obj->monitor_ uint32_t monitor_offset = mirror::Object::MonitorOffset().Int32Value(); __ LoadFromOffset(kLoadWord, temp1_, obj_, monitor_offset); if (needs_null_check_) { codegen->MaybeRecordImplicitNullCheck(instruction_); } // /* LockWord */ lock_word = LockWord(monitor) static_assert(sizeof(LockWord) == sizeof(int32_t), "art::LockWord and int32_t have different sizes."); // Introduce a dependency on the lock_word including the rb_state, // which shall prevent load-load reordering without using // a memory barrier (which would be more expensive). // `obj` is unchanged by this operation, but its value now depends // on `temp1`. __ add(obj_, obj_, ShifterOperand(temp1_, LSR, 32)); // The actual reference load. // A possible implicit null check has already been handled above. CodeGeneratorARM* arm_codegen = down_cast
(codegen); arm_codegen->GenerateRawReferenceLoad( instruction_, ref_, obj_, offset_, index_, scale_factor_, /* needs_null_check */ false); // Mark the object `ref` when `obj` is gray. // // if (rb_state == ReadBarrier::GrayState()) // ref = ReadBarrier::Mark(ref); // // Given the numeric representation, it's enough to check the low bit of the // rb_state. We do that by shifting the bit out of the lock word with LSRS // which can be a 16-bit instruction unlike the TST immediate. static_assert(ReadBarrier::WhiteState() == 0, "Expecting white to have value 0"); static_assert(ReadBarrier::GrayState() == 1, "Expecting gray to have value 1"); __ Lsrs(temp1_, temp1_, LockWord::kReadBarrierStateShift + 1); __ b(GetExitLabel(), CC); // Carry flag is the last bit shifted out by LSRS. // Save the old value of the reference before marking it. // Note that we cannot use IP to save the old reference, as IP is // used internally by the ReadBarrierMarkRegX entry point, and we // need the old reference after the call to that entry point. DCHECK_NE(temp1_, IP); __ Mov(temp1_, ref_reg); GenerateReadBarrierMarkRuntimeCall(codegen); // If the new reference is different from the old reference, // update the field in the holder (`*(obj_ + field_offset)`). // // Note that this field could also hold a different object, if // another thread had concurrently changed it. In that case, the // LDREX/SUBS/ITNE sequence of instructions in the compare-and-set // (CAS) operation below would abort the CAS, leaving the field // as-is. __ cmp(temp1_, ShifterOperand(ref_reg)); __ b(GetExitLabel(), EQ); // Update the the holder's field atomically. This may fail if // mutator updates before us, but it's OK. This is achieved // using a strong compare-and-set (CAS) operation with relaxed // memory synchronization ordering, where the expected value is // the old reference and the desired value is the new reference. // Convenience aliases. Register base = obj_; // The UnsafeCASObject intrinsic uses a register pair as field // offset ("long offset"), of which only the low part contains // data. Register offset = field_offset.AsRegisterPairLow
(); Register expected = temp1_; Register value = ref_reg; Register tmp_ptr = IP; // Pointer to actual memory. Register tmp = temp2_; // Value in memory. __ add(tmp_ptr, base, ShifterOperand(offset)); if (kPoisonHeapReferences) { __ PoisonHeapReference(expected); if (value == expected) { // Do not poison `value`, as it is the same register as // `expected`, which has just been poisoned. } else { __ PoisonHeapReference(value); } } // do { // tmp = [r_ptr] - expected; // } while (tmp == 0 && failure([r_ptr] <- r_new_value)); Label loop_head, exit_loop; __ Bind(&loop_head); __ ldrex(tmp, tmp_ptr); __ subs(tmp, tmp, ShifterOperand(expected)); __ it(NE); __ clrex(NE); __ b(&exit_loop, NE); __ strex(tmp, value, tmp_ptr); __ cmp(tmp, ShifterOperand(1)); __ b(&loop_head, EQ); __ Bind(&exit_loop); if (kPoisonHeapReferences) { __ UnpoisonHeapReference(expected); if (value == expected) { // Do not unpoison `value`, as it is the same register as // `expected`, which has just been unpoisoned. } else { __ UnpoisonHeapReference(value); } } __ b(GetExitLabel()); } private: // The register containing the object holding the marked object reference field. const Register obj_; // The offset, index and scale factor to access the reference in `obj_`. uint32_t offset_; Location index_; ScaleFactor scale_factor_; // Is a null check required? bool needs_null_check_; // A temporary register used to hold the lock word of `obj_`; and // also to hold the original reference value, when the reference is // marked. const Register temp1_; // A temporary register used in the implementation of the CAS, to // update the object's reference field. const Register temp2_; DISALLOW_COPY_AND_ASSIGN(LoadReferenceWithBakerReadBarrierAndUpdateFieldSlowPathARM); }; // Slow path generating a read barrier for a heap reference. class ReadBarrierForHeapReferenceSlowPathARM : public SlowPathCodeARM { public: ReadBarrierForHeapReferenceSlowPathARM(HInstruction* instruction, Location out, Location ref, Location obj, uint32_t offset, Location index) : SlowPathCodeARM(instruction), out_(out), ref_(ref), obj_(obj), offset_(offset), index_(index) { DCHECK(kEmitCompilerReadBarrier); // If `obj` is equal to `out` or `ref`, it means the initial object // has been overwritten by (or after) the heap object reference load // to be instrumented, e.g.: // // __ LoadFromOffset(kLoadWord, out, out, offset); // codegen_->GenerateReadBarrierSlow(instruction, out_loc, out_loc, out_loc, offset); // // In that case, we have lost the information about the original // object, and the emitted read barrier cannot work properly. DCHECK(!obj.Equals(out)) << "obj=" << obj << " out=" << out; DCHECK(!obj.Equals(ref)) << "obj=" << obj << " ref=" << ref; } void EmitNativeCode(CodeGenerator* codegen) OVERRIDE { CodeGeneratorARM* arm_codegen = down_cast
(codegen); LocationSummary* locations = instruction_->GetLocations(); Register reg_out = out_.AsRegister
(); DCHECK(locations->CanCall()); DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(reg_out)); DCHECK(instruction_->IsInstanceFieldGet() || instruction_->IsStaticFieldGet() || instruction_->IsArrayGet() || instruction_->IsInstanceOf() || instruction_->IsCheckCast() || (instruction_->IsInvokeVirtual() && instruction_->GetLocations()->Intrinsified())) << "Unexpected instruction in read barrier for heap reference slow path: " << instruction_->DebugName(); // The read barrier instrumentation of object ArrayGet // instructions does not support the HIntermediateAddress // instruction. DCHECK(!(instruction_->IsArrayGet() && instruction_->AsArrayGet()->GetArray()->IsIntermediateAddress())); __ Bind(GetEntryLabel()); SaveLiveRegisters(codegen, locations); // We may have to change the index's value, but as `index_` is a // constant member (like other "inputs" of this slow path), // introduce a copy of it, `index`. Location index = index_; if (index_.IsValid()) { // Handle `index_` for HArrayGet and UnsafeGetObject/UnsafeGetObjectVolatile intrinsics. if (instruction_->IsArrayGet()) { // Compute the actual memory offset and store it in `index`. Register index_reg = index_.AsRegister
(); DCHECK(locations->GetLiveRegisters()->ContainsCoreRegister(index_reg)); if (codegen->IsCoreCalleeSaveRegister(index_reg)) { // We are about to change the value of `index_reg` (see the // calls to art::arm::Thumb2Assembler::Lsl and // art::arm::Thumb2Assembler::AddConstant below), but it has // not been saved by the previous call to // art::SlowPathCode::SaveLiveRegisters, as it is a // callee-save register -- // art::SlowPathCode::SaveLiveRegisters does not consider // callee-save registers, as it has been designed with the // assumption that callee-save registers are supposed to be // handled by the called function. So, as a callee-save // register, `index_reg` _would_ eventually be saved onto // the stack, but it would be too late: we would have // changed its value earlier. Therefore, we manually save // it here into another freely available register, // `free_reg`, chosen of course among the caller-save // registers (as a callee-save `free_reg` register would // exhibit the same problem). // // Note we could have requested a temporary register from // the register allocator instead; but we prefer not to, as // this is a slow path, and we know we can find a // caller-save register that is available. Register free_reg = FindAvailableCallerSaveRegister(codegen); __ Mov(free_reg, index_reg); index_reg = free_reg; index = Location::RegisterLocation(index_reg); } else { // The initial register stored in `index_` has already been // saved in the call to art::SlowPathCode::SaveLiveRegisters // (as it is not a callee-save register), so we can freely // use it. } // Shifting the index value contained in `index_reg` by the scale // factor (2) cannot overflow in practice, as the runtime is // unable to allocate object arrays with a size larger than // 2^26 - 1 (that is, 2^28 - 4 bytes). __ Lsl(index_reg, index_reg, TIMES_4); static_assert( sizeof(mirror::HeapReference
) == sizeof(int32_t), "art::mirror::HeapReference
and int32_t have different sizes."); __ AddConstant(index_reg, index_reg, offset_); } else { // In the case of the UnsafeGetObject/UnsafeGetObjectVolatile // intrinsics, `index_` is not shifted by a scale factor of 2 // (as in the case of ArrayGet), as it is actually an offset // to an object field within an object. DCHECK(instruction_->IsInvoke()) << instruction_->DebugName(); DCHECK(instruction_->GetLocations()->Intrinsified()); DCHECK((instruction_->AsInvoke()->GetIntrinsic() == Intrinsics::kUnsafeGetObject) || (instruction_->AsInvoke()->GetIntrinsic() == Intrinsics::kUnsafeGetObjectVolatile)) << instruction_->AsInvoke()->GetIntrinsic(); DCHECK_EQ(offset_, 0U); DCHECK(index_.IsRegisterPair()); // UnsafeGet's offset location is a register pair, the low // part contains the correct offset. index = index_.ToLow(); } } // We're moving two or three locations to locations that could // overlap, so we need a parallel move resolver. InvokeRuntimeCallingConvention calling_convention; HParallelMove parallel_move(codegen->GetGraph()->GetArena()); parallel_move.AddMove(ref_, Location::RegisterLocation(calling_convention.GetRegisterAt(0)), Primitive::kPrimNot, nullptr); parallel_move.AddMove(obj_, Location::RegisterLocation(calling_convention.GetRegisterAt(1)), Primitive::kPrimNot, nullptr); if (index.IsValid()) { parallel_move.AddMove(index, Location::RegisterLocation(calling_convention.GetRegisterAt(2)), Primitive::kPrimInt, nullptr); codegen->GetMoveResolver()->EmitNativeCode(¶llel_move); } else { codegen->GetMoveResolver()->EmitNativeCode(¶llel_move); __ LoadImmediate(calling_convention.GetRegisterAt(2), offset_); } arm_codegen->InvokeRuntime(kQuickReadBarrierSlow, instruction_, instruction_->GetDexPc(), this); CheckEntrypointTypes< kQuickReadBarrierSlow, mirror::Object*, mirror::Object*, mirror::Object*, uint32_t>(); arm_codegen->Move32(out_, Location::RegisterLocation(R0)); RestoreLiveRegisters(codegen, locations); __ b(GetExitLabel()); } const char* GetDescription() const OVERRIDE { return "ReadBarrierForHeapReferenceSlowPathARM"; } private: Register FindAvailableCallerSaveRegister(CodeGenerator* codegen) { size_t ref = static_cast
(ref_.AsRegister
()); size_t obj = static_cast
(obj_.AsRegister
()); for (size_t i = 0, e = codegen->GetNumberOfCoreRegisters(); i < e; ++i) { if (i != ref && i != obj && !codegen->IsCoreCalleeSaveRegister(i)) { return static_cast
(i); } } // We shall never fail to find a free caller-save register, as // there are more than two core caller-save registers on ARM // (meaning it is possible to find one which is different from // `ref` and `obj`). DCHECK_GT(codegen->GetNumberOfCoreCallerSaveRegisters(), 2u); LOG(FATAL) << "Could not find a free caller-save register"; UNREACHABLE(); } const Location out_; const Location ref_; const Location obj_; const uint32_t offset_; // An additional location containing an index to an array. // Only used for HArrayGet and the UnsafeGetObject & // UnsafeGetObjectVolatile intrinsics. const Location index_; DISALLOW_COPY_AND_ASSIGN(ReadBarrierForHeapReferenceSlowPathARM); }; // Slow path generating a read barrier for a GC root. class ReadBarrierForRootSlowPathARM : public SlowPathCodeARM { public: ReadBarrierForRootSlowPathARM(HInstruction* instruction, Location out, Location root) : SlowPathCodeARM(instruction), out_(out), root_(root) { DCHECK(kEmitCompilerReadBarrier); } void EmitNativeCode(CodeGenerator* codegen) OVERRIDE { LocationSummary* locations = instruction_->GetLocations(); Register reg_out = out_.AsRegister
(); DCHECK(locations->CanCall()); DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(reg_out)); DCHECK(instruction_->IsLoadClass() || instruction_->IsLoadString()) << "Unexpected instruction in read barrier for GC root slow path: " << instruction_->DebugName(); __ Bind(GetEntryLabel()); SaveLiveRegisters(codegen, locations); InvokeRuntimeCallingConvention calling_convention; CodeGeneratorARM* arm_codegen = down_cast
(codegen); arm_codegen->Move32(Location::RegisterLocation(calling_convention.GetRegisterAt(0)), root_); arm_codegen->InvokeRuntime(kQuickReadBarrierForRootSlow, instruction_, instruction_->GetDexPc(), this); CheckEntrypointTypes
*>(); arm_codegen->Move32(out_, Location::RegisterLocation(R0)); RestoreLiveRegisters(codegen, locations); __ b(GetExitLabel()); } const char* GetDescription() const OVERRIDE { return "ReadBarrierForRootSlowPathARM"; } private: const Location out_; const Location root_; DISALLOW_COPY_AND_ASSIGN(ReadBarrierForRootSlowPathARM); }; inline Condition ARMCondition(IfCondition cond) { switch (cond) { case kCondEQ: return EQ; case kCondNE: return NE; case kCondLT: return LT; case kCondLE: return LE; case kCondGT: return GT; case kCondGE: return GE; case kCondB: return LO; case kCondBE: return LS; case kCondA: return HI; case kCondAE: return HS; } LOG(FATAL) << "Unreachable"; UNREACHABLE(); } // Maps signed condition to unsigned condition. inline Condition ARMUnsignedCondition(IfCondition cond) { switch (cond) { case kCondEQ: return EQ; case kCondNE: return NE; // Signed to unsigned. case kCondLT: return LO; case kCondLE: return LS; case kCondGT: return HI; case kCondGE: return HS; // Unsigned remain unchanged. case kCondB: return LO; case kCondBE: return LS; case kCondA: return HI; case kCondAE: return HS; } LOG(FATAL) << "Unreachable"; UNREACHABLE(); } inline Condition ARMFPCondition(IfCondition cond, bool gt_bias) { // The ARM condition codes can express all the necessary branches, see the // "Meaning (floating-point)" column in the table A8-1 of the ARMv7 reference manual. // There is no dex instruction or HIR that would need the missing conditions // "equal or unordered" or "not equal". switch (cond) { case kCondEQ: return EQ; case kCondNE: return NE /* unordered */; case kCondLT: return gt_bias ? CC : LT /* unordered */; case kCondLE: return gt_bias ? LS : LE /* unordered */; case kCondGT: return gt_bias ? HI /* unordered */ : GT; case kCondGE: return gt_bias ? CS /* unordered */ : GE; default: LOG(FATAL) << "UNREACHABLE"; UNREACHABLE(); } } inline Shift ShiftFromOpKind(HDataProcWithShifterOp::OpKind op_kind) { switch (op_kind) { case HDataProcWithShifterOp::kASR: return ASR; case HDataProcWithShifterOp::kLSL: return LSL; case HDataProcWithShifterOp::kLSR: return LSR; default: LOG(FATAL) << "Unexpected op kind " << op_kind; UNREACHABLE(); } } static void GenerateDataProcInstruction(HInstruction::InstructionKind kind, Register out, Register first, const ShifterOperand& second, CodeGeneratorARM* codegen) { if (second.IsImmediate() && second.GetImmediate() == 0) { const ShifterOperand in = kind == HInstruction::kAnd ? ShifterOperand(0) : ShifterOperand(first); __ mov(out, in); } else { switch (kind) { case HInstruction::kAdd: __ add(out, first, second); break; case HInstruction::kAnd: __ and_(out, first, second); break; case HInstruction::kOr: __ orr(out, first, second); break; case HInstruction::kSub: __ sub(out, first, second); break; case HInstruction::kXor: __ eor(out, first, second); break; default: LOG(FATAL) << "Unexpected instruction kind: " << kind; UNREACHABLE(); } } } static void GenerateDataProc(HInstruction::InstructionKind kind, const Location& out, const Location& first, const ShifterOperand& second_lo, const ShifterOperand& second_hi, CodeGeneratorARM* codegen) { const Register first_hi = first.AsRegisterPairHigh
(); const Register first_lo = first.AsRegisterPairLow
(); const Register out_hi = out.AsRegisterPairHigh
(); const Register out_lo = out.AsRegisterPairLow
(); if (kind == HInstruction::kAdd) { __ adds(out_lo, first_lo, second_lo); __ adc(out_hi, first_hi, second_hi); } else if (kind == HInstruction::kSub) { __ subs(out_lo, first_lo, second_lo); __ sbc(out_hi, first_hi, second_hi); } else { GenerateDataProcInstruction(kind, out_lo, first_lo, second_lo, codegen); GenerateDataProcInstruction(kind, out_hi, first_hi, second_hi, codegen); } } static ShifterOperand GetShifterOperand(Register rm, Shift shift, uint32_t shift_imm) { return shift_imm == 0 ? ShifterOperand(rm) : ShifterOperand(rm, shift, shift_imm); } static void GenerateLongDataProc(HDataProcWithShifterOp* instruction, CodeGeneratorARM* codegen) { DCHECK_EQ(instruction->GetType(), Primitive::kPrimLong); DCHECK(HDataProcWithShifterOp::IsShiftOp(instruction->GetOpKind())); const LocationSummary* const locations = instruction->GetLocations(); const uint32_t shift_value = instruction->GetShiftAmount(); const HInstruction::InstructionKind kind = instruction->GetInstrKind(); const Location first = locations->InAt(0); const Location second = locations->InAt(1); const Location out = locations->Out(); const Register first_hi = first.AsRegisterPairHigh
(); const Register first_lo = first.AsRegisterPairLow
(); const Register out_hi = out.AsRegisterPairHigh
(); const Register out_lo = out.AsRegisterPairLow
(); const Register second_hi = second.AsRegisterPairHigh
(); const Register second_lo = second.AsRegisterPairLow
(); const Shift shift = ShiftFromOpKind(instruction->GetOpKind()); if (shift_value >= 32) { if (shift == LSL) { GenerateDataProcInstruction(kind, out_hi, first_hi, ShifterOperand(second_lo, LSL, shift_value - 32), codegen); GenerateDataProcInstruction(kind, out_lo, first_lo, ShifterOperand(0), codegen); } else if (shift == ASR) { GenerateDataProc(kind, out, first, GetShifterOperand(second_hi, ASR, shift_value - 32), ShifterOperand(second_hi, ASR, 31), codegen); } else { DCHECK_EQ(shift, LSR); GenerateDataProc(kind, out, first, GetShifterOperand(second_hi, LSR, shift_value - 32), ShifterOperand(0), codegen); } } else { DCHECK_GT(shift_value, 1U); DCHECK_LT(shift_value, 32U); if (shift == LSL) { // We are not doing this for HInstruction::kAdd because the output will require // Location::kOutputOverlap; not applicable to other cases. if (kind == HInstruction::kOr || kind == HInstruction::kXor) { GenerateDataProcInstruction(kind, out_hi, first_hi, ShifterOperand(second_hi, LSL, shift_value), codegen); GenerateDataProcInstruction(kind, out_hi, out_hi, ShifterOperand(second_lo, LSR, 32 - shift_value), codegen); GenerateDataProcInstruction(kind, out_lo, first_lo, ShifterOperand(second_lo, LSL, shift_value), codegen); } else { __ Lsl(IP, second_hi, shift_value); __ orr(IP, IP, ShifterOperand(second_lo, LSR, 32 - shift_value)); GenerateDataProc(kind, out, first, ShifterOperand(second_lo, LSL, shift_value), ShifterOperand(IP), codegen); } } else { DCHECK(shift == ASR || shift == LSR); // We are not doing this for HInstruction::kAdd because the output will require // Location::kOutputOverlap; not applicable to other cases. if (kind == HInstruction::kOr || kind == HInstruction::kXor) { GenerateDataProcInstruction(kind, out_lo, first_lo, ShifterOperand(second_lo, LSR, shift_value), codegen); GenerateDataProcInstruction(kind, out_lo, out_lo, ShifterOperand(second_hi, LSL, 32 - shift_value), codegen); GenerateDataProcInstruction(kind, out_hi, first_hi, ShifterOperand(second_hi, shift, shift_value), codegen); } else { __ Lsr(IP, second_lo, shift_value); __ orr(IP, IP, ShifterOperand(second_hi, LSL, 32 - shift_value)); GenerateDataProc(kind, out, first, ShifterOperand(IP), ShifterOperand(second_hi, shift, shift_value), codegen); } } } } static void GenerateVcmp(HInstruction* instruction, CodeGeneratorARM* codegen) { Primitive::Type type = instruction->InputAt(0)->GetType(); Location lhs_loc = instruction->GetLocations()->InAt(0); Location rhs_loc = instruction->GetLocations()->InAt(1); if (rhs_loc.IsConstant()) { // 0.0 is the only immediate that can be encoded directly in // a VCMP instruction. // // Both the JLS (section 15.20.1) and the JVMS (section 6.5) // specify that in a floating-point comparison, positive zero // and negative zero are considered equal, so we can use the // literal 0.0 for both cases here. // // Note however that some methods (Float.equal, Float.compare, // Float.compareTo, Double.equal, Double.compare, // Double.compareTo, Math.max, Math.min, StrictMath.max, // StrictMath.min) consider 0.0 to be (strictly) greater than // -0.0. So if we ever translate calls to these methods into a // HCompare instruction, we must handle the -0.0 case with // care here. DCHECK(rhs_loc.GetConstant()->IsArithmeticZero()); if (type == Primitive::kPrimFloat) { __ vcmpsz(lhs_loc.AsFpuRegister
()); } else { DCHECK_EQ(type, Primitive::kPrimDouble); __ vcmpdz(FromLowSToD(lhs_loc.AsFpuRegisterPairLow
())); } } else { if (type == Primitive::kPrimFloat) { __ vcmps(lhs_loc.AsFpuRegister
(), rhs_loc.AsFpuRegister
()); } else { DCHECK_EQ(type, Primitive::kPrimDouble); __ vcmpd(FromLowSToD(lhs_loc.AsFpuRegisterPairLow
()), FromLowSToD(rhs_loc.AsFpuRegisterPairLow
())); } } } static std::pair
GenerateLongTestConstant(HCondition* condition, bool invert, CodeGeneratorARM* codegen) { DCHECK_EQ(condition->GetLeft()->GetType(), Primitive::kPrimLong); const LocationSummary* const locations = condition->GetLocations(); IfCondition cond = condition->GetCondition(); IfCondition opposite = condition->GetOppositeCondition(); if (invert) { std::swap(cond, opposite); } std::pair
ret; const Location left = locations->InAt(0); const Location right = locations->InAt(1); DCHECK(right.IsConstant()); const Register left_high = left.AsRegisterPairHigh
(); const Register left_low = left.AsRegisterPairLow
(); int64_t value = right.GetConstant()->AsLongConstant()->GetValue(); switch (cond) { case kCondEQ: case kCondNE: case kCondB: case kCondBE: case kCondA: case kCondAE: __ CmpConstant(left_high, High32Bits(value)); __ it(EQ); __ cmp(left_low, ShifterOperand(Low32Bits(value)), EQ); ret = std::make_pair(ARMUnsignedCondition(cond), ARMUnsignedCondition(opposite)); break; case kCondLE: case kCondGT: // Trivially true or false. if (value == std::numeric_limits
::max()) { __ cmp(left_low, ShifterOperand(left_low)); ret = cond == kCondLE ? std::make_pair(EQ, NE) : std::make_pair(NE, EQ); break; } if (cond == kCondLE) { DCHECK_EQ(opposite, kCondGT); cond = kCondLT; opposite = kCondGE; } else { DCHECK_EQ(cond, kCondGT); DCHECK_EQ(opposite, kCondLE); cond = kCondGE; opposite = kCondLT; } value++; FALLTHROUGH_INTENDED; case kCondGE: case kCondLT: __ CmpConstant(left_low, Low32Bits(value)); __ sbcs(IP, left_high, ShifterOperand(High32Bits(value))); ret = std::make_pair(ARMCondition(cond), ARMCondition(opposite)); break; default: LOG(FATAL) << "Unreachable"; UNREACHABLE(); } return ret; } static std::pair
GenerateLongTest(HCondition* condition, bool invert, CodeGeneratorARM* codegen) { DCHECK_EQ(condition->GetLeft()->GetType(), Primitive::kPrimLong); const LocationSummary* const locations = condition->GetLocations(); IfCondition cond = condition->GetCondition(); IfCondition opposite = condition->GetOppositeCondition(); if (invert) { std::swap(cond, opposite); } std::pair
ret; Location left = locations->InAt(0); Location right = locations->InAt(1); DCHECK(right.IsRegisterPair()); switch (cond) { case kCondEQ: case kCondNE: case kCondB: case kCondBE: case kCondA: case kCondAE: __ cmp(left.AsRegisterPairHigh
(), ShifterOperand(right.AsRegisterPairHigh
())); __ it(EQ); __ cmp(left.AsRegisterPairLow
(), ShifterOperand(right.AsRegisterPairLow
()), EQ); ret = std::make_pair(ARMUnsignedCondition(cond), ARMUnsignedCondition(opposite)); break; case kCondLE: case kCondGT: if (cond == kCondLE) { DCHECK_EQ(opposite, kCondGT); cond = kCondGE; opposite = kCondLT; } else { DCHECK_EQ(cond, kCondGT); DCHECK_EQ(opposite, kCondLE); cond = kCondLT; opposite = kCondGE; } std::swap(left, right); FALLTHROUGH_INTENDED; case kCondGE: case kCondLT: __ cmp(left.AsRegisterPairLow
(), ShifterOperand(right.AsRegisterPairLow
())); __ sbcs(IP, left.AsRegisterPairHigh
(), ShifterOperand(right.AsRegisterPairHigh
())); ret = std::make_pair(ARMCondition(cond), ARMCondition(opposite)); break; default: LOG(FATAL) << "Unreachable"; UNREACHABLE(); } return ret; } static std::pair
GenerateTest(HCondition* condition, bool invert, CodeGeneratorARM* codegen) { const LocationSummary* const locations = condition->GetLocations(); const Primitive::Type type = condition->GetLeft()->GetType(); IfCondition cond = condition->GetCondition(); IfCondition opposite = condition->GetOppositeCondition(); std::pair
ret; const Location right = locations->InAt(1); if (invert) { std::swap(cond, opposite); } if (type == Primitive::kPrimLong) { ret = locations->InAt(1).IsConstant() ? GenerateLongTestConstant(condition, invert, codegen) : GenerateLongTest(condition, invert, codegen); } else if (Primitive::IsFloatingPointType(type)) { GenerateVcmp(condition, codegen); __ vmstat(); ret = std::make_pair(ARMFPCondition(cond, condition->IsGtBias()), ARMFPCondition(opposite, condition->IsGtBias())); } else { DCHECK(Primitive::IsIntegralType(type) || type == Primitive::kPrimNot) << type; const Register left = locations->InAt(0).AsRegister
(); if (right.IsRegister()) { __ cmp(left, ShifterOperand(right.AsRegister
())); } else { DCHECK(right.IsConstant()); __ CmpConstant(left, CodeGenerator::GetInt32ValueOf(right.GetConstant())); } ret = std::make_pair(ARMCondition(cond), ARMCondition(opposite)); } return ret; } static bool CanGenerateTest(HCondition* condition, ArmAssembler* assembler) { if (condition->GetLeft()->GetType() == Primitive::kPrimLong) { const LocationSummary* const locations = condition->GetLocations(); const IfCondition c = condition->GetCondition(); if (locations->InAt(1).IsConstant()) { const int64_t value = locations->InAt(1).GetConstant()->AsLongConstant()->GetValue(); ShifterOperand so; if (c < kCondLT || c > kCondGE) { // Since IT blocks longer than a 16-bit instruction are deprecated by ARMv8, // we check that the least significant half of the first input to be compared // is in a low register (the other half is read outside an IT block), and // the constant fits in an 8-bit unsigned integer, so that a 16-bit CMP // encoding can be used. if (!ArmAssembler::IsLowRegister(locations->InAt(0).AsRegisterPairLow
()) || !IsUint<8>(Low32Bits(value))) { return false; } } else if (c == kCondLE || c == kCondGT) { if (value < std::numeric_limits
::max() && !assembler->ShifterOperandCanHold(kNoRegister, kNoRegister, SBC, High32Bits(value + 1), kCcSet, &so)) { return false; } } else if (!assembler->ShifterOperandCanHold(kNoRegister, kNoRegister, SBC, High32Bits(value), kCcSet, &so)) { return false; } } } return true; } static bool CanEncodeConstantAs8BitImmediate(HConstant* constant) { const Primitive::Type type = constant->GetType(); bool ret = false; DCHECK(Primitive::IsIntegralType(type) || type == Primitive::kPrimNot) << type; if (type == Primitive::kPrimLong) { const uint64_t value = constant->AsLongConstant()->GetValueAsUint64(); ret = IsUint<8>(Low32Bits(value)) && IsUint<8>(High32Bits(value)); } else { ret = IsUint<8>(CodeGenerator::GetInt32ValueOf(constant)); } return ret; } static Location Arm8BitEncodableConstantOrRegister(HInstruction* constant) { DCHECK(!Primitive::IsFloatingPointType(constant->GetType())); if (constant->IsConstant() && CanEncodeConstantAs8BitImmediate(constant->AsConstant())) { return Location::ConstantLocation(constant->AsConstant()); } return Location::RequiresRegister(); } static bool CanGenerateConditionalMove(const Location& out, const Location& src) { // Since IT blocks longer than a 16-bit instruction are deprecated by ARMv8, // we check that we are not dealing with floating-point output (there is no // 16-bit VMOV encoding). if (!out.IsRegister() && !out.IsRegisterPair()) { return false; } // For constants, we also check that the output is in one or two low registers, // and that the constants fit in an 8-bit unsigned integer, so that a 16-bit // MOV encoding can be used. if (src.IsConstant()) { if (!CanEncodeConstantAs8BitImmediate(src.GetConstant())) { return false; } if (out.IsRegister()) { if (!ArmAssembler::IsLowRegister(out.AsRegister
())) { return false; } } else { DCHECK(out.IsRegisterPair()); if (!ArmAssembler::IsLowRegister(out.AsRegisterPairHigh
())) { return false; } } } return true; } #undef __ // NOLINT on __ macro to suppress wrong warning/fix (misc-macro-parentheses) from clang-tidy. #define __ down_cast
(GetAssembler())-> // NOLINT Label* CodeGeneratorARM::GetFinalLabel(HInstruction* instruction, Label* final_label) { DCHECK(!instruction->IsControlFlow() && !instruction->IsSuspendCheck()); DCHECK(!instruction->IsInvoke() || !instruction->GetLocations()->CanCall()); const HBasicBlock* const block = instruction->GetBlock(); const HLoopInformation* const info = block->GetLoopInformation(); HInstruction* const next = instruction->GetNext(); // Avoid a branch to a branch. if (next->IsGoto() && (info == nullptr || !info->IsBackEdge(*block) || !info->HasSuspendCheck())) { final_label = GetLabelOf(next->AsGoto()->GetSuccessor()); } return final_label; } void CodeGeneratorARM::DumpCoreRegister(std::ostream& stream, int reg) const { stream << Register(reg); } void CodeGeneratorARM::DumpFloatingPointRegister(std::ostream& stream, int reg) const { stream << SRegister(reg); } size_t CodeGeneratorARM::SaveCoreRegister(size_t stack_index, uint32_t reg_id) { __ StoreToOffset(kStoreWord, static_cast
(reg_id), SP, stack_index); return kArmWordSize; } size_t CodeGeneratorARM::RestoreCoreRegister(size_t stack_index, uint32_t reg_id) { __ LoadFromOffset(kLoadWord, static_cast
(reg_id), SP, stack_index); return kArmWordSize; } size_t CodeGeneratorARM::SaveFloatingPointRegister(size_t stack_index, uint32_t reg_id) { __ StoreSToOffset(static_cast
(reg_id), SP, stack_index); return kArmWordSize; } size_t CodeGeneratorARM::RestoreFloatingPointRegister(size_t stack_index, uint32_t reg_id) { __ LoadSFromOffset(static_cast
(reg_id), SP, stack_index); return kArmWordSize; } CodeGeneratorARM::CodeGeneratorARM(HGraph* graph, const ArmInstructionSetFeatures& isa_features, const CompilerOptions& compiler_options, OptimizingCompilerStats* stats) : CodeGenerator(graph, kNumberOfCoreRegisters, kNumberOfSRegisters, kNumberOfRegisterPairs, ComputeRegisterMask(reinterpret_cast
(kCoreCalleeSaves), arraysize(kCoreCalleeSaves)), ComputeRegisterMask(reinterpret_cast
(kFpuCalleeSaves), arraysize(kFpuCalleeSaves)), compiler_options, stats), block_labels_(nullptr), location_builder_(graph, this), instruction_visitor_(graph, this), move_resolver_(graph->GetArena(), this), assembler_(graph->GetArena()), isa_features_(isa_features), uint32_literals_(std::less
(), graph->GetArena()->Adapter(kArenaAllocCodeGenerator)), pc_relative_dex_cache_patches_(graph->GetArena()->Adapter(kArenaAllocCodeGenerator)), boot_image_string_patches_(StringReferenceValueComparator(), graph->GetArena()->Adapter(kArenaAllocCodeGenerator)), pc_relative_string_patches_(graph->GetArena()->Adapter(kArenaAllocCodeGenerator)), boot_image_type_patches_(TypeReferenceValueComparator(), graph->GetArena()->Adapter(kArenaAllocCodeGenerator)), pc_relative_type_patches_(graph->GetArena()->Adapter(kArenaAllocCodeGenerator)), type_bss_entry_patches_(graph->GetArena()->Adapter(kArenaAllocCodeGenerator)), jit_string_patches_(StringReferenceValueComparator(), graph->GetArena()->Adapter(kArenaAllocCodeGenerator)), jit_class_patches_(TypeReferenceValueComparator(), graph->GetArena()->Adapter(kArenaAllocCodeGenerator)) { // Always save the LR register to mimic Quick. AddAllocatedRegister(Location::RegisterLocation(LR)); } void CodeGeneratorARM::Finalize(CodeAllocator* allocator) { // Ensure that we fix up branches and literal loads and emit the literal pool. __ FinalizeCode(); // Adjust native pc offsets in stack maps. for (size_t i = 0, num = stack_map_stream_.GetNumberOfStackMaps(); i != num; ++i) { uint32_t old_position = stack_map_stream_.GetStackMap(i).native_pc_code_offset.Uint32Value(kThumb2); uint32_t new_position = __ GetAdjustedPosition(old_position); stack_map_stream_.SetStackMapNativePcOffset(i, new_position); } // Adjust pc offsets for the disassembly information. if (disasm_info_ != nullptr) { GeneratedCodeInterval* frame_entry_interval = disasm_info_->GetFrameEntryInterval(); frame_entry_interval->start = __ GetAdjustedPosition(frame_entry_interval->start); frame_entry_interval->end = __ GetAdjustedPosition(frame_entry_interval->end); for (auto& it : *disasm_info_->GetInstructionIntervals()) { it.second.start = __ GetAdjustedPosition(it.second.start); it.second.end = __ GetAdjustedPosition(it.second.end); } for (auto& it : *disasm_info_->GetSlowPathIntervals()) { it.code_interval.start = __ GetAdjustedPosition(it.code_interval.start); it.code_interval.end = __ GetAdjustedPosition(it.code_interval.end); } } CodeGenerator::Finalize(allocator); } void CodeGeneratorARM::SetupBlockedRegisters() const { // Stack register, LR and PC are always reserved. blocked_core_registers_[SP] = true; blocked_core_registers_[LR] = true; blocked_core_registers_[PC] = true; // Reserve thread register. blocked_core_registers_[TR] = true; // Reserve temp register. blocked_core_registers_[IP] = true; if (GetGraph()->IsDebuggable()) { // Stubs do not save callee-save floating point registers. If the graph // is debuggable, we need to deal with these registers differently. For // now, just block them. for (size_t i = 0; i < arraysize(kFpuCalleeSaves); ++i) { blocked_fpu_registers_[kFpuCalleeSaves[i]] = true; } } } InstructionCodeGeneratorARM::InstructionCodeGeneratorARM(HGraph* graph, CodeGeneratorARM* codegen) : InstructionCodeGenerator(graph, codegen), assembler_(codegen->GetAssembler()), codegen_(codegen) {} void CodeGeneratorARM::ComputeSpillMask() { core_spill_mask_ = allocated_registers_.GetCoreRegisters() & core_callee_save_mask_; DCHECK_NE(core_spill_mask_, 0u) << "At least the return address register must be saved"; // There is no easy instruction to restore just the PC on thumb2. We spill and // restore another arbitrary register. core_spill_mask_ |= (1 << kCoreAlwaysSpillRegister); fpu_spill_mask_ = allocated_registers_.GetFloatingPointRegisters() & fpu_callee_save_mask_; // We use vpush and vpop for saving and restoring floating point registers, which take // a SRegister and the number of registers to save/restore after that SRegister. We // therefore update the `fpu_spill_mask_` to also contain those registers not allocated, // but in the range. if (fpu_spill_mask_ != 0) { uint32_t least_significant_bit = LeastSignificantBit(fpu_spill_mask_); uint32_t most_significant_bit = MostSignificantBit(fpu_spill_mask_); for (uint32_t i = least_significant_bit + 1 ; i < most_significant_bit; ++i) { fpu_spill_mask_ |= (1 << i); } } } static dwarf::Reg DWARFReg(Register reg) { return dwarf::Reg::ArmCore(static_cast
(reg)); } static dwarf::Reg DWARFReg(SRegister reg) { return dwarf::Reg::ArmFp(static_cast
(reg)); } void CodeGeneratorARM::GenerateFrameEntry() { bool skip_overflow_check = IsLeafMethod() && !FrameNeedsStackCheck(GetFrameSize(), InstructionSet::kArm); DCHECK(GetCompilerOptions().GetImplicitStackOverflowChecks()); __ Bind(&frame_entry_label_); if (HasEmptyFrame()) { return; } if (!skip_overflow_check) { __ AddConstant(IP, SP, -static_cast
(GetStackOverflowReservedBytes(kArm))); __ LoadFromOffset(kLoadWord, IP, IP, 0); RecordPcInfo(nullptr, 0); } __ PushList(core_spill_mask_); __ cfi().AdjustCFAOffset(kArmWordSize * POPCOUNT(core_spill_mask_)); __ cfi().RelOffsetForMany(DWARFReg(kMethodRegisterArgument), 0, core_spill_mask_, kArmWordSize); if (fpu_spill_mask_ != 0) { SRegister start_register = SRegister(LeastSignificantBit(fpu_spill_mask_)); __ vpushs(start_register, POPCOUNT(fpu_spill_mask_)); __ cfi().AdjustCFAOffset(kArmWordSize * POPCOUNT(fpu_spill_mask_)); __ cfi().RelOffsetForMany(DWARFReg(S0), 0, fpu_spill_mask_, kArmWordSize); } if (GetGraph()->HasShouldDeoptimizeFlag()) { // Initialize should_deoptimize flag to 0. __ mov(IP, ShifterOperand(0)); __ StoreToOffset(kStoreWord, IP, SP, -kShouldDeoptimizeFlagSize); } int adjust = GetFrameSize() - FrameEntrySpillSize(); __ AddConstant(SP, -adjust); __ cfi().AdjustCFAOffset(adjust); // Save the current method if we need it. Note that we do not // do this in HCurrentMethod, as the instruction might have been removed // in the SSA graph. if (RequiresCurrentMethod()) { __ StoreToOffset(kStoreWord, kMethodRegisterArgument, SP, 0); } } void CodeGeneratorARM::GenerateFrameExit() { if (HasEmptyFrame()) { __ bx(LR); return; } __ cfi().RememberState(); int adjust = GetFrameSize() - FrameEntrySpillSize(); __ AddConstant(SP, adjust); __ cfi().AdjustCFAOffset(-adjust); if (fpu_spill_mask_ != 0) { SRegister start_register = SRegister(LeastSignificantBit(fpu_spill_mask_)); __ vpops(start_register, POPCOUNT(fpu_spill_mask_)); __ cfi().AdjustCFAOffset(-static_cast
(kArmPointerSize) * POPCOUNT(fpu_spill_mask_)); __ cfi().RestoreMany(DWARFReg(SRegister(0)), fpu_spill_mask_); } // Pop LR into PC to return. DCHECK_NE(core_spill_mask_ & (1 << LR), 0U); uint32_t pop_mask = (core_spill_mask_ & (~(1 << LR))) | 1 << PC; __ PopList(pop_mask); __ cfi().RestoreState(); __ cfi().DefCFAOffset(GetFrameSize()); } void CodeGeneratorARM::Bind(HBasicBlock* block) { Label* label = GetLabelOf(block); __ BindTrackedLabel(label); } Location InvokeDexCallingConventionVisitorARM::GetNextLocation(Primitive::Type type) { switch (type) { case Primitive::kPrimBoolean: case Primitive::kPrimByte: case Primitive::kPrimChar: case Primitive::kPrimShort: case Primitive::kPrimInt: case Primitive::kPrimNot: { uint32_t index = gp_index_++; uint32_t stack_index = stack_index_++; if (index < calling_convention.GetNumberOfRegisters()) { return Location::RegisterLocation(calling_convention.GetRegisterAt(index)); } else { return Location::StackSlot(calling_convention.GetStackOffsetOf(stack_index)); } } case Primitive::kPrimLong: { uint32_t index = gp_index_; uint32_t stack_index = stack_index_; gp_index_ += 2; stack_index_ += 2; if (index + 1 < calling_convention.GetNumberOfRegisters()) { if (calling_convention.GetRegisterAt(index) == R1) { // Skip R1, and use R2_R3 instead. gp_index_++; index++; } } if (index + 1 < calling_convention.GetNumberOfRegisters()) { DCHECK_EQ(calling_convention.GetRegisterAt(index) + 1, calling_convention.GetRegisterAt(index + 1)); return Location::RegisterPairLocation(calling_convention.GetRegisterAt(index), calling_convention.GetRegisterAt(index + 1)); } else { return Location::DoubleStackSlot(calling_convention.GetStackOffsetOf(stack_index)); } } case Primitive::kPrimFloat: { uint32_t stack_index = stack_index_++; if (float_index_ % 2 == 0) { float_index_ = std::max(double_index_, float_index_); } if (float_index_ < calling_convention.GetNumberOfFpuRegisters()) { return Location::FpuRegisterLocation(calling_convention.GetFpuRegisterAt(float_index_++)); } else { return Location::StackSlot(calling_convention.GetStackOffsetOf(stack_index)); } } case Primitive::kPrimDouble: { double_index_ = std::max(double_index_, RoundUp(float_index_, 2)); uint32_t stack_index = stack_index_; stack_index_ += 2; if (double_index_ + 1 < calling_convention.GetNumberOfFpuRegisters()) { uint32_t index = double_index_; double_index_ += 2; Location result = Location::FpuRegisterPairLocation( calling_convention.GetFpuRegisterAt(index), calling_convention.GetFpuRegisterAt(index + 1)); DCHECK(ExpectedPairLayout(result)); return result; } else { return Location::DoubleStackSlot(calling_convention.GetStackOffsetOf(stack_index)); } } case Primitive::kPrimVoid: LOG(FATAL) << "Unexpected parameter type " << type; break; } return Location::NoLocation(); } Location InvokeDexCallingConventionVisitorARM::GetReturnLocation(Primitive::Type type) const { switch (type) { case Primitive::kPrimBoolean: case Primitive::kPrimByte: case Primitive::kPrimChar: case Primitive::kPrimShort: case Primitive::kPrimInt: case Primitive::kPrimNot: { return Location::RegisterLocation(R0); } case Primitive::kPrimFloat: { return Location::FpuRegisterLocation(S0); } case Primitive::kPrimLong: { return Location::RegisterPairLocation(R0, R1); } case Primitive::kPrimDouble: { return Location::FpuRegisterPairLocation(S0, S1); } case Primitive::kPrimVoid: return Location::NoLocation(); } UNREACHABLE(); } Location InvokeDexCallingConventionVisitorARM::GetMethodLocation() const { return Location::RegisterLocation(kMethodRegisterArgument); } void CodeGeneratorARM::Move32(Location destination, Location source) { if (source.Equals(destination)) { return; } if (destination.IsRegister()) { if (source.IsRegister()) { __ Mov(destination.AsRegister
(), source.AsRegister
()); } else if (source.IsFpuRegister()) { __ vmovrs(destination.AsRegister
(), source.AsFpuRegister
()); } else { __ LoadFromOffset(kLoadWord, destination.AsRegister
(), SP, source.GetStackIndex()); } } else if (destination.IsFpuRegister()) { if (source.IsRegister()) { __ vmovsr(destination.AsFpuRegister
(), source.AsRegister
()); } else if (source.IsFpuRegister()) { __ vmovs(destination.AsFpuRegister
(), source.AsFpuRegister
()); } else { __ LoadSFromOffset(destination.AsFpuRegister
(), SP, source.GetStackIndex()); } } else { DCHECK(destination.IsStackSlot()) << destination; if (source.IsRegister()) { __ StoreToOffset(kStoreWord, source.AsRegister
(), SP, destination.GetStackIndex()); } else if (source.IsFpuRegister()) { __ StoreSToOffset(source.AsFpuRegister
(), SP, destination.GetStackIndex()); } else { DCHECK(source.IsStackSlot()) << source; __ LoadFromOffset(kLoadWord, IP, SP, source.GetStackIndex()); __ StoreToOffset(kStoreWord, IP, SP, destination.GetStackIndex()); } } } void CodeGeneratorARM::Move64(Location destination, Location source) { if (source.Equals(destination)) { return; } if (destination.IsRegisterPair()) { if (source.IsRegisterPair()) { EmitParallelMoves( Location::RegisterLocation(source.AsRegisterPairHigh
()), Location::RegisterLocation(destination.AsRegisterPairHigh
()), Primitive::kPrimInt, Location::RegisterLocation(source.AsRegisterPairLow
()), Location::RegisterLocation(destination.AsRegisterPairLow
()), Primitive::kPrimInt); } else if (source.IsFpuRegister()) { UNIMPLEMENTED(FATAL); } else if (source.IsFpuRegisterPair()) { __ vmovrrd(destination.AsRegisterPairLow
(), destination.AsRegisterPairHigh
(), FromLowSToD(source.AsFpuRegisterPairLow
())); } else { DCHECK(source.IsDoubleStackSlot()); DCHECK(ExpectedPairLayout(destination)); __ LoadFromOffset(kLoadWordPair, destination.AsRegisterPairLow
(), SP, source.GetStackIndex()); } } else if (destination.IsFpuRegisterPair()) { if (source.IsDoubleStackSlot()) { __ LoadDFromOffset(FromLowSToD(destination.AsFpuRegisterPairLow
()), SP, source.GetStackIndex()); } else if (source.IsRegisterPair()) { __ vmovdrr(FromLowSToD(destination.AsFpuRegisterPairLow
()), source.AsRegisterPairLow
(), source.AsRegisterPairHigh
()); } else { UNIMPLEMENTED(FATAL); } } else { DCHECK(destination.IsDoubleStackSlot()); if (source.IsRegisterPair()) { // No conflict possible, so just do the moves. if (source.AsRegisterPairLow
() == R1) { DCHECK_EQ(source.AsRegisterPairHigh
(), R2); __ StoreToOffset(kStoreWord, R1, SP, destination.GetStackIndex()); __ StoreToOffset(kStoreWord, R2, SP, destination.GetHighStackIndex(kArmWordSize)); } else { __ StoreToOffset(kStoreWordPair, source.AsRegisterPairLow
(), SP, destination.GetStackIndex()); } } else if (source.IsFpuRegisterPair()) { __ StoreDToOffset(FromLowSToD(source.AsFpuRegisterPairLow
()), SP, destination.GetStackIndex()); } else { DCHECK(source.IsDoubleStackSlot()); EmitParallelMoves( Location::StackSlot(source.GetStackIndex()), Location::StackSlot(destination.GetStackIndex()), Primitive::kPrimInt, Location::StackSlot(source.GetHighStackIndex(kArmWordSize)), Location::StackSlot(destination.GetHighStackIndex(kArmWordSize)), Primitive::kPrimInt); } } } void CodeGeneratorARM::MoveConstant(Location location, int32_t value) { DCHECK(location.IsRegister()); __ LoadImmediate(location.AsRegister
(), value); } void CodeGeneratorARM::MoveLocation(Location dst, Location src, Primitive::Type dst_type) { HParallelMove move(GetGraph()->GetArena()); move.AddMove(src, dst, dst_type, nullptr); GetMoveResolver()->EmitNativeCode(&move); } void CodeGeneratorARM::AddLocationAsTemp(Location location, LocationSummary* locations) { if (location.IsRegister()) { locations->AddTemp(location); } else if (location.IsRegisterPair()) { locations->AddTemp(Location::RegisterLocation(location.AsRegisterPairLow
())); locations->AddTemp(Location::RegisterLocation(location.AsRegisterPairHigh
())); } else { UNIMPLEMENTED(FATAL) << "AddLocationAsTemp not implemented for location " << location; } } void CodeGeneratorARM::InvokeRuntime(QuickEntrypointEnum entrypoint, HInstruction* instruction, uint32_t dex_pc, SlowPathCode* slow_path) { ValidateInvokeRuntime(entrypoint, instruction, slow_path); GenerateInvokeRuntime(GetThreadOffset
(entrypoint).Int32Value()); if (EntrypointRequiresStackMap(entrypoint)) { RecordPcInfo(instruction, dex_pc, slow_path); } } void CodeGeneratorARM::InvokeRuntimeWithoutRecordingPcInfo(int32_t entry_point_offset, HInstruction* instruction, SlowPathCode* slow_path) { ValidateInvokeRuntimeWithoutRecordingPcInfo(instruction, slow_path); GenerateInvokeRuntime(entry_point_offset); } void CodeGeneratorARM::GenerateInvokeRuntime(int32_t entry_point_offset) { __ LoadFromOffset(kLoadWord, LR, TR, entry_point_offset); __ blx(LR); } void InstructionCodeGeneratorARM::HandleGoto(HInstruction* got, HBasicBlock* successor) { DCHECK(!successor->IsExitBlock()); HBasicBlock* block = got->GetBlock(); HInstruction* previous = got->GetPrevious(); HLoopInformation* info = block->GetLoopInformation(); if (info != nullptr && info->IsBackEdge(*block) && info->HasSuspendCheck()) { codegen_->ClearSpillSlotsFromLoopPhisInStackMap(info->GetSuspendCheck()); GenerateSuspendCheck(info->GetSuspendCheck(), successor); return; } if (block->IsEntryBlock() && (previous != nullptr) && previous->IsSuspendCheck()) { GenerateSuspendCheck(previous->AsSuspendCheck(), nullptr); } if (!codegen_->GoesToNextBlock(got->GetBlock(), successor)) { __ b(codegen_->GetLabelOf(successor)); } } void LocationsBuilderARM::VisitGoto(HGoto* got) { got->SetLocations(nullptr); } void InstructionCodeGeneratorARM::VisitGoto(HGoto* got) { HandleGoto(got, got->GetSuccessor()); } void LocationsBuilderARM::VisitTryBoundary(HTryBoundary* try_boundary) { try_boundary->SetLocations(nullptr); } void InstructionCodeGeneratorARM::VisitTryBoundary(HTryBoundary* try_boundary) { HBasicBlock* successor = try_boundary->GetNormalFlowSuccessor(); if (!successor->IsExitBlock()) { HandleGoto(try_boundary, successor); } } void LocationsBuilderARM::VisitExit(HExit* exit) { exit->SetLocations(nullptr); } void InstructionCodeGeneratorARM::VisitExit(HExit* exit ATTRIBUTE_UNUSED) { } void InstructionCodeGeneratorARM::GenerateLongComparesAndJumps(HCondition* cond, Label* true_label, Label* false_label) { LocationSummary* locations = cond->GetLocations(); Location left = locations->InAt(0); Location right = locations->InAt(1); IfCondition if_cond = cond->GetCondition(); Register left_high = left.AsRegisterPairHigh
(); Register left_low = left.AsRegisterPairLow
(); IfCondition true_high_cond = if_cond; IfCondition false_high_cond = cond->GetOppositeCondition(); Condition final_condition = ARMUnsignedCondition(if_cond); // unsigned on lower part // Set the conditions for the test, remembering that == needs to be // decided using the low words. switch (if_cond) { case kCondEQ: case kCondNE: // Nothing to do. break; case kCondLT: false_high_cond = kCondGT; break; case kCondLE: true_high_cond = kCondLT; break; case kCondGT: false_high_cond = kCondLT; break; case kCondGE: true_high_cond = kCondGT; break; case kCondB: false_high_cond = kCondA; break; case kCondBE: true_high_cond = kCondB; break; case kCondA: false_high_cond = kCondB; break; case kCondAE: true_high_cond = kCondA; break; } if (right.IsConstant()) { int64_t value = right.GetConstant()->AsLongConstant()->GetValue(); int32_t val_low = Low32Bits(value); int32_t val_high = High32Bits(value); __ CmpConstant(left_high, val_high); if (if_cond == kCondNE) { __ b(true_label, ARMCondition(true_high_cond)); } else if (if_cond == kCondEQ) { __ b(false_label, ARMCondition(false_high_cond)); } else { __ b(true_label, ARMCondition(true_high_cond)); __ b(false_label, ARMCondition(false_high_cond)); } // Must be equal high, so compare the lows. __ CmpConstant(left_low, val_low); } else { Register right_high = right.AsRegisterPairHigh
(); Register right_low = right.AsRegisterPairLow
(); __ cmp(left_high, ShifterOperand(right_high)); if (if_cond == kCondNE) { __ b(true_label, ARMCondition(true_high_cond)); } else if (if_cond == kCondEQ) { __ b(false_label, ARMCondition(false_high_cond)); } else { __ b(true_label, ARMCondition(true_high_cond)); __ b(false_label, ARMCondition(false_high_cond)); } // Must be equal high, so compare the lows. __ cmp(left_low, ShifterOperand(right_low)); } // The last comparison might be unsigned. // TODO: optimize cases where this is always true/false __ b(true_label, final_condition); } void InstructionCodeGeneratorARM::GenerateCompareTestAndBranch(HCondition* condition, Label* true_target_in, Label* false_target_in) { if (CanGenerateTest(condition, codegen_->GetAssembler())) { Label* non_fallthrough_target; bool invert; bool emit_both_branches; if (true_target_in == nullptr) { // The true target is fallthrough. DCHECK(false_target_in != nullptr); non_fallthrough_target = false_target_in; invert = true; emit_both_branches = false; } else { // Either the false target is fallthrough, or there is no fallthrough // and both branches must be emitted. non_fallthrough_target = true_target_in; invert = false; emit_both_branches = (false_target_in != nullptr); } const auto cond = GenerateTest(condition, invert, codegen_); __ b(non_fallthrough_target, cond.first); if (emit_both_branches) { // No target falls through, we need to branch. __ b(false_target_in); } return; } // Generated branching requires both targets to be explicit. If either of the // targets is nullptr (fallthrough) use and bind `fallthrough_target` instead. Label fallthrough_target; Label* true_target = true_target_in == nullptr ? &fallthrough_target : true_target_in; Label* false_target = false_target_in == nullptr ? &fallthrough_target : false_target_in; DCHECK_EQ(condition->InputAt(0)->GetType(), Primitive::kPrimLong); GenerateLongComparesAndJumps(condition, true_target, false_target); if (false_target != &fallthrough_target) { __ b(false_target); } if (fallthrough_target.IsLinked()) { __ Bind(&fallthrough_target); } } void InstructionCodeGeneratorARM::GenerateTestAndBranch(HInstruction* instruction, size_t condition_input_index, Label* true_target, Label* false_target) { HInstruction* cond = instruction->InputAt(condition_input_index); if (true_target == nullptr && false_target == nullptr) { // Nothing to do. The code always falls through. return; } else if (cond->IsIntConstant()) { // Constant condition, statically compared against "true" (integer value 1). if (cond->AsIntConstant()->IsTrue()) { if (true_target != nullptr) { __ b(true_target); } } else { DCHECK(cond->AsIntConstant()->IsFalse()) << cond->AsIntConstant()->GetValue(); if (false_target != nullptr) { __ b(false_target); } } return; } // The following code generates these patterns: // (1) true_target == nullptr && false_target != nullptr // - opposite condition true => branch to false_target // (2) true_target != nullptr && false_target == nullptr // - condition true => branch to true_target // (3) true_target != nullptr && false_target != nullptr // - condition true => branch to true_target // - branch to false_target if (IsBooleanValueOrMaterializedCondition(cond)) { // Condition has been materialized, compare the output to 0. Location cond_val = instruction->GetLocations()->InAt(condition_input_index); DCHECK(cond_val.IsRegister()); if (true_target == nullptr) { __ CompareAndBranchIfZero(cond_val.AsRegister
(), false_target); } else { __ CompareAndBranchIfNonZero(cond_val.AsRegister
(), true_target); } } else { // Condition has not been materialized. Use its inputs as the comparison and // its condition as the branch condition. HCondition* condition = cond->AsCondition(); // If this is a long or FP comparison that has been folded into // the HCondition, generate the comparison directly. Primitive::Type type = condition->InputAt(0)->GetType(); if (type == Primitive::kPrimLong || Primitive::IsFloatingPointType(type)) { GenerateCompareTestAndBranch(condition, true_target, false_target); return; } Label* non_fallthrough_target; Condition arm_cond; LocationSummary* locations = cond->GetLocations(); DCHECK(locations->InAt(0).IsRegister()); Register left = locations->InAt(0).AsRegister
(); Location right = locations->InAt(1); if (true_target == nullptr) { arm_cond = ARMCondition(condition->GetOppositeCondition()); non_fallthrough_target = false_target; } else { arm_cond = ARMCondition(condition->GetCondition()); non_fallthrough_target = true_target; } if (right.IsConstant() && (arm_cond == NE || arm_cond == EQ) && CodeGenerator::GetInt32ValueOf(right.GetConstant()) == 0) { if (arm_cond == EQ) { __ CompareAndBranchIfZero(left, non_fallthrough_target); } else { DCHECK_EQ(arm_cond, NE); __ CompareAndBranchIfNonZero(left, non_fallthrough_target); } } else { if (right.IsRegister()) { __ cmp(left, ShifterOperand(right.AsRegister
())); } else { DCHECK(right.IsConstant()); __ CmpConstant(left, CodeGenerator::GetInt32ValueOf(right.GetConstant())); } __ b(non_fallthrough_target, arm_cond); } } // If neither branch falls through (case 3), the conditional branch to `true_target` // was already emitted (case 2) and we need to emit a jump to `false_target`. if (true_target != nullptr && false_target != nullptr) { __ b(false_target); } } void LocationsBuilderARM::VisitIf(HIf* if_instr) { LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(if_instr); if (IsBooleanValueOrMaterializedCondition(if_instr->InputAt(0))) { locations->SetInAt(0, Location::RequiresRegister()); } } void InstructionCodeGeneratorARM::VisitIf(HIf* if_instr) { HBasicBlock* true_successor = if_instr->IfTrueSuccessor(); HBasicBlock* false_successor = if_instr->IfFalseSuccessor(); Label* true_target = codegen_->GoesToNextBlock(if_instr->GetBlock(), true_successor) ? nullptr : codegen_->GetLabelOf(true_successor); Label* false_target = codegen_->GoesToNextBlock(if_instr->GetBlock(), false_successor) ? nullptr : codegen_->GetLabelOf(false_successor); GenerateTestAndBranch(if_instr, /* condition_input_index */ 0, true_target, false_target); } void LocationsBuilderARM::VisitDeoptimize(HDeoptimize* deoptimize) { LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(deoptimize, LocationSummary::kCallOnSlowPath); InvokeRuntimeCallingConvention calling_convention; RegisterSet caller_saves = RegisterSet::Empty(); caller_saves.Add(Location::RegisterLocation(calling_convention.GetRegisterAt(0))); locations->SetCustomSlowPathCallerSaves(caller_saves); if (IsBooleanValueOrMaterializedCondition(deoptimize->InputAt(0))) { locations->SetInAt(0, Location::RequiresRegister()); } } void InstructionCodeGeneratorARM::VisitDeoptimize(HDeoptimize* deoptimize) { SlowPathCodeARM* slow_path = deopt_slow_paths_.NewSlowPath
(deoptimize); GenerateTestAndBranch(deoptimize, /* condition_input_index */ 0, slow_path->GetEntryLabel(), /* false_target */ nullptr); } void LocationsBuilderARM::VisitShouldDeoptimizeFlag(HShouldDeoptimizeFlag* flag) { LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(flag, LocationSummary::kNoCall); locations->SetOut(Location::RequiresRegister()); } void InstructionCodeGeneratorARM::VisitShouldDeoptimizeFlag(HShouldDeoptimizeFlag* flag) { __ LoadFromOffset(kLoadWord, flag->GetLocations()->Out().AsRegister
(), SP, codegen_->GetStackOffsetOfShouldDeoptimizeFlag()); } void LocationsBuilderARM::VisitSelect(HSelect* select) { LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(select); const bool is_floating_point = Primitive::IsFloatingPointType(select->GetType()); if (is_floating_point) { locations->SetInAt(0, Location::RequiresFpuRegister()); locations->SetInAt(1, Location::FpuRegisterOrConstant(select->GetTrueValue())); } else { locations->SetInAt(0, Location::RequiresRegister()); locations->SetInAt(1, Arm8BitEncodableConstantOrRegister(select->GetTrueValue())); } if (IsBooleanValueOrMaterializedCondition(select->GetCondition())) { locations->SetInAt(2, Location::RegisterOrConstant(select->GetCondition())); // The code generator handles overlap with the values, but not with the condition. locations->SetOut(Location::SameAsFirstInput()); } else if (is_floating_point) { locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap); } else { if (!locations->InAt(1).IsConstant()) { locations->SetInAt(0, Arm8BitEncodableConstantOrRegister(select->GetFalseValue())); } locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); } } void InstructionCodeGeneratorARM::VisitSelect(HSelect* select) { HInstruction* const condition = select->GetCondition(); const LocationSummary* const locations = select->GetLocations(); const Primitive::Type type = select->GetType(); const Location first = locations->InAt(0); const Location out = locations->Out(); const Location second = locations->InAt(1); Location src; if (condition->IsIntConstant()) { if (condition->AsIntConstant()->IsFalse()) { src = first; } else { src = second; } codegen_->MoveLocation(out, src, type); return; } if (!Primitive::IsFloatingPointType(type) && (IsBooleanValueOrMaterializedCondition(condition) || CanGenerateTest(condition->AsCondition(), codegen_->GetAssembler()))) { bool invert = false; if (out.Equals(second)) { src = first; invert = true; } else if (out.Equals(first)) { src = second; } else if (second.IsConstant()) { DCHECK(CanEncodeConstantAs8BitImmediate(second.GetConstant())); src = second; } else if (first.IsConstant()) { DCHECK(CanEncodeConstantAs8BitImmediate(first.GetConstant())); src = first; invert = true; } else { src = second; } if (CanGenerateConditionalMove(out, src)) { if (!out.Equals(first) && !out.Equals(second)) { codegen_->MoveLocation(out, src.Equals(first) ? second : first, type); } std::pair
cond; if (IsBooleanValueOrMaterializedCondition(condition)) { __ CmpConstant(locations->InAt(2).AsRegister
(), 0); cond = invert ? std::make_pair(EQ, NE) : std::make_pair(NE, EQ); } else { cond = GenerateTest(condition->AsCondition(), invert, codegen_); } if (out.IsRegister()) { ShifterOperand operand; if (src.IsConstant()) { operand = ShifterOperand(CodeGenerator::GetInt32ValueOf(src.GetConstant())); } else { DCHECK(src.IsRegister()); operand = ShifterOperand(src.AsRegister
()); } __ it(cond.first); __ mov(out.AsRegister
(), operand, cond.first); } else { DCHECK(out.IsRegisterPair()); ShifterOperand operand_high; ShifterOperand operand_low; if (src.IsConstant()) { const int64_t value = src.GetConstant()->AsLongConstant()->GetValue(); operand_high = ShifterOperand(High32Bits(value)); operand_low = ShifterOperand(Low32Bits(value)); } else { DCHECK(src.IsRegisterPair()); operand_high = ShifterOperand(src.AsRegisterPairHigh
()); operand_low = ShifterOperand(src.AsRegisterPairLow
()); } __ it(cond.first); __ mov(out.AsRegisterPairLow
(), operand_low, cond.first); __ it(cond.first); __ mov(out.AsRegisterPairHigh
(), operand_high, cond.first); } return; } } Label* false_target = nullptr; Label* true_target = nullptr; Label select_end; Label* target = codegen_->GetFinalLabel(select, &select_end); if (out.Equals(second)) { true_target = target; src = first; } else { false_target = target; src = second; if (!out.Equals(first)) { codegen_->MoveLocation(out, first, type); } } GenerateTestAndBranch(select, 2, true_target, false_target); codegen_->MoveLocation(out, src, type); if (select_end.IsLinked()) { __ Bind(&select_end); } } void LocationsBuilderARM::VisitNativeDebugInfo(HNativeDebugInfo* info) { new (GetGraph()->GetArena()) LocationSummary(info); } void InstructionCodeGeneratorARM::VisitNativeDebugInfo(HNativeDebugInfo*) { // MaybeRecordNativeDebugInfo is already called implicitly in CodeGenerator::Compile. } void CodeGeneratorARM::GenerateNop() { __ nop(); } void LocationsBuilderARM::HandleCondition(HCondition* cond) { LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(cond, LocationSummary::kNoCall); // Handle the long/FP comparisons made in instruction simplification. switch (cond->InputAt(0)->GetType()) { case Primitive::kPrimLong: locations->SetInAt(0, Location::RequiresRegister()); locations->SetInAt(1, Location::RegisterOrConstant(cond->InputAt(1))); if (!cond->IsEmittedAtUseSite()) { locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); } break; case Primitive::kPrimFloat: case Primitive::kPrimDouble: locations->SetInAt(0, Location::RequiresFpuRegister()); locations->SetInAt(1, ArithmeticZeroOrFpuRegister(cond->InputAt(1))); if (!cond->IsEmittedAtUseSite()) { locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); } break; default: locations->SetInAt(0, Location::RequiresRegister()); locations->SetInAt(1, Location::RegisterOrConstant(cond->InputAt(1))); if (!cond->IsEmittedAtUseSite()) { locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); } } } void InstructionCodeGeneratorARM::HandleCondition(HCondition* cond) { if (cond->IsEmittedAtUseSite()) { return; } const Register out = cond->GetLocations()->Out().AsRegister
(); if (ArmAssembler::IsLowRegister(out) && CanGenerateTest(cond, codegen_->GetAssembler())) { const auto condition = GenerateTest(cond, false, codegen_); __ it(condition.first); __ mov(out, ShifterOperand(1), condition.first); __ it(condition.second); __ mov(out, ShifterOperand(0), condition.second); return; } // Convert the jumps into the result. Label done_label; Label* const final_label = codegen_->GetFinalLabel(cond, &done_label); if (cond->InputAt(0)->GetType() == Primitive::kPrimLong) { Label true_label, false_label; GenerateLongComparesAndJumps(cond, &true_label, &false_label); // False case: result = 0. __ Bind(&false_label); __ LoadImmediate(out, 0); __ b(final_label); // True case: result = 1. __ Bind(&true_label); __ LoadImmediate(out, 1); } else { DCHECK(CanGenerateTest(cond, codegen_->GetAssembler())); const auto condition = GenerateTest(cond, false, codegen_); __ mov(out, ShifterOperand(0), AL, kCcKeep); __ b(final_label, condition.second); __ LoadImmediate(out, 1); } if (done_label.IsLinked()) { __ Bind(&done_label); } } void LocationsBuilderARM::VisitEqual(HEqual* comp) { HandleCondition(comp); } void InstructionCodeGeneratorARM::VisitEqual(HEqual* comp) { HandleCondition(comp); } void LocationsBuilderARM::VisitNotEqual(HNotEqual* comp) { HandleCondition(comp); } void InstructionCodeGeneratorARM::VisitNotEqual(HNotEqual* comp) { HandleCondition(comp); } void LocationsBuilderARM::VisitLessThan(HLessThan* comp) { HandleCondition(comp); } void InstructionCodeGeneratorARM::VisitLessThan(HLessThan* comp) { HandleCondition(comp); } void LocationsBuilderARM::VisitLessThanOrEqual(HLessThanOrEqual* comp) { HandleCondition(comp); } void InstructionCodeGeneratorARM::VisitLessThanOrEqual(HLessThanOrEqual* comp) { HandleCondition(comp); } void LocationsBuilderARM::VisitGreaterThan(HGreaterThan* comp) { HandleCondition(comp); } void InstructionCodeGeneratorARM::VisitGreaterThan(HGreaterThan* comp) { HandleCondition(comp); } void LocationsBuilderARM::VisitGreaterThanOrEqual(HGreaterThanOrEqual* comp) { HandleCondition(comp); } void InstructionCodeGeneratorARM::VisitGreaterThanOrEqual(HGreaterThanOrEqual* comp) { HandleCondition(comp); } void LocationsBuilderARM::VisitBelow(HBelow* comp) { HandleCondition(comp); } void InstructionCodeGeneratorARM::VisitBelow(HBelow* comp) { HandleCondition(comp); } void LocationsBuilderARM::VisitBelowOrEqual(HBelowOrEqual* comp) { HandleCondition(comp); } void InstructionCodeGeneratorARM::VisitBelowOrEqual(HBelowOrEqual* comp) { HandleCondition(comp); } void LocationsBuilderARM::VisitAbove(HAbove* comp) { HandleCondition(comp); } void InstructionCodeGeneratorARM::VisitAbove(HAbove* comp) { HandleCondition(comp); } void LocationsBuilderARM::VisitAboveOrEqual(HAboveOrEqual* comp) { HandleCondition(comp); } void InstructionCodeGeneratorARM::VisitAboveOrEqual(HAboveOrEqual* comp) { HandleCondition(comp); } void LocationsBuilderARM::VisitIntConstant(HIntConstant* constant) { LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(constant, LocationSummary::kNoCall); locations->SetOut(Location::ConstantLocation(constant)); } void InstructionCodeGeneratorARM::VisitIntConstant(HIntConstant* constant ATTRIBUTE_UNUSED) { // Will be generated at use site. } void LocationsBuilderARM::VisitNullConstant(HNullConstant* constant) { LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(constant, LocationSummary::kNoCall); locations->SetOut(Location::ConstantLocation(constant)); } void InstructionCodeGeneratorARM::VisitNullConstant(HNullConstant* constant ATTRIBUTE_UNUSED) { // Will be generated at use site. } void LocationsBuilderARM::VisitLongConstant(HLongConstant* constant) { LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(constant, LocationSummary::kNoCall); locations->SetOut(Location::ConstantLocation(constant)); } void InstructionCodeGeneratorARM::VisitLongConstant(HLongConstant* constant ATTRIBUTE_UNUSED) { // Will be generated at use site. } void LocationsBuilderARM::VisitFloatConstant(HFloatConstant* constant) { LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(constant, LocationSummary::kNoCall); locations->SetOut(Location::ConstantLocation(constant)); } void InstructionCodeGeneratorARM::VisitFloatConstant(HFloatConstant* constant ATTRIBUTE_UNUSED) { // Will be generated at use site. } void LocationsBuilderARM::VisitDoubleConstant(HDoubleConstant* constant) { LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(constant, LocationSummary::kNoCall); locations->SetOut(Location::ConstantLocation(constant)); } void InstructionCodeGeneratorARM::VisitDoubleConstant(HDoubleConstant* constant ATTRIBUTE_UNUSED) { // Will be generated at use site. } void LocationsBuilderARM::VisitMemoryBarrier(HMemoryBarrier* memory_barrier) { memory_barrier->SetLocations(nullptr); } void InstructionCodeGeneratorARM::VisitMemoryBarrier(HMemoryBarrier* memory_barrier) { codegen_->GenerateMemoryBarrier(memory_barrier->GetBarrierKind()); } void LocationsBuilderARM::VisitReturnVoid(HReturnVoid* ret) { ret->SetLocations(nullptr); } void InstructionCodeGeneratorARM::VisitReturnVoid(HReturnVoid* ret ATTRIBUTE_UNUSED) { codegen_->GenerateFrameExit(); } void LocationsBuilderARM::VisitReturn(HReturn* ret) { LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(ret, LocationSummary::kNoCall); locations->SetInAt(0, parameter_visitor_.GetReturnLocation(ret->InputAt(0)->GetType())); } void InstructionCodeGeneratorARM::VisitReturn(HReturn* ret ATTRIBUTE_UNUSED) { codegen_->GenerateFrameExit(); } void LocationsBuilderARM::VisitInvokeUnresolved(HInvokeUnresolved* invoke) { // The trampoline uses the same calling convention as dex calling conventions, // except instead of loading arg0/r0 with the target Method*, arg0/r0 will contain // the method_idx. HandleInvoke(invoke); } void InstructionCodeGeneratorARM::VisitInvokeUnresolved(HInvokeUnresolved* invoke) { codegen_->GenerateInvokeUnresolvedRuntimeCall(invoke); } void LocationsBuilderARM::VisitInvokeStaticOrDirect(HInvokeStaticOrDirect* invoke) { // Explicit clinit checks triggered by static invokes must have been pruned by // art::PrepareForRegisterAllocation. DCHECK(!invoke->IsStaticWithExplicitClinitCheck()); IntrinsicLocationsBuilderARM intrinsic(codegen_); if (intrinsic.TryDispatch(invoke)) { if (invoke->GetLocations()->CanCall() && invoke->HasPcRelativeDexCache()) { invoke->GetLocations()->SetInAt(invoke->GetSpecialInputIndex(), Location::Any()); } return; } HandleInvoke(invoke); // For PC-relative dex cache the invoke has an extra input, the PC-relative address base. if (invoke->HasPcRelativeDexCache()) { invoke->GetLocations()->SetInAt(invoke->GetSpecialInputIndex(), Location::RequiresRegister()); } } static bool TryGenerateIntrinsicCode(HInvoke* invoke, CodeGeneratorARM* codegen) { if (invoke->GetLocations()->Intrinsified()) { IntrinsicCodeGeneratorARM intrinsic(codegen); intrinsic.Dispatch(invoke); return true; } return false; } void InstructionCodeGeneratorARM::VisitInvokeStaticOrDirect(HInvokeStaticOrDirect* invoke) { // Explicit clinit checks triggered by static invokes must have been pruned by // art::PrepareForRegisterAllocation. DCHECK(!invoke->IsStaticWithExplicitClinitCheck()); if (TryGenerateIntrinsicCode(invoke, codegen_)) { return; } LocationSummary* locations = invoke->GetLocations(); codegen_->GenerateStaticOrDirectCall( invoke, locations->HasTemps() ? locations->GetTemp(0) : Location::NoLocation()); codegen_->RecordPcInfo(invoke, invoke->GetDexPc()); } void LocationsBuilderARM::HandleInvoke(HInvoke* invoke) { InvokeDexCallingConventionVisitorARM calling_convention_visitor; CodeGenerator::CreateCommonInvokeLocationSummary(invoke, &calling_convention_visitor); } void LocationsBuilderARM::VisitInvokeVirtual(HInvokeVirtual* invoke) { IntrinsicLocationsBuilderARM intrinsic(codegen_); if (intrinsic.TryDispatch(invoke)) { return; } HandleInvoke(invoke); } void InstructionCodeGeneratorARM::VisitInvokeVirtual(HInvokeVirtual* invoke) { if (TryGenerateIntrinsicCode(invoke, codegen_)) { return; } codegen_->GenerateVirtualCall(invoke, invoke->GetLocations()->GetTemp(0)); DCHECK(!codegen_->IsLeafMethod()); codegen_->RecordPcInfo(invoke, invoke->GetDexPc()); } void LocationsBuilderARM::VisitInvokeInterface(HInvokeInterface* invoke) { HandleInvoke(invoke); // Add the hidden argument. invoke->GetLocations()->AddTemp(Location::RegisterLocation(R12)); } void InstructionCodeGeneratorARM::VisitInvokeInterface(HInvokeInterface* invoke) { // TODO: b/18116999, our IMTs can miss an IncompatibleClassChangeError. LocationSummary* locations = invoke->GetLocations(); Register temp = locations->GetTemp(0).AsRegister
(); Register hidden_reg = locations->GetTemp(1).AsRegister
(); Location receiver = locations->InAt(0); uint32_t class_offset = mirror::Object::ClassOffset().Int32Value(); // Set the hidden argument. This is safe to do this here, as R12 // won't be modified thereafter, before the `blx` (call) instruction. DCHECK_EQ(R12, hidden_reg); __ LoadImmediate(hidden_reg, invoke->GetDexMethodIndex()); if (receiver.IsStackSlot()) { __ LoadFromOffset(kLoadWord, temp, SP, receiver.GetStackIndex()); // /* HeapReference
*/ temp = temp->klass_ __ LoadFromOffset(kLoadWord, temp, temp, class_offset); } else { // /* HeapReference
*/ temp = receiver->klass_ __ LoadFromOffset(kLoadWord, temp, receiver.AsRegister
(), class_offset); } codegen_->MaybeRecordImplicitNullCheck(invoke); // Instead of simply (possibly) unpoisoning `temp` here, we should // emit a read barrier for the previous class reference load. // However this is not required in practice, as this is an // intermediate/temporary reference and because the current // concurrent copying collector keeps the from-space memory // intact/accessible until the end of the marking phase (the // concurrent copying collector may not in the future). __ MaybeUnpoisonHeapReference(temp); __ LoadFromOffset(kLoadWord, temp, temp, mirror::Class::ImtPtrOffset(kArmPointerSize).Uint32Value()); uint32_t method_offset = static_cast
(ImTable::OffsetOfElement( invoke->GetImtIndex(), kArmPointerSize)); // temp = temp->GetImtEntryAt(method_offset); __ LoadFromOffset(kLoadWord, temp, temp, method_offset); uint32_t entry_point = ArtMethod::EntryPointFromQuickCompiledCodeOffset(kArmPointerSize).Int32Value(); // LR = temp->GetEntryPoint(); __ LoadFromOffset(kLoadWord, LR, temp, entry_point); // LR(); __ blx(LR); DCHECK(!codegen_->IsLeafMethod()); codegen_->RecordPcInfo(invoke, invoke->GetDexPc()); } void LocationsBuilderARM::VisitInvokePolymorphic(HInvokePolymorphic* invoke) { HandleInvoke(invoke); } void InstructionCodeGeneratorARM::VisitInvokePolymorphic(HInvokePolymorphic* invoke) { codegen_->GenerateInvokePolymorphicCall(invoke); } void LocationsBuilderARM::VisitNeg(HNeg* neg) { LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(neg, LocationSummary::kNoCall); switch (neg->GetResultType()) { case Primitive::kPrimInt: { locations->SetInAt(0, Location::RequiresRegister()); locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); break; } case Primitive::kPrimLong: { locations->SetInAt(0, Location::RequiresRegister()); locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap); break; } case Primitive::kPrimFloat: case Primitive::kPrimDouble: locations->SetInAt(0, Location::RequiresFpuRegister()); locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap); break; default: LOG(FATAL) << "Unexpected neg type " << neg->GetResultType(); } } void InstructionCodeGeneratorARM::VisitNeg(HNeg* neg) { LocationSummary* locations = neg->GetLocations(); Location out = locations->Out(); Location in = locations->InAt(0); switch (neg->GetResultType()) { case Primitive::kPrimInt: DCHECK(in.IsRegister()); __ rsb(out.AsRegister
(), in.AsRegister
(), ShifterOperand(0)); break; case Primitive::kPrimLong: DCHECK(in.IsRegisterPair()); // out.lo = 0 - in.lo (and update the carry/borrow (C) flag) __ rsbs(out.AsRegisterPairLow
(), in.AsRegisterPairLow
(), ShifterOperand(0)); // We cannot emit an RSC (Reverse Subtract with Carry) // instruction here, as it does not exist in the Thumb-2 // instruction set. We use the following approach // using SBC and SUB instead. // // out.hi = -C __ sbc(out.AsRegisterPairHigh
(), out.AsRegisterPairHigh
(), ShifterOperand(out.AsRegisterPairHigh
())); // out.hi = out.hi - in.hi __ sub(out.AsRegisterPairHigh
(), out.AsRegisterPairHigh
(), ShifterOperand(in.AsRegisterPairHigh
())); break; case Primitive::kPrimFloat: DCHECK(in.IsFpuRegister()); __ vnegs(out.AsFpuRegister
(), in.AsFpuRegister
()); break; case Primitive::kPrimDouble: DCHECK(in.IsFpuRegisterPair()); __ vnegd(FromLowSToD(out.AsFpuRegisterPairLow
()), FromLowSToD(in.AsFpuRegisterPairLow
())); break; default: LOG(FATAL) << "Unexpected neg type " << neg->GetResultType(); } } void LocationsBuilderARM::VisitTypeConversion(HTypeConversion* conversion) { Primitive::Type result_type = conversion->GetResultType(); Primitive::Type input_type = conversion->GetInputType(); DCHECK_NE(result_type, input_type); // The float-to-long, double-to-long and long-to-float type conversions // rely on a call to the runtime. LocationSummary::CallKind call_kind = (((input_type == Primitive::kPrimFloat || input_type == Primitive::kPrimDouble) && result_type == Primitive::kPrimLong) || (input_type == Primitive::kPrimLong && result_type == Primitive::kPrimFloat)) ? LocationSummary::kCallOnMainOnly : LocationSummary::kNoCall; LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(conversion, call_kind); // The Java language does not allow treating boolean as an integral type but // our bit representation makes it safe. switch (result_type) { case Primitive::kPrimByte: switch (input_type) { case Primitive::kPrimLong: // Type conversion from long to byte is a result of code transformations. case Primitive::kPrimBoolean: // Boolean input is a result of code transformations. case Primitive::kPrimShort: case Primitive::kPrimInt: case Primitive::kPrimChar: // Processing a Dex `int-to-byte' instruction. locations->SetInAt(0, Location::RequiresRegister()); locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); break; default: LOG(FATAL) << "Unexpected type conversion from " << input_type << " to " << result_type; } break; case Primitive::kPrimShort: switch (input_type) { case Primitive::kPrimLong: // Type conversion from long to short is a result of code transformations. case Primitive::kPrimBoolean: // Boolean input is a result of code transformations. case Primitive::kPrimByte: case Primitive::kPrimInt: case Primitive::kPrimChar: // Processing a Dex `int-to-short' instruction. locations->SetInAt(0, Location::RequiresRegister()); locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); break; default: LOG(FATAL) << "Unexpected type conversion from " << input_type << " to " << result_type; } break; case Primitive::kPrimInt: switch (input_type) { case Primitive::kPrimLong: // Processing a Dex `long-to-int' instruction. locations->SetInAt(0, Location::Any()); locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); break; case Primitive::kPrimFloat: // Processing a Dex `float-to-int' instruction. locations->SetInAt(0, Location::RequiresFpuRegister()); locations->SetOut(Location::RequiresRegister()); locations->AddTemp(Location::RequiresFpuRegister()); break; case Primitive::kPrimDouble: // Processing a Dex `double-to-int' instruction. locations->SetInAt(0, Location::RequiresFpuRegister()); locations->SetOut(Location::RequiresRegister()); locations->AddTemp(Location::RequiresFpuRegister()); break; default: LOG(FATAL) << "Unexpected type conversion from " << input_type << " to " << result_type; } break; case Primitive::kPrimLong: switch (input_type) { case Primitive::kPrimBoolean: // Boolean input is a result of code transformations. case Primitive::kPrimByte: case Primitive::kPrimShort: case Primitive::kPrimInt: case Primitive::kPrimChar: // Processing a Dex `int-to-long' instruction. locations->SetInAt(0, Location::RequiresRegister()); locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); break; case Primitive::kPrimFloat: { // Processing a Dex `float-to-long' instruction. InvokeRuntimeCallingConvention calling_convention; locations->SetInAt(0, Location::FpuRegisterLocation( calling_convention.GetFpuRegisterAt(0))); locations->SetOut(Location::RegisterPairLocation(R0, R1)); break; } case Primitive::kPrimDouble: { // Processing a Dex `double-to-long' instruction. InvokeRuntimeCallingConvention calling_convention; locations->SetInAt(0, Location::FpuRegisterPairLocation( calling_convention.GetFpuRegisterAt(0), calling_convention.GetFpuRegisterAt(1))); locations->SetOut(Location::RegisterPairLocation(R0, R1)); break; } default: LOG(FATAL) << "Unexpected type conversion from " << input_type << " to " << result_type; } break; case Primitive::kPrimChar: switch (input_type) { case Primitive::kPrimLong: // Type conversion from long to char is a result of code transformations. case Primitive::kPrimBoolean: // Boolean input is a result of code transformations. case Primitive::kPrimByte: case Primitive::kPrimShort: case Primitive::kPrimInt: // Processing a Dex `int-to-char' instruction. locations->SetInAt(0, Location::RequiresRegister()); locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); break; default: LOG(FATAL) << "Unexpected type conversion from " << input_type << " to " << result_type; } break; case Primitive::kPrimFloat: switch (input_type) { case Primitive::kPrimBoolean: // Boolean input is a result of code transformations. case Primitive::kPrimByte: case Primitive::kPrimShort: case Primitive::kPrimInt: case Primitive::kPrimChar: // Processing a Dex `int-to-float' instruction. locations->SetInAt(0, Location::RequiresRegister()); locations->SetOut(Location::RequiresFpuRegister()); break; case Primitive::kPrimLong: { // Processing a Dex `long-to-float' instruction. InvokeRuntimeCallingConvention calling_convention; locations->SetInAt(0, Location::RegisterPairLocation( calling_convention.GetRegisterAt(0), calling_convention.GetRegisterAt(1))); locations->SetOut(Location::FpuRegisterLocation(calling_convention.GetFpuRegisterAt(0))); break; } case Primitive::kPrimDouble: // Processing a Dex `double-to-float' instruction. locations->SetInAt(0, Location::RequiresFpuRegister()); locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap); break; default: LOG(FATAL) << "Unexpected type conversion from " << input_type << " to " << result_type; }; break; case Primitive::kPrimDouble: switch (input_type) { case Primitive::kPrimBoolean: // Boolean input is a result of code transformations. case Primitive::kPrimByte: case Primitive::kPrimShort: case Primitive::kPrimInt: case Primitive::kPrimChar: // Processing a Dex `int-to-double' instruction. locations->SetInAt(0, Location::RequiresRegister()); locations->SetOut(Location::RequiresFpuRegister()); break; case Primitive::kPrimLong: // Processing a Dex `long-to-double' instruction. locations->SetInAt(0, Location::RequiresRegister()); locations->SetOut(Location::RequiresFpuRegister()); locations->AddTemp(Location::RequiresFpuRegister()); locations->AddTemp(Location::RequiresFpuRegister()); break; case Primitive::kPrimFloat: // Processing a Dex `float-to-double' instruction. locations->SetInAt(0, Location::RequiresFpuRegister()); locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap); break; default: LOG(FATAL) << "Unexpected type conversion from " << input_type << " to " << result_type; }; break; default: LOG(FATAL) << "Unexpected type conversion from " << input_type << " to " << result_type; } } void InstructionCodeGeneratorARM::VisitTypeConversion(HTypeConversion* conversion) { LocationSummary* locations = conversion->GetLocations(); Location out = locations->Out(); Location in = locations->InAt(0); Primitive::Type result_type = conversion->GetResultType(); Primitive::Type input_type = conversion->GetInputType(); DCHECK_NE(result_type, input_type); switch (result_type) { case Primitive::kPrimByte: switch (input_type) { case Primitive::kPrimLong: // Type conversion from long to byte is a result of code transformations. __ sbfx(out.AsRegister
(), in.AsRegisterPairLow
(), 0, 8); break; case Primitive::kPrimBoolean: // Boolean input is a result of code transformations. case Primitive::kPrimShort: case Primitive::kPrimInt: case Primitive::kPrimChar: // Processing a Dex `int-to-byte' instruction. __ sbfx(out.AsRegister
(), in.AsRegister
(), 0, 8); break; default: LOG(FATAL) << "Unexpected type conversion from " << input_type << " to " << result_type; } break; case Primitive::kPrimShort: switch (input_type) { case Primitive::kPrimLong: // Type conversion from long to short is a result of code transformations. __ sbfx(out.AsRegister
(), in.AsRegisterPairLow
(), 0, 16); break; case Primitive::kPrimBoolean: // Boolean input is a result of code transformations. case Primitive::kPrimByte: case Primitive::kPrimInt: case Primitive::kPrimChar: // Processing a Dex `int-to-short' instruction. __ sbfx(out.AsRegister
(), in.AsRegister
(), 0, 16); break; default: LOG(FATAL) << "Unexpected type conversion from " << input_type << " to " << result_type; } break; case Primitive::kPrimInt: switch (input_type) { case Primitive::kPrimLong: // Processing a Dex `long-to-int' instruction. DCHECK(out.IsRegister()); if (in.IsRegisterPair()) { __ Mov(out.AsRegister
(), in.AsRegisterPairLow
()); } else if (in.IsDoubleStackSlot()) { __ LoadFromOffset(kLoadWord, out.AsRegister
(), SP, in.GetStackIndex()); } else { DCHECK(in.IsConstant()); DCHECK(in.GetConstant()->IsLongConstant()); int64_t value = in.GetConstant()->AsLongConstant()->GetValue(); __ LoadImmediate(out.AsRegister
(), static_cast
(value)); } break; case Primitive::kPrimFloat: { // Processing a Dex `float-to-int' instruction. SRegister temp = locations->GetTemp(0).AsFpuRegisterPairLow
(); __ vcvtis(temp, in.AsFpuRegister
()); __ vmovrs(out.AsRegister
(), temp); break; } case Primitive::kPrimDouble: { // Processing a Dex `double-to-int' instruction. SRegister temp_s = locations->GetTemp(0).AsFpuRegisterPairLow
(); __ vcvtid(temp_s, FromLowSToD(in.AsFpuRegisterPairLow
())); __ vmovrs(out.AsRegister
(), temp_s); break; } default: LOG(FATAL) << "Unexpected type conversion from " << input_type << " to " << result_type; } break; case Primitive::kPrimLong: switch (input_type) { case Primitive::kPrimBoolean: // Boolean input is a result of code transformations. case Primitive::kPrimByte: case Primitive::kPrimShort: case Primitive::kPrimInt: case Primitive::kPrimChar: // Processing a Dex `int-to-long' instruction. DCHECK(out.IsRegisterPair()); DCHECK(in.IsRegister()); __ Mov(out.AsRegisterPairLow
(), in.AsRegister
()); // Sign extension. __ Asr(out.AsRegisterPairHigh
(), out.AsRegisterPairLow
(), 31); break; case Primitive::kPrimFloat: // Processing a Dex `float-to-long' instruction. codegen_->InvokeRuntime(kQuickF2l, conversion, conversion->GetDexPc()); CheckEntrypointTypes
(); break; case Primitive::kPrimDouble: // Processing a Dex `double-to-long' instruction. codegen_->InvokeRuntime(kQuickD2l, conversion, conversion->GetDexPc()); CheckEntrypointTypes
(); break; default: LOG(FATAL) << "Unexpected type conversion from " << input_type << " to " << result_type; } break; case Primitive::kPrimChar: switch (input_type) { case Primitive::kPrimLong: // Type conversion from long to char is a result of code transformations. __ ubfx(out.AsRegister
(), in.AsRegisterPairLow
(), 0, 16); break; case Primitive::kPrimBoolean: // Boolean input is a result of code transformations. case Primitive::kPrimByte: case Primitive::kPrimShort: case Primitive::kPrimInt: // Processing a Dex `int-to-char' instruction. __ ubfx(out.AsRegister
(), in.AsRegister
(), 0, 16); break; default: LOG(FATAL) << "Unexpected type conversion from " << input_type << " to " << result_type; } break; case Primitive::kPrimFloat: switch (input_type) { case Primitive::kPrimBoolean: // Boolean input is a result of code transformations. case Primitive::kPrimByte: case Primitive::kPrimShort: case Primitive::kPrimInt: case Primitive::kPrimChar: { // Processing a Dex `int-to-float' instruction. __ vmovsr(out.AsFpuRegister
(), in.AsRegister
()); __ vcvtsi(out.AsFpuRegister
(), out.AsFpuRegister
()); break; } case Primitive::kPrimLong: // Processing a Dex `long-to-float' instruction. codegen_->InvokeRuntime(kQuickL2f, conversion, conversion->GetDexPc()); CheckEntrypointTypes
(); break; case Primitive::kPrimDouble: // Processing a Dex `double-to-float' instruction. __ vcvtsd(out.AsFpuRegister
(), FromLowSToD(in.AsFpuRegisterPairLow
())); break; default: LOG(FATAL) << "Unexpected type conversion from " << input_type << " to " << result_type; }; break; case Primitive::kPrimDouble: switch (input_type) { case Primitive::kPrimBoolean: // Boolean input is a result of code transformations. case Primitive::kPrimByte: case Primitive::kPrimShort: case Primitive::kPrimInt: case Primitive::kPrimChar: { // Processing a Dex `int-to-double' instruction. __ vmovsr(out.AsFpuRegisterPairLow
(), in.AsRegister
()); __ vcvtdi(FromLowSToD(out.AsFpuRegisterPairLow
()), out.AsFpuRegisterPairLow
()); break; } case Primitive::kPrimLong: { // Processing a Dex `long-to-double' instruction. Register low = in.AsRegisterPairLow
(); Register high = in.AsRegisterPairHigh
(); SRegister out_s = out.AsFpuRegisterPairLow
(); DRegister out_d = FromLowSToD(out_s); SRegister temp_s = locations->GetTemp(0).AsFpuRegisterPairLow
(); DRegister temp_d = FromLowSToD(temp_s); SRegister constant_s = locations->GetTemp(1).AsFpuRegisterPairLow
(); DRegister constant_d = FromLowSToD(constant_s); // temp_d = int-to-double(high) __ vmovsr(temp_s, high); __ vcvtdi(temp_d, temp_s); // constant_d = k2Pow32EncodingForDouble __ LoadDImmediate(constant_d, bit_cast
(k2Pow32EncodingForDouble)); // out_d = unsigned-to-double(low) __ vmovsr(out_s, low); __ vcvtdu(out_d, out_s); // out_d += temp_d * constant_d __ vmlad(out_d, temp_d, constant_d); break; } case Primitive::kPrimFloat: // Processing a Dex `float-to-double' instruction. __ vcvtds(FromLowSToD(out.AsFpuRegisterPairLow
()), in.AsFpuRegister
()); break; default: LOG(FATAL) << "Unexpected type conversion from " << input_type << " to " << result_type; }; break; default: LOG(FATAL) << "Unexpected type conversion from " << input_type << " to " << result_type; } } void LocationsBuilderARM::VisitAdd(HAdd* add) { LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(add, LocationSummary::kNoCall); switch (add->GetResultType()) { case Primitive::kPrimInt: { locations->SetInAt(0, Location::RequiresRegister()); locations->SetInAt(1, Location::RegisterOrConstant(add->InputAt(1))); locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); break; } case Primitive::kPrimLong: { locations->SetInAt(0, Location::RequiresRegister()); locations->SetInAt(1, ArmEncodableConstantOrRegister(add->InputAt(1), ADD)); locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); break; } case Primitive::kPrimFloat: case Primitive::kPrimDouble: { locations->SetInAt(0, Location::RequiresFpuRegister()); locations->SetInAt(1, Location::RequiresFpuRegister()); locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap); break; } default: LOG(FATAL) << "Unexpected add type " << add->GetResultType(); } } void InstructionCodeGeneratorARM::VisitAdd(HAdd* add) { LocationSummary* locations = add->GetLocations(); Location out = locations->Out(); Location first = locations->InAt(0); Location second = locations->InAt(1); switch (add->GetResultType()) { case Primitive::kPrimInt: if (second.IsRegister()) { __ add(out.AsRegister
(), first.AsRegister
(), ShifterOperand(second.AsRegister
())); } else { __ AddConstant(out.AsRegister
(), first.AsRegister
(), second.GetConstant()->AsIntConstant()->GetValue()); } break; case Primitive::kPrimLong: { if (second.IsConstant()) { uint64_t value = static_cast
(Int64FromConstant(second.GetConstant())); GenerateAddLongConst(out, first, value); } else { DCHECK(second.IsRegisterPair()); __ adds(out.AsRegisterPairLow
(), first.AsRegisterPairLow
(), ShifterOperand(second.AsRegisterPairLow
())); __ adc(out.AsRegisterPairHigh
(), first.AsRegisterPairHigh
(), ShifterOperand(second.AsRegisterPairHigh
())); } break; } case Primitive::kPrimFloat: __ vadds(out.AsFpuRegister
(), first.AsFpuRegister
(), second.AsFpuRegister
()); break; case Primitive::kPrimDouble: __ vaddd(FromLowSToD(out.AsFpuRegisterPairLow
()), FromLowSToD(first.AsFpuRegisterPairLow
()), FromLowSToD(second.AsFpuRegisterPairLow
())); break; default: LOG(FATAL) << "Unexpected add type " << add->GetResultType(); } } void LocationsBuilderARM::VisitSub(HSub* sub) { LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(sub, LocationSummary::kNoCall); switch (sub->GetResultType()) { case Primitive::kPrimInt: { locations->SetInAt(0, Location::RequiresRegister()); locations->SetInAt(1, Location::RegisterOrConstant(sub->InputAt(1))); locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); break; } case Primitive::kPrimLong: { locations->SetInAt(0, Location::RequiresRegister()); locations->SetInAt(1, ArmEncodableConstantOrRegister(sub->InputAt(1), SUB)); locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); break; } case Primitive::kPrimFloat: case Primitive::kPrimDouble: { locations->SetInAt(0, Location::RequiresFpuRegister()); locations->SetInAt(1, Location::RequiresFpuRegister()); locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap); break; } default: LOG(FATAL) << "Unexpected sub type " << sub->GetResultType(); } } void InstructionCodeGeneratorARM::VisitSub(HSub* sub) { LocationSummary* locations = sub->GetLocations(); Location out = locations->Out(); Location first = locations->InAt(0); Location second = locations->InAt(1); switch (sub->GetResultType()) { case Primitive::kPrimInt: { if (second.IsRegister()) { __ sub(out.AsRegister
(), first.AsRegister
(), ShifterOperand(second.AsRegister
())); } else { __ AddConstant(out.AsRegister
(), first.AsRegister
(), -second.GetConstant()->AsIntConstant()->GetValue()); } break; } case Primitive::kPrimLong: { if (second.IsConstant()) { uint64_t value = static_cast
(Int64FromConstant(second.GetConstant())); GenerateAddLongConst(out, first, -value); } else { DCHECK(second.IsRegisterPair()); __ subs(out.AsRegisterPairLow
(), first.AsRegisterPairLow
(), ShifterOperand(second.AsRegisterPairLow
())); __ sbc(out.AsRegisterPairHigh
(), first.AsRegisterPairHigh
(), ShifterOperand(second.AsRegisterPairHigh