/*
* Copyright (C) 2017 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "code_generator_x86.h"
#include "mirror/array-inl.h"
namespace art {
namespace x86 {
// NOLINT on __ macro to suppress wrong warning/fix (misc-macro-parentheses) from clang-tidy.
#define __ down_cast<X86Assembler*>(GetAssembler())-> // NOLINT
void LocationsBuilderX86::VisitVecReplicateScalar(HVecReplicateScalar* instruction) {
LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction);
switch (instruction->GetPackedType()) {
case Primitive::kPrimLong:
// Long needs extra temporary to load the register pair.
locations->AddTemp(Location::RequiresFpuRegister());
FALLTHROUGH_INTENDED;
case Primitive::kPrimBoolean:
case Primitive::kPrimByte:
case Primitive::kPrimChar:
case Primitive::kPrimShort:
case Primitive::kPrimInt:
locations->SetInAt(0, Location::RequiresRegister());
locations->SetOut(Location::RequiresFpuRegister());
break;
case Primitive::kPrimFloat:
case Primitive::kPrimDouble:
locations->SetInAt(0, Location::RequiresFpuRegister());
locations->SetOut(Location::SameAsFirstInput());
break;
default:
LOG(FATAL) << "Unsupported SIMD type";
UNREACHABLE();
}
}
void InstructionCodeGeneratorX86::VisitVecReplicateScalar(HVecReplicateScalar* instruction) {
LocationSummary* locations = instruction->GetLocations();
XmmRegister reg = locations->Out().AsFpuRegister<XmmRegister>();
switch (instruction->GetPackedType()) {
case Primitive::kPrimBoolean:
case Primitive::kPrimByte:
DCHECK_EQ(16u, instruction->GetVectorLength());
__ movd(reg, locations->InAt(0).AsRegister<Register>());
__ punpcklbw(reg, reg);
__ punpcklwd(reg, reg);
__ pshufd(reg, reg, Immediate(0));
break;
case Primitive::kPrimChar:
case Primitive::kPrimShort:
DCHECK_EQ(8u, instruction->GetVectorLength());
__ movd(reg, locations->InAt(0).AsRegister<Register>());
__ punpcklwd(reg, reg);
__ pshufd(reg, reg, Immediate(0));
break;
case Primitive::kPrimInt:
DCHECK_EQ(4u, instruction->GetVectorLength());
__ movd(reg, locations->InAt(0).AsRegister<Register>());
__ pshufd(reg, reg, Immediate(0));
break;
case Primitive::kPrimLong: {
XmmRegister tmp = locations->GetTemp(0).AsFpuRegister<XmmRegister>();
DCHECK_EQ(2u, instruction->GetVectorLength());
__ movd(reg, locations->InAt(0).AsRegisterPairLow<Register>());
__ movd(tmp, locations->InAt(0).AsRegisterPairHigh<Register>());
__ punpckldq(reg, tmp);
__ punpcklqdq(reg, reg);
break;
}
case Primitive::kPrimFloat:
DCHECK(locations->InAt(0).Equals(locations->Out()));
DCHECK_EQ(4u, instruction->GetVectorLength());
__ shufps(reg, reg, Immediate(0));
break;
case Primitive::kPrimDouble:
DCHECK(locations->InAt(0).Equals(locations->Out()));
DCHECK_EQ(2u, instruction->GetVectorLength());
__ shufpd(reg, reg, Immediate(0));
break;
default:
LOG(FATAL) << "Unsupported SIMD type";
UNREACHABLE();
}
}
void LocationsBuilderX86::VisitVecSetScalars(HVecSetScalars* instruction) {
LOG(FATAL) << "No SIMD for " << instruction->GetId();
}
void InstructionCodeGeneratorX86::VisitVecSetScalars(HVecSetScalars* instruction) {
LOG(FATAL) << "No SIMD for " << instruction->GetId();
}
void LocationsBuilderX86::VisitVecSumReduce(HVecSumReduce* instruction) {
LOG(FATAL) << "No SIMD for " << instruction->GetId();
}
void InstructionCodeGeneratorX86::VisitVecSumReduce(HVecSumReduce* instruction) {
LOG(FATAL) << "No SIMD for " << instruction->GetId();
}
// Helper to set up locations for vector unary operations.
static void CreateVecUnOpLocations(ArenaAllocator* arena, HVecUnaryOperation* instruction) {
LocationSummary* locations = new (arena) LocationSummary(instruction);
switch (instruction->GetPackedType()) {
case Primitive::kPrimBoolean:
case Primitive::kPrimByte:
case Primitive::kPrimChar:
case Primitive::kPrimShort:
case Primitive::kPrimInt:
case Primitive::kPrimLong:
case Primitive::kPrimFloat:
case Primitive::kPrimDouble:
locations->SetInAt(0, Location::RequiresFpuRegister());
locations->SetOut(Location::RequiresFpuRegister());
break;
default:
LOG(FATAL) << "Unsupported SIMD type";
UNREACHABLE();
}
}
void LocationsBuilderX86::VisitVecCnv(HVecCnv* instruction) {
CreateVecUnOpLocations(GetGraph()->GetArena(), instruction);
}
void InstructionCodeGeneratorX86::VisitVecCnv(HVecCnv* instruction) {
LocationSummary* locations = instruction->GetLocations();
XmmRegister src = locations->InAt(0).AsFpuRegister<XmmRegister>();
XmmRegister dst = locations->Out().AsFpuRegister<XmmRegister>();
Primitive::Type from = instruction->GetInputType();
Primitive::Type to = instruction->GetResultType();
if (from == Primitive::kPrimInt && to == Primitive::kPrimFloat) {
DCHECK_EQ(4u, instruction->GetVectorLength());
__ cvtdq2ps(dst, src);
} else {
LOG(FATAL) << "Unsupported SIMD type";
}
}
void LocationsBuilderX86::VisitVecNeg(HVecNeg* instruction) {
CreateVecUnOpLocations(GetGraph()->GetArena(), instruction);
}
void InstructionCodeGeneratorX86::VisitVecNeg(HVecNeg* instruction) {
LocationSummary* locations = instruction->GetLocations();
XmmRegister src = locations->InAt(0).AsFpuRegister<XmmRegister>();
XmmRegister dst = locations->Out().AsFpuRegister<XmmRegister>();
switch (instruction->GetPackedType()) {
case Primitive::kPrimByte:
DCHECK_EQ(16u, instruction->GetVectorLength());
__ pxor(dst, dst);
__ psubb(dst, src);
break;
case Primitive::kPrimChar:
case Primitive::kPrimShort:
DCHECK_EQ(8u, instruction->GetVectorLength());
__ pxor(dst, dst);
__ psubw(dst, src);
break;
case Primitive::kPrimInt:
DCHECK_EQ(4u, instruction->GetVectorLength());
__ pxor(dst, dst);
__ psubd(dst, src);
break;
case Primitive::kPrimLong:
DCHECK_EQ(2u, instruction->GetVectorLength());
__ pxor(dst, dst);
__ psubq(dst, src);
break;
case Primitive::kPrimFloat:
DCHECK_EQ(4u, instruction->GetVectorLength());
__ xorps(dst, dst);
__ subps(dst, src);
break;
case Primitive::kPrimDouble:
DCHECK_EQ(2u, instruction->GetVectorLength());
__ xorpd(dst, dst);
__ subpd(dst, src);
break;
default:
LOG(FATAL) << "Unsupported SIMD type";
UNREACHABLE();
}
}
void LocationsBuilderX86::VisitVecAbs(HVecAbs* instruction) {
CreateVecUnOpLocations(GetGraph()->GetArena(), instruction);
if (instruction->GetPackedType() == Primitive::kPrimInt) {
instruction->GetLocations()->AddTemp(Location::RequiresFpuRegister());
}
}
void InstructionCodeGeneratorX86::VisitVecAbs(HVecAbs* instruction) {
LocationSummary* locations = instruction->GetLocations();
XmmRegister src = locations->InAt(0).AsFpuRegister<XmmRegister>();
XmmRegister dst = locations->Out().AsFpuRegister<XmmRegister>();
switch (instruction->GetPackedType()) {
case Primitive::kPrimInt: {
DCHECK_EQ(4u, instruction->GetVectorLength());
XmmRegister tmp = locations->GetTemp(0).AsFpuRegister<XmmRegister>();
__ movaps(dst, src);
__ pxor(tmp, tmp);
__ pcmpgtd(tmp, dst);
__ pxor(dst, tmp);
__ psubd(dst, tmp);
break;
}
case Primitive::kPrimFloat:
DCHECK_EQ(4u, instruction->GetVectorLength());
__ pcmpeqb(dst, dst); // all ones
__ psrld(dst, Immediate(1));
__ andps(dst, src);
break;
case Primitive::kPrimDouble:
DCHECK_EQ(2u, instruction->GetVectorLength());
__ pcmpeqb(dst, dst); // all ones
__ psrlq(dst, Immediate(1));
__ andpd(dst, src);
break;
default:
LOG(FATAL) << "Unsupported SIMD type";
UNREACHABLE();
}
}
void LocationsBuilderX86::VisitVecNot(HVecNot* instruction) {
CreateVecUnOpLocations(GetGraph()->GetArena(), instruction);
// Boolean-not requires a temporary to construct the 16 x one.
if (instruction->GetPackedType() == Primitive::kPrimBoolean) {
instruction->GetLocations()->AddTemp(Location::RequiresFpuRegister());
}
}
void InstructionCodeGeneratorX86::VisitVecNot(HVecNot* instruction) {
LocationSummary* locations = instruction->GetLocations();
XmmRegister src = locations->InAt(0).AsFpuRegister<XmmRegister>();
XmmRegister dst = locations->Out().AsFpuRegister<XmmRegister>();
switch (instruction->GetPackedType()) {
case Primitive::kPrimBoolean: { // special case boolean-not
DCHECK_EQ(16u, instruction->GetVectorLength());
XmmRegister tmp = locations->GetTemp(0).AsFpuRegister<XmmRegister>();
__ pxor(dst, dst);
__ pcmpeqb(tmp, tmp); // all ones
__ psubb(dst, tmp); // 16 x one
__ pxor(dst, src);
break;
}
case Primitive::kPrimByte:
case Primitive::kPrimChar:
case Primitive::kPrimShort:
case Primitive::kPrimInt:
case Primitive::kPrimLong:
DCHECK_LE(2u, instruction->GetVectorLength());
DCHECK_LE(instruction->GetVectorLength(), 16u);
__ pcmpeqb(dst, dst); // all ones
__ pxor(dst, src);
break;
case Primitive::kPrimFloat:
DCHECK_EQ(4u, instruction->GetVectorLength());
__ pcmpeqb(dst, dst); // all ones
__ xorps(dst, src);
break;
case Primitive::kPrimDouble:
DCHECK_EQ(2u, instruction->GetVectorLength());
__ pcmpeqb(dst, dst); // all ones
__ xorpd(dst, src);
break;
default:
LOG(FATAL) << "Unsupported SIMD type";
UNREACHABLE();
}
}
// Helper to set up locations for vector binary operations.
static void CreateVecBinOpLocations(ArenaAllocator* arena, HVecBinaryOperation* instruction) {
LocationSummary* locations = new (arena) LocationSummary(instruction);
switch (instruction->GetPackedType()) {
case Primitive::kPrimBoolean:
case Primitive::kPrimByte:
case Primitive::kPrimChar:
case Primitive::kPrimShort:
case Primitive::kPrimInt:
case Primitive::kPrimLong:
case Primitive::kPrimFloat:
case Primitive::kPrimDouble:
locations->SetInAt(0, Location::RequiresFpuRegister());
locations->SetInAt(1, Location::RequiresFpuRegister());
locations->SetOut(Location::SameAsFirstInput());
break;
default:
LOG(FATAL) << "Unsupported SIMD type";
UNREACHABLE();
}
}
void LocationsBuilderX86::VisitVecAdd(HVecAdd* instruction) {
CreateVecBinOpLocations(GetGraph()->GetArena(), instruction);
}
void InstructionCodeGeneratorX86::VisitVecAdd(HVecAdd* instruction) {
LocationSummary* locations = instruction->GetLocations();
DCHECK(locations->InAt(0).Equals(locations->Out()));
XmmRegister src = locations->InAt(1).AsFpuRegister<XmmRegister>();
XmmRegister dst = locations->Out().AsFpuRegister<XmmRegister>();
switch (instruction->GetPackedType()) {
case Primitive::kPrimByte:
DCHECK_EQ(16u, instruction->GetVectorLength());
__ paddb(dst, src);
break;
case Primitive::kPrimChar:
case Primitive::kPrimShort:
DCHECK_EQ(8u, instruction->GetVectorLength());
__ paddw(dst, src);
break;
case Primitive::kPrimInt:
DCHECK_EQ(4u, instruction->GetVectorLength());
__ paddd(dst, src);
break;
case Primitive::kPrimLong:
DCHECK_EQ(2u, instruction->GetVectorLength());
__ paddq(dst, src);
break;
case Primitive::kPrimFloat:
DCHECK_EQ(4u, instruction->GetVectorLength());
__ addps(dst, src);
break;
case Primitive::kPrimDouble:
DCHECK_EQ(2u, instruction->GetVectorLength());
__ addpd(dst, src);
break;
default:
LOG(FATAL) << "Unsupported SIMD type";
UNREACHABLE();
}
}
void LocationsBuilderX86::VisitVecHalvingAdd(HVecHalvingAdd* instruction) {
CreateVecBinOpLocations(GetGraph()->GetArena(), instruction);
}
void InstructionCodeGeneratorX86::VisitVecHalvingAdd(HVecHalvingAdd* instruction) {
LocationSummary* locations = instruction->GetLocations();
DCHECK(locations->InAt(0).Equals(locations->Out()));
XmmRegister src = locations->InAt(1).AsFpuRegister<XmmRegister>();
XmmRegister dst = locations->Out().AsFpuRegister<XmmRegister>();
DCHECK(instruction->IsRounded());
DCHECK(instruction->IsUnsigned());
switch (instruction->GetPackedType()) {
case Primitive::kPrimByte:
DCHECK_EQ(16u, instruction->GetVectorLength());
__ pavgb(dst, src);
return;
case Primitive::kPrimChar:
case Primitive::kPrimShort:
DCHECK_EQ(8u, instruction->GetVectorLength());
__ pavgw(dst, src);
return;
default:
LOG(FATAL) << "Unsupported SIMD type";
UNREACHABLE();
}
}
void LocationsBuilderX86::VisitVecSub(HVecSub* instruction) {
CreateVecBinOpLocations(GetGraph()->GetArena(), instruction);
}
void InstructionCodeGeneratorX86::VisitVecSub(HVecSub* instruction) {
LocationSummary* locations = instruction->GetLocations();
DCHECK(locations->InAt(0).Equals(locations->Out()));
XmmRegister src = locations->InAt(1).AsFpuRegister<XmmRegister>();
XmmRegister dst = locations->Out().AsFpuRegister<XmmRegister>();
switch (instruction->GetPackedType()) {
case Primitive::kPrimByte:
DCHECK_EQ(16u, instruction->GetVectorLength());
__ psubb(dst, src);
break;
case Primitive::kPrimChar:
case Primitive::kPrimShort:
DCHECK_EQ(8u, instruction->GetVectorLength());
__ psubw(dst, src);
break;
case Primitive::kPrimInt:
DCHECK_EQ(4u, instruction->GetVectorLength());
__ psubd(dst, src);
break;
case Primitive::kPrimLong:
DCHECK_EQ(2u, instruction->GetVectorLength());
__ psubq(dst, src);
break;
case Primitive::kPrimFloat:
DCHECK_EQ(4u, instruction->GetVectorLength());
__ subps(dst, src);
break;
case Primitive::kPrimDouble:
DCHECK_EQ(2u, instruction->GetVectorLength());
__ subpd(dst, src);
break;
default:
LOG(FATAL) << "Unsupported SIMD type";
UNREACHABLE();
}
}
void LocationsBuilderX86::VisitVecMul(HVecMul* instruction) {
CreateVecBinOpLocations(GetGraph()->GetArena(), instruction);
}
void InstructionCodeGeneratorX86::VisitVecMul(HVecMul* instruction) {
LocationSummary* locations = instruction->GetLocations();
DCHECK(locations->InAt(0).Equals(locations->Out()));
XmmRegister src = locations->InAt(1).AsFpuRegister<XmmRegister>();
XmmRegister dst = locations->Out().AsFpuRegister<XmmRegister>();
switch (instruction->GetPackedType()) {
case Primitive::kPrimChar:
case Primitive::kPrimShort:
DCHECK_EQ(8u, instruction->GetVectorLength());
__ pmullw(dst, src);
break;
case Primitive::kPrimInt:
DCHECK_EQ(4u, instruction->GetVectorLength());
__ pmulld(dst, src);
break;
case Primitive::kPrimFloat:
DCHECK_EQ(4u, instruction->GetVectorLength());
__ mulps(dst, src);
break;
case Primitive::kPrimDouble:
DCHECK_EQ(2u, instruction->GetVectorLength());
__ mulpd(dst, src);
break;
default:
LOG(FATAL) << "Unsupported SIMD type";
UNREACHABLE();
}
}
void LocationsBuilderX86::VisitVecDiv(HVecDiv* instruction) {
CreateVecBinOpLocations(GetGraph()->GetArena(), instruction);
}
void InstructionCodeGeneratorX86::VisitVecDiv(HVecDiv* instruction) {
LocationSummary* locations = instruction->GetLocations();
DCHECK(locations->InAt(0).Equals(locations->Out()));
XmmRegister src = locations->InAt(1).AsFpuRegister<XmmRegister>();
XmmRegister dst = locations->Out().AsFpuRegister<XmmRegister>();
switch (instruction->GetPackedType()) {
case Primitive::kPrimFloat:
DCHECK_EQ(4u, instruction->GetVectorLength());
__ divps(dst, src);
break;
case Primitive::kPrimDouble:
DCHECK_EQ(2u, instruction->GetVectorLength());
__ divpd(dst, src);
break;
default:
LOG(FATAL) << "Unsupported SIMD type";
UNREACHABLE();
}
}
void LocationsBuilderX86::VisitVecMin(HVecMin* instruction) {
CreateVecBinOpLocations(GetGraph()->GetArena(), instruction);
}
void InstructionCodeGeneratorX86::VisitVecMin(HVecMin* instruction) {
LOG(FATAL) << "No SIMD for " << instruction->GetId();
}
void LocationsBuilderX86::VisitVecMax(HVecMax* instruction) {
CreateVecBinOpLocations(GetGraph()->GetArena(), instruction);
}
void InstructionCodeGeneratorX86::VisitVecMax(HVecMax* instruction) {
LOG(FATAL) << "No SIMD for " << instruction->GetId();
}
void LocationsBuilderX86::VisitVecAnd(HVecAnd* instruction) {
CreateVecBinOpLocations(GetGraph()->GetArena(), instruction);
}
void InstructionCodeGeneratorX86::VisitVecAnd(HVecAnd* instruction) {
LocationSummary* locations = instruction->GetLocations();
DCHECK(locations->InAt(0).Equals(locations->Out()));
XmmRegister src = locations->InAt(1).AsFpuRegister<XmmRegister>();
XmmRegister dst = locations->Out().AsFpuRegister<XmmRegister>();
switch (instruction->GetPackedType()) {
case Primitive::kPrimBoolean:
case Primitive::kPrimByte:
case Primitive::kPrimChar:
case Primitive::kPrimShort:
case Primitive::kPrimInt:
case Primitive::kPrimLong:
DCHECK_LE(2u, instruction->GetVectorLength());
DCHECK_LE(instruction->GetVectorLength(), 16u);
__ pand(dst, src);
break;
case Primitive::kPrimFloat:
DCHECK_EQ(4u, instruction->GetVectorLength());
__ andps(dst, src);
break;
case Primitive::kPrimDouble:
DCHECK_EQ(2u, instruction->GetVectorLength());
__ andpd(dst, src);
break;
default:
LOG(FATAL) << "Unsupported SIMD type";
UNREACHABLE();
}
}
void LocationsBuilderX86::VisitVecAndNot(HVecAndNot* instruction) {
CreateVecBinOpLocations(GetGraph()->GetArena(), instruction);
}
void InstructionCodeGeneratorX86::VisitVecAndNot(HVecAndNot* instruction) {
LocationSummary* locations = instruction->GetLocations();
DCHECK(locations->InAt(0).Equals(locations->Out()));
XmmRegister src = locations->InAt(1).AsFpuRegister<XmmRegister>();
XmmRegister dst = locations->Out().AsFpuRegister<XmmRegister>();
switch (instruction->GetPackedType()) {
case Primitive::kPrimBoolean:
case Primitive::kPrimByte:
case Primitive::kPrimChar:
case Primitive::kPrimShort:
case Primitive::kPrimInt:
case Primitive::kPrimLong:
DCHECK_LE(2u, instruction->GetVectorLength());
DCHECK_LE(instruction->GetVectorLength(), 16u);
__ pandn(dst, src);
break;
case Primitive::kPrimFloat:
DCHECK_EQ(4u, instruction->GetVectorLength());
__ andnps(dst, src);
break;
case Primitive::kPrimDouble:
DCHECK_EQ(2u, instruction->GetVectorLength());
__ andnpd(dst, src);
break;
default:
LOG(FATAL) << "Unsupported SIMD type";
UNREACHABLE();
}
}
void LocationsBuilderX86::VisitVecOr(HVecOr* instruction) {
CreateVecBinOpLocations(GetGraph()->GetArena(), instruction);
}
void InstructionCodeGeneratorX86::VisitVecOr(HVecOr* instruction) {
LocationSummary* locations = instruction->GetLocations();
DCHECK(locations->InAt(0).Equals(locations->Out()));
XmmRegister src = locations->InAt(1).AsFpuRegister<XmmRegister>();
XmmRegister dst = locations->Out().AsFpuRegister<XmmRegister>();
switch (instruction->GetPackedType()) {
case Primitive::kPrimBoolean:
case Primitive::kPrimByte:
case Primitive::kPrimChar:
case Primitive::kPrimShort:
case Primitive::kPrimInt:
case Primitive::kPrimLong:
DCHECK_LE(2u, instruction->GetVectorLength());
DCHECK_LE(instruction->GetVectorLength(), 16u);
__ por(dst, src);
break;
case Primitive::kPrimFloat:
DCHECK_EQ(4u, instruction->GetVectorLength());
__ orps(dst, src);
break;
case Primitive::kPrimDouble:
DCHECK_EQ(2u, instruction->GetVectorLength());
__ orpd(dst, src);
break;
default:
LOG(FATAL) << "Unsupported SIMD type";
UNREACHABLE();
}
}
void LocationsBuilderX86::VisitVecXor(HVecXor* instruction) {
CreateVecBinOpLocations(GetGraph()->GetArena(), instruction);
}
void InstructionCodeGeneratorX86::VisitVecXor(HVecXor* instruction) {
LocationSummary* locations = instruction->GetLocations();
DCHECK(locations->InAt(0).Equals(locations->Out()));
XmmRegister src = locations->InAt(1).AsFpuRegister<XmmRegister>();
XmmRegister dst = locations->Out().AsFpuRegister<XmmRegister>();
switch (instruction->GetPackedType()) {
case Primitive::kPrimBoolean:
case Primitive::kPrimByte:
case Primitive::kPrimChar:
case Primitive::kPrimShort:
case Primitive::kPrimInt:
case Primitive::kPrimLong:
DCHECK_LE(2u, instruction->GetVectorLength());
DCHECK_LE(instruction->GetVectorLength(), 16u);
__ pxor(dst, src);
break;
case Primitive::kPrimFloat:
DCHECK_EQ(4u, instruction->GetVectorLength());
__ xorps(dst, src);
break;
case Primitive::kPrimDouble:
DCHECK_EQ(2u, instruction->GetVectorLength());
__ xorpd(dst, src);
break;
default:
LOG(FATAL) << "Unsupported SIMD type";
UNREACHABLE();
}
}
// Helper to set up locations for vector shift operations.
static void CreateVecShiftLocations(ArenaAllocator* arena, HVecBinaryOperation* instruction) {
LocationSummary* locations = new (arena) LocationSummary(instruction);
switch (instruction->GetPackedType()) {
case Primitive::kPrimChar:
case Primitive::kPrimShort:
case Primitive::kPrimInt:
case Primitive::kPrimLong:
locations->SetInAt(0, Location::RequiresFpuRegister());
locations->SetInAt(1, Location::ConstantLocation(instruction->InputAt(1)->AsConstant()));
locations->SetOut(Location::SameAsFirstInput());
break;
default:
LOG(FATAL) << "Unsupported SIMD type";
UNREACHABLE();
}
}
void LocationsBuilderX86::VisitVecShl(HVecShl* instruction) {
CreateVecShiftLocations(GetGraph()->GetArena(), instruction);
}
void InstructionCodeGeneratorX86::VisitVecShl(HVecShl* instruction) {
LocationSummary* locations = instruction->GetLocations();
DCHECK(locations->InAt(0).Equals(locations->Out()));
int32_t value = locations->InAt(1).GetConstant()->AsIntConstant()->GetValue();
XmmRegister dst = locations->Out().AsFpuRegister<XmmRegister>();
switch (instruction->GetPackedType()) {
case Primitive::kPrimChar:
case Primitive::kPrimShort:
DCHECK_EQ(8u, instruction->GetVectorLength());
__ psllw(dst, Immediate(static_cast<uint8_t>(value)));
break;
case Primitive::kPrimInt:
DCHECK_EQ(4u, instruction->GetVectorLength());
__ pslld(dst, Immediate(static_cast<uint8_t>(value)));
break;
case Primitive::kPrimLong:
DCHECK_EQ(2u, instruction->GetVectorLength());
__ psllq(dst, Immediate(static_cast<uint8_t>(value)));
break;
default:
LOG(FATAL) << "Unsupported SIMD type";
UNREACHABLE();
}
}
void LocationsBuilderX86::VisitVecShr(HVecShr* instruction) {
CreateVecShiftLocations(GetGraph()->GetArena(), instruction);
}
void InstructionCodeGeneratorX86::VisitVecShr(HVecShr* instruction) {
LocationSummary* locations = instruction->GetLocations();
DCHECK(locations->InAt(0).Equals(locations->Out()));
int32_t value = locations->InAt(1).GetConstant()->AsIntConstant()->GetValue();
XmmRegister dst = locations->Out().AsFpuRegister<XmmRegister>();
switch (instruction->GetPackedType()) {
case Primitive::kPrimChar:
case Primitive::kPrimShort:
DCHECK_EQ(8u, instruction->GetVectorLength());
__ psraw(dst, Immediate(static_cast<uint8_t>(value)));
break;
case Primitive::kPrimInt:
DCHECK_EQ(4u, instruction->GetVectorLength());
__ psrad(dst, Immediate(static_cast<uint8_t>(value)));
break;
default:
LOG(FATAL) << "Unsupported SIMD type";
UNREACHABLE();
}
}
void LocationsBuilderX86::VisitVecUShr(HVecUShr* instruction) {
CreateVecShiftLocations(GetGraph()->GetArena(), instruction);
}
void InstructionCodeGeneratorX86::VisitVecUShr(HVecUShr* instruction) {
LocationSummary* locations = instruction->GetLocations();
DCHECK(locations->InAt(0).Equals(locations->Out()));
int32_t value = locations->InAt(1).GetConstant()->AsIntConstant()->GetValue();
XmmRegister dst = locations->Out().AsFpuRegister<XmmRegister>();
switch (instruction->GetPackedType()) {
case Primitive::kPrimChar:
case Primitive::kPrimShort:
DCHECK_EQ(8u, instruction->GetVectorLength());
__ psrlw(dst, Immediate(static_cast<uint8_t>(value)));
break;
case Primitive::kPrimInt:
DCHECK_EQ(4u, instruction->GetVectorLength());
__ psrld(dst, Immediate(static_cast<uint8_t>(value)));
break;
case Primitive::kPrimLong:
DCHECK_EQ(2u, instruction->GetVectorLength());
__ psrlq(dst, Immediate(static_cast<uint8_t>(value)));
break;
default:
LOG(FATAL) << "Unsupported SIMD type";
UNREACHABLE();
}
}
void LocationsBuilderX86::VisitVecMultiplyAccumulate(HVecMultiplyAccumulate* instr) {
LOG(FATAL) << "No SIMD for " << instr->GetId();
}
void InstructionCodeGeneratorX86::VisitVecMultiplyAccumulate(HVecMultiplyAccumulate* instr) {
LOG(FATAL) << "No SIMD for " << instr->GetId();
}
// Helper to set up locations for vector memory operations.
static void CreateVecMemLocations(ArenaAllocator* arena,
HVecMemoryOperation* instruction,
bool is_load) {
LocationSummary* locations = new (arena) LocationSummary(instruction);
switch (instruction->GetPackedType()) {
case Primitive::kPrimBoolean:
case Primitive::kPrimByte:
case Primitive::kPrimChar:
case Primitive::kPrimShort:
case Primitive::kPrimInt:
case Primitive::kPrimLong:
case Primitive::kPrimFloat:
case Primitive::kPrimDouble:
locations->SetInAt(0, Location::RequiresRegister());
locations->SetInAt(1, Location::RegisterOrConstant(instruction->InputAt(1)));
if (is_load) {
locations->SetOut(Location::RequiresFpuRegister());
} else {
locations->SetInAt(2, Location::RequiresFpuRegister());
}
break;
default:
LOG(FATAL) << "Unsupported SIMD type";
UNREACHABLE();
}
}
// Helper to set up registers and address for vector memory operations.
static Address CreateVecMemRegisters(HVecMemoryOperation* instruction,
Location* reg_loc,
bool is_load) {
LocationSummary* locations = instruction->GetLocations();
Location base = locations->InAt(0);
Location index = locations->InAt(1);
*reg_loc = is_load ? locations->Out() : locations->InAt(2);
size_t size = Primitive::ComponentSize(instruction->GetPackedType());
uint32_t offset = mirror::Array::DataOffset(size).Uint32Value();
ScaleFactor scale = TIMES_1;
switch (size) {
case 2: scale = TIMES_2; break;
case 4: scale = TIMES_4; break;
case 8: scale = TIMES_8; break;
default: break;
}
return CodeGeneratorX86::ArrayAddress(base.AsRegister<Register>(), index, scale, offset);
}
void LocationsBuilderX86::VisitVecLoad(HVecLoad* instruction) {
CreateVecMemLocations(GetGraph()->GetArena(), instruction, /*is_load*/ true);
}
void InstructionCodeGeneratorX86::VisitVecLoad(HVecLoad* instruction) {
Location reg_loc = Location::NoLocation();
Address address = CreateVecMemRegisters(instruction, ®_loc, /*is_load*/ true);
XmmRegister reg = reg_loc.AsFpuRegister<XmmRegister>();
bool is_aligned16 = instruction->GetAlignment().IsAlignedAt(16);
switch (instruction->GetPackedType()) {
case Primitive::kPrimBoolean:
case Primitive::kPrimByte:
case Primitive::kPrimChar:
case Primitive::kPrimShort:
case Primitive::kPrimInt:
case Primitive::kPrimLong:
DCHECK_LE(2u, instruction->GetVectorLength());
DCHECK_LE(instruction->GetVectorLength(), 16u);
is_aligned16 ? __ movdqa(reg, address) : __ movdqu(reg, address);
break;
case Primitive::kPrimFloat:
DCHECK_EQ(4u, instruction->GetVectorLength());
is_aligned16 ? __ movaps(reg, address) : __ movups(reg, address);
break;
case Primitive::kPrimDouble:
DCHECK_EQ(2u, instruction->GetVectorLength());
is_aligned16 ? __ movapd(reg, address) : __ movupd(reg, address);
break;
default:
LOG(FATAL) << "Unsupported SIMD type";
UNREACHABLE();
}
}
void LocationsBuilderX86::VisitVecStore(HVecStore* instruction) {
CreateVecMemLocations(GetGraph()->GetArena(), instruction, /*is_load*/ false);
}
void InstructionCodeGeneratorX86::VisitVecStore(HVecStore* instruction) {
Location reg_loc = Location::NoLocation();
Address address = CreateVecMemRegisters(instruction, ®_loc, /*is_load*/ false);
XmmRegister reg = reg_loc.AsFpuRegister<XmmRegister>();
bool is_aligned16 = instruction->GetAlignment().IsAlignedAt(16);
switch (instruction->GetPackedType()) {
case Primitive::kPrimBoolean:
case Primitive::kPrimByte:
case Primitive::kPrimChar:
case Primitive::kPrimShort:
case Primitive::kPrimInt:
case Primitive::kPrimLong:
DCHECK_LE(2u, instruction->GetVectorLength());
DCHECK_LE(instruction->GetVectorLength(), 16u);
is_aligned16 ? __ movdqa(address, reg) : __ movdqu(address, reg);
break;
case Primitive::kPrimFloat:
DCHECK_EQ(4u, instruction->GetVectorLength());
is_aligned16 ? __ movaps(address, reg) : __ movups(address, reg);
break;
case Primitive::kPrimDouble:
DCHECK_EQ(2u, instruction->GetVectorLength());
is_aligned16 ? __ movapd(address, reg) : __ movupd(address, reg);
break;
default:
LOG(FATAL) << "Unsupported SIMD type";
UNREACHABLE();
}
}
#undef __
} // namespace x86
} // namespace art