/*
* Copyright (C) 2011 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef ART_COMPILER_UTILS_MIPS_ASSEMBLER_MIPS_H_
#define ART_COMPILER_UTILS_MIPS_ASSEMBLER_MIPS_H_
#include <deque>
#include <utility>
#include <vector>
#include "arch/mips/instruction_set_features_mips.h"
#include "base/arena_containers.h"
#include "base/enums.h"
#include "base/macros.h"
#include "constants_mips.h"
#include "globals.h"
#include "managed_register_mips.h"
#include "offsets.h"
#include "utils/assembler.h"
#include "utils/jni_macro_assembler.h"
#include "utils/label.h"
namespace art {
namespace mips {
static constexpr size_t kMipsWordSize = 4;
static constexpr size_t kMipsDoublewordSize = 8;
enum LoadOperandType {
kLoadSignedByte,
kLoadUnsignedByte,
kLoadSignedHalfword,
kLoadUnsignedHalfword,
kLoadWord,
kLoadDoubleword
};
enum StoreOperandType {
kStoreByte,
kStoreHalfword,
kStoreWord,
kStoreDoubleword
};
// Used to test the values returned by ClassS/ClassD.
enum FPClassMaskType {
kSignalingNaN = 0x001,
kQuietNaN = 0x002,
kNegativeInfinity = 0x004,
kNegativeNormal = 0x008,
kNegativeSubnormal = 0x010,
kNegativeZero = 0x020,
kPositiveInfinity = 0x040,
kPositiveNormal = 0x080,
kPositiveSubnormal = 0x100,
kPositiveZero = 0x200,
};
class MipsLabel : public Label {
public:
MipsLabel() : prev_branch_id_plus_one_(0) {}
MipsLabel(MipsLabel&& src)
: Label(std::move(src)), prev_branch_id_plus_one_(src.prev_branch_id_plus_one_) {}
private:
uint32_t prev_branch_id_plus_one_; // To get distance from preceding branch, if any.
friend class MipsAssembler;
DISALLOW_COPY_AND_ASSIGN(MipsLabel);
};
// Assembler literal is a value embedded in code, retrieved using a PC-relative load.
class Literal {
public:
static constexpr size_t kMaxSize = 8;
Literal(uint32_t size, const uint8_t* data)
: label_(), size_(size) {
DCHECK_LE(size, Literal::kMaxSize);
memcpy(data_, data, size);
}
template <typename T>
T GetValue() const {
DCHECK_EQ(size_, sizeof(T));
T value;
memcpy(&value, data_, sizeof(T));
return value;
}
uint32_t GetSize() const {
return size_;
}
const uint8_t* GetData() const {
return data_;
}
MipsLabel* GetLabel() {
return &label_;
}
const MipsLabel* GetLabel() const {
return &label_;
}
private:
MipsLabel label_;
const uint32_t size_;
uint8_t data_[kMaxSize];
DISALLOW_COPY_AND_ASSIGN(Literal);
};
// Jump table: table of labels emitted after the literals. Similar to literals.
class JumpTable {
public:
explicit JumpTable(std::vector<MipsLabel*>&& labels)
: label_(), labels_(std::move(labels)) {
}
uint32_t GetSize() const {
return static_cast<uint32_t>(labels_.size()) * sizeof(uint32_t);
}
const std::vector<MipsLabel*>& GetData() const {
return labels_;
}
MipsLabel* GetLabel() {
return &label_;
}
const MipsLabel* GetLabel() const {
return &label_;
}
private:
MipsLabel label_;
std::vector<MipsLabel*> labels_;
DISALLOW_COPY_AND_ASSIGN(JumpTable);
};
// Slowpath entered when Thread::Current()->_exception is non-null.
class MipsExceptionSlowPath {
public:
explicit MipsExceptionSlowPath(MipsManagedRegister scratch, size_t stack_adjust)
: scratch_(scratch), stack_adjust_(stack_adjust) {}
MipsExceptionSlowPath(MipsExceptionSlowPath&& src)
: scratch_(src.scratch_),
stack_adjust_(src.stack_adjust_),
exception_entry_(std::move(src.exception_entry_)) {}
private:
MipsLabel* Entry() { return &exception_entry_; }
const MipsManagedRegister scratch_;
const size_t stack_adjust_;
MipsLabel exception_entry_;
friend class MipsAssembler;
DISALLOW_COPY_AND_ASSIGN(MipsExceptionSlowPath);
};
class MipsAssembler FINAL : public Assembler, public JNIMacroAssembler<PointerSize::k32> {
public:
using JNIBase = JNIMacroAssembler<PointerSize::k32>;
explicit MipsAssembler(ArenaAllocator* arena,
const MipsInstructionSetFeatures* instruction_set_features = nullptr)
: Assembler(arena),
overwriting_(false),
overwrite_location_(0),
reordering_(true),
ds_fsm_state_(kExpectingLabel),
ds_fsm_target_pc_(0),
literals_(arena->Adapter(kArenaAllocAssembler)),
jump_tables_(arena->Adapter(kArenaAllocAssembler)),
last_position_adjustment_(0),
last_old_position_(0),
last_branch_id_(0),
isa_features_(instruction_set_features) {
cfi().DelayEmittingAdvancePCs();
}
size_t CodeSize() const OVERRIDE { return Assembler::CodeSize(); }
size_t CodePosition() OVERRIDE;
DebugFrameOpCodeWriterForAssembler& cfi() { return Assembler::cfi(); }
virtual ~MipsAssembler() {
for (auto& branch : branches_) {
CHECK(branch.IsResolved());
}
}
// Emit Machine Instructions.
void Addu(Register rd, Register rs, Register rt);
void Addiu(Register rt, Register rs, uint16_t imm16);
void Subu(Register rd, Register rs, Register rt);
void MultR2(Register rs, Register rt); // R2
void MultuR2(Register rs, Register rt); // R2
void DivR2(Register rs, Register rt); // R2
void DivuR2(Register rs, Register rt); // R2
void MulR2(Register rd, Register rs, Register rt); // R2
void DivR2(Register rd, Register rs, Register rt); // R2
void ModR2(Register rd, Register rs, Register rt); // R2
void DivuR2(Register rd, Register rs, Register rt); // R2
void ModuR2(Register rd, Register rs, Register rt); // R2
void MulR6(Register rd, Register rs, Register rt); // R6
void MuhR6(Register rd, Register rs, Register rt); // R6
void MuhuR6(Register rd, Register rs, Register rt); // R6
void DivR6(Register rd, Register rs, Register rt); // R6
void ModR6(Register rd, Register rs, Register rt); // R6
void DivuR6(Register rd, Register rs, Register rt); // R6
void ModuR6(Register rd, Register rs, Register rt); // R6
void And(Register rd, Register rs, Register rt);
void Andi(Register rt, Register rs, uint16_t imm16);
void Or(Register rd, Register rs, Register rt);
void Ori(Register rt, Register rs, uint16_t imm16);
void Xor(Register rd, Register rs, Register rt);
void Xori(Register rt, Register rs, uint16_t imm16);
void Nor(Register rd, Register rs, Register rt);
void Movz(Register rd, Register rs, Register rt); // R2
void Movn(Register rd, Register rs, Register rt); // R2
void Seleqz(Register rd, Register rs, Register rt); // R6
void Selnez(Register rd, Register rs, Register rt); // R6
void ClzR6(Register rd, Register rs);
void ClzR2(Register rd, Register rs);
void CloR6(Register rd, Register rs);
void CloR2(Register rd, Register rs);
void Seb(Register rd, Register rt); // R2+
void Seh(Register rd, Register rt); // R2+
void Wsbh(Register rd, Register rt); // R2+
void Bitswap(Register rd, Register rt); // R6
void Sll(Register rd, Register rt, int shamt);
void Srl(Register rd, Register rt, int shamt);
void Rotr(Register rd, Register rt, int shamt); // R2+
void Sra(Register rd, Register rt, int shamt);
void Sllv(Register rd, Register rt, Register rs);
void Srlv(Register rd, Register rt, Register rs);
void Rotrv(Register rd, Register rt, Register rs); // R2+
void Srav(Register rd, Register rt, Register rs);
void Ext(Register rd, Register rt, int pos, int size); // R2+
void Ins(Register rd, Register rt, int pos, int size); // R2+
void Lsa(Register rd, Register rs, Register rt, int saPlusOne); // R6
void ShiftAndAdd(Register dst, Register src_idx, Register src_base, int shamt, Register tmp = AT);
void Lb(Register rt, Register rs, uint16_t imm16);
void Lh(Register rt, Register rs, uint16_t imm16);
void Lw(Register rt, Register rs, uint16_t imm16);
void Lwl(Register rt, Register rs, uint16_t imm16);
void Lwr(Register rt, Register rs, uint16_t imm16);
void Lbu(Register rt, Register rs, uint16_t imm16);
void Lhu(Register rt, Register rs, uint16_t imm16);
void Lwpc(Register rs, uint32_t imm19); // R6
void Lui(Register rt, uint16_t imm16);
void Aui(Register rt, Register rs, uint16_t imm16); // R6
void Sync(uint32_t stype);
void Mfhi(Register rd); // R2
void Mflo(Register rd); // R2
void Sb(Register rt, Register rs, uint16_t imm16);
void Sh(Register rt, Register rs, uint16_t imm16);
void Sw(Register rt, Register rs, uint16_t imm16);
void Swl(Register rt, Register rs, uint16_t imm16);
void Swr(Register rt, Register rs, uint16_t imm16);
void LlR2(Register rt, Register base, int16_t imm16 = 0);
void ScR2(Register rt, Register base, int16_t imm16 = 0);
void LlR6(Register rt, Register base, int16_t imm9 = 0);
void ScR6(Register rt, Register base, int16_t imm9 = 0);
void Slt(Register rd, Register rs, Register rt);
void Sltu(Register rd, Register rs, Register rt);
void Slti(Register rt, Register rs, uint16_t imm16);
void Sltiu(Register rt, Register rs, uint16_t imm16);
// Branches and jumps to immediate offsets/addresses do not take care of their
// delay/forbidden slots and generally should not be used directly. This applies
// to the following R2 and R6 branch/jump instructions with imm16, imm21, addr26
// offsets/addresses.
// Use branches/jumps to labels instead.
void B(uint16_t imm16);
void Bal(uint16_t imm16);
void Beq(Register rs, Register rt, uint16_t imm16);
void Bne(Register rs, Register rt, uint16_t imm16);
void Beqz(Register rt, uint16_t imm16);
void Bnez(Register rt, uint16_t imm16);
void Bltz(Register rt, uint16_t imm16);
void Bgez(Register rt, uint16_t imm16);
void Blez(Register rt, uint16_t imm16);
void Bgtz(Register rt, uint16_t imm16);
void Bc1f(uint16_t imm16); // R2
void Bc1f(int cc, uint16_t imm16); // R2
void Bc1t(uint16_t imm16); // R2
void Bc1t(int cc, uint16_t imm16); // R2
void J(uint32_t addr26);
void Jal(uint32_t addr26);
// Jalr() and Jr() fill their delay slots when reordering is enabled.
// When reordering is disabled, the delay slots must be filled manually.
// You may use NopIfNoReordering() to fill them when reordering is disabled.
void Jalr(Register rd, Register rs);
void Jalr(Register rs);
void Jr(Register rs);
// Nal() does not fill its delay slot. It must be filled manually.
void Nal();
void Auipc(Register rs, uint16_t imm16); // R6
void Addiupc(Register rs, uint32_t imm19); // R6
void Bc(uint32_t imm26); // R6
void Balc(uint32_t imm26); // R6
void Jic(Register rt, uint16_t imm16); // R6
void Jialc(Register rt, uint16_t imm16); // R6
void Bltc(Register rs, Register rt, uint16_t imm16); // R6
void Bltzc(Register rt, uint16_t imm16); // R6
void Bgtzc(Register rt, uint16_t imm16); // R6
void Bgec(Register rs, Register rt, uint16_t imm16); // R6
void Bgezc(Register rt, uint16_t imm16); // R6
void Blezc(Register rt, uint16_t imm16); // R6
void Bltuc(Register rs, Register rt, uint16_t imm16); // R6
void Bgeuc(Register rs, Register rt, uint16_t imm16); // R6
void Beqc(Register rs, Register rt, uint16_t imm16); // R6
void Bnec(Register rs, Register rt, uint16_t imm16); // R6
void Beqzc(Register rs, uint32_t imm21); // R6
void Bnezc(Register rs, uint32_t imm21); // R6
void Bc1eqz(FRegister ft, uint16_t imm16); // R6
void Bc1nez(FRegister ft, uint16_t imm16); // R6
void AddS(FRegister fd, FRegister fs, FRegister ft);
void SubS(FRegister fd, FRegister fs, FRegister ft);
void MulS(FRegister fd, FRegister fs, FRegister ft);
void DivS(FRegister fd, FRegister fs, FRegister ft);
void AddD(FRegister fd, FRegister fs, FRegister ft);
void SubD(FRegister fd, FRegister fs, FRegister ft);
void MulD(FRegister fd, FRegister fs, FRegister ft);
void DivD(FRegister fd, FRegister fs, FRegister ft);
void SqrtS(FRegister fd, FRegister fs);
void SqrtD(FRegister fd, FRegister fs);
void AbsS(FRegister fd, FRegister fs);
void AbsD(FRegister fd, FRegister fs);
void MovS(FRegister fd, FRegister fs);
void MovD(FRegister fd, FRegister fs);
void NegS(FRegister fd, FRegister fs);
void NegD(FRegister fd, FRegister fs);
void CunS(FRegister fs, FRegister ft); // R2
void CunS(int cc, FRegister fs, FRegister ft); // R2
void CeqS(FRegister fs, FRegister ft); // R2
void CeqS(int cc, FRegister fs, FRegister ft); // R2
void CueqS(FRegister fs, FRegister ft); // R2
void CueqS(int cc, FRegister fs, FRegister ft); // R2
void ColtS(FRegister fs, FRegister ft); // R2
void ColtS(int cc, FRegister fs, FRegister ft); // R2
void CultS(FRegister fs, FRegister ft); // R2
void CultS(int cc, FRegister fs, FRegister ft); // R2
void ColeS(FRegister fs, FRegister ft); // R2
void ColeS(int cc, FRegister fs, FRegister ft); // R2
void CuleS(FRegister fs, FRegister ft); // R2
void CuleS(int cc, FRegister fs, FRegister ft); // R2
void CunD(FRegister fs, FRegister ft); // R2
void CunD(int cc, FRegister fs, FRegister ft); // R2
void CeqD(FRegister fs, FRegister ft); // R2
void CeqD(int cc, FRegister fs, FRegister ft); // R2
void CueqD(FRegister fs, FRegister ft); // R2
void CueqD(int cc, FRegister fs, FRegister ft); // R2
void ColtD(FRegister fs, FRegister ft); // R2
void ColtD(int cc, FRegister fs, FRegister ft); // R2
void CultD(FRegister fs, FRegister ft); // R2
void CultD(int cc, FRegister fs, FRegister ft); // R2
void ColeD(FRegister fs, FRegister ft); // R2
void ColeD(int cc, FRegister fs, FRegister ft); // R2
void CuleD(FRegister fs, FRegister ft); // R2
void CuleD(int cc, FRegister fs, FRegister ft); // R2
void CmpUnS(FRegister fd, FRegister fs, FRegister ft); // R6
void CmpEqS(FRegister fd, FRegister fs, FRegister ft); // R6
void CmpUeqS(FRegister fd, FRegister fs, FRegister ft); // R6
void CmpLtS(FRegister fd, FRegister fs, FRegister ft); // R6
void CmpUltS(FRegister fd, FRegister fs, FRegister ft); // R6
void CmpLeS(FRegister fd, FRegister fs, FRegister ft); // R6
void CmpUleS(FRegister fd, FRegister fs, FRegister ft); // R6
void CmpOrS(FRegister fd, FRegister fs, FRegister ft); // R6
void CmpUneS(FRegister fd, FRegister fs, FRegister ft); // R6
void CmpNeS(FRegister fd, FRegister fs, FRegister ft); // R6
void CmpUnD(FRegister fd, FRegister fs, FRegister ft); // R6
void CmpEqD(FRegister fd, FRegister fs, FRegister ft); // R6
void CmpUeqD(FRegister fd, FRegister fs, FRegister ft); // R6
void CmpLtD(FRegister fd, FRegister fs, FRegister ft); // R6
void CmpUltD(FRegister fd, FRegister fs, FRegister ft); // R6
void CmpLeD(FRegister fd, FRegister fs, FRegister ft); // R6
void CmpUleD(FRegister fd, FRegister fs, FRegister ft); // R6
void CmpOrD(FRegister fd, FRegister fs, FRegister ft); // R6
void CmpUneD(FRegister fd, FRegister fs, FRegister ft); // R6
void CmpNeD(FRegister fd, FRegister fs, FRegister ft); // R6
void Movf(Register rd, Register rs, int cc = 0); // R2
void Movt(Register rd, Register rs, int cc = 0); // R2
void MovfS(FRegister fd, FRegister fs, int cc = 0); // R2
void MovfD(FRegister fd, FRegister fs, int cc = 0); // R2
void MovtS(FRegister fd, FRegister fs, int cc = 0); // R2
void MovtD(FRegister fd, FRegister fs, int cc = 0); // R2
void MovzS(FRegister fd, FRegister fs, Register rt); // R2
void MovzD(FRegister fd, FRegister fs, Register rt); // R2
void MovnS(FRegister fd, FRegister fs, Register rt); // R2
void MovnD(FRegister fd, FRegister fs, Register rt); // R2
void SelS(FRegister fd, FRegister fs, FRegister ft); // R6
void SelD(FRegister fd, FRegister fs, FRegister ft); // R6
void SeleqzS(FRegister fd, FRegister fs, FRegister ft); // R6
void SeleqzD(FRegister fd, FRegister fs, FRegister ft); // R6
void SelnezS(FRegister fd, FRegister fs, FRegister ft); // R6
void SelnezD(FRegister fd, FRegister fs, FRegister ft); // R6
void ClassS(FRegister fd, FRegister fs); // R6
void ClassD(FRegister fd, FRegister fs); // R6
void MinS(FRegister fd, FRegister fs, FRegister ft); // R6
void MinD(FRegister fd, FRegister fs, FRegister ft); // R6
void MaxS(FRegister fd, FRegister fs, FRegister ft); // R6
void MaxD(FRegister fd, FRegister fs, FRegister ft); // R6
void TruncLS(FRegister fd, FRegister fs); // R2+, FR=1
void TruncLD(FRegister fd, FRegister fs); // R2+, FR=1
void TruncWS(FRegister fd, FRegister fs);
void TruncWD(FRegister fd, FRegister fs);
void Cvtsw(FRegister fd, FRegister fs);
void Cvtdw(FRegister fd, FRegister fs);
void Cvtsd(FRegister fd, FRegister fs);
void Cvtds(FRegister fd, FRegister fs);
void Cvtsl(FRegister fd, FRegister fs); // R2+, FR=1
void Cvtdl(FRegister fd, FRegister fs); // R2+, FR=1
void FloorWS(FRegister fd, FRegister fs);
void FloorWD(FRegister fd, FRegister fs);
void Mfc1(Register rt, FRegister fs);
void Mtc1(Register rt, FRegister fs);
void Mfhc1(Register rt, FRegister fs);
void Mthc1(Register rt, FRegister fs);
void MoveFromFpuHigh(Register rt, FRegister fs);
void MoveToFpuHigh(Register rt, FRegister fs);
void Lwc1(FRegister ft, Register rs, uint16_t imm16);
void Ldc1(FRegister ft, Register rs, uint16_t imm16);
void Swc1(FRegister ft, Register rs, uint16_t imm16);
void Sdc1(FRegister ft, Register rs, uint16_t imm16);
void Break();
void Nop();
void NopIfNoReordering();
void Move(Register rd, Register rs);
void Clear(Register rd);
void Not(Register rd, Register rs);
// Higher level composite instructions.
void LoadConst32(Register rd, int32_t value);
void LoadConst64(Register reg_hi, Register reg_lo, int64_t value);
void LoadDConst64(FRegister rd, int64_t value, Register temp);
void LoadSConst32(FRegister r, int32_t value, Register temp);
void Addiu32(Register rt, Register rs, int32_t value, Register rtmp = AT);
// These will generate R2 branches or R6 branches as appropriate and take care of
// the delay/forbidden slots.
void Bind(MipsLabel* label);
void B(MipsLabel* label);
void Bal(MipsLabel* label);
void Beq(Register rs, Register rt, MipsLabel* label);
void Bne(Register rs, Register rt, MipsLabel* label);
void Beqz(Register rt, MipsLabel* label);
void Bnez(Register rt, MipsLabel* label);
void Bltz(Register rt, MipsLabel* label);
void Bgez(Register rt, MipsLabel* label);
void Blez(Register rt, MipsLabel* label);
void Bgtz(Register rt, MipsLabel* label);
void Blt(Register rs, Register rt, MipsLabel* label);
void Bge(Register rs, Register rt, MipsLabel* label);
void Bltu(Register rs, Register rt, MipsLabel* label);
void Bgeu(Register rs, Register rt, MipsLabel* label);
void Bc1f(MipsLabel* label); // R2
void Bc1f(int cc, MipsLabel* label); // R2
void Bc1t(MipsLabel* label); // R2
void Bc1t(int cc, MipsLabel* label); // R2
void Bc1eqz(FRegister ft, MipsLabel* label); // R6
void Bc1nez(FRegister ft, MipsLabel* label); // R6
void EmitLoad(ManagedRegister m_dst, Register src_register, int32_t src_offset, size_t size);
void AdjustBaseAndOffset(Register& base,
int32_t& offset,
bool is_doubleword,
bool is_float = false);
private:
// This will be used as an argument for loads/stores
// when there is no need for implicit null checks.
struct NoImplicitNullChecker {
void operator()() const {}
};
public:
template <typename ImplicitNullChecker = NoImplicitNullChecker>
void StoreConstToOffset(StoreOperandType type,
int64_t value,
Register base,
int32_t offset,
Register temp,
ImplicitNullChecker null_checker = NoImplicitNullChecker()) {
// We permit `base` and `temp` to coincide (however, we check that neither is AT),
// in which case the `base` register may be overwritten in the process.
CHECK_NE(temp, AT); // Must not use AT as temp, so as not to overwrite the adjusted base.
AdjustBaseAndOffset(base, offset, /* is_doubleword */ (type == kStoreDoubleword));
uint32_t low = Low32Bits(value);
uint32_t high = High32Bits(value);
Register reg;
// If the adjustment left `base` unchanged and equal to `temp`, we can't use `temp`
// to load and hold the value but we can use AT instead as AT hasn't been used yet.
// Otherwise, `temp` can be used for the value. And if `temp` is the same as the
// original `base` (that is, `base` prior to the adjustment), the original `base`
// register will be overwritten.
if (base == temp) {
temp = AT;
}
if (low == 0) {
reg = ZERO;
} else {
reg = temp;
LoadConst32(reg, low);
}
switch (type) {
case kStoreByte:
Sb(reg, base, offset);
break;
case kStoreHalfword:
Sh(reg, base, offset);
break;
case kStoreWord:
Sw(reg, base, offset);
break;
case kStoreDoubleword:
Sw(reg, base, offset);
null_checker();
if (high == 0) {
reg = ZERO;
} else {
reg = temp;
if (high != low) {
LoadConst32(reg, high);
}
}
Sw(reg, base, offset + kMipsWordSize);
break;
default:
LOG(FATAL) << "UNREACHABLE";
}
if (type != kStoreDoubleword) {
null_checker();
}
}
template <typename ImplicitNullChecker = NoImplicitNullChecker>
void LoadFromOffset(LoadOperandType type,
Register reg,
Register base,
int32_t offset,
ImplicitNullChecker null_checker = NoImplicitNullChecker()) {
AdjustBaseAndOffset(base, offset, /* is_doubleword */ (type == kLoadDoubleword));
switch (type) {
case kLoadSignedByte:
Lb(reg, base, offset);
break;
case kLoadUnsignedByte:
Lbu(reg, base, offset);
break;
case kLoadSignedHalfword:
Lh(reg, base, offset);
break;
case kLoadUnsignedHalfword:
Lhu(reg, base, offset);
break;
case kLoadWord:
Lw(reg, base, offset);
break;
case kLoadDoubleword:
if (reg == base) {
// This will clobber the base when loading the lower register. Since we have to load the
// higher register as well, this will fail. Solution: reverse the order.
Lw(static_cast<Register>(reg + 1), base, offset + kMipsWordSize);
null_checker();
Lw(reg, base, offset);
} else {
Lw(reg, base, offset);
null_checker();
Lw(static_cast<Register>(reg + 1), base, offset + kMipsWordSize);
}
break;
default:
LOG(FATAL) << "UNREACHABLE";
}
if (type != kLoadDoubleword) {
null_checker();
}
}
template <typename ImplicitNullChecker = NoImplicitNullChecker>
void LoadSFromOffset(FRegister reg,
Register base,
int32_t offset,
ImplicitNullChecker null_checker = NoImplicitNullChecker()) {
AdjustBaseAndOffset(base, offset, /* is_doubleword */ false, /* is_float */ true);
Lwc1(reg, base, offset);
null_checker();
}
template <typename ImplicitNullChecker = NoImplicitNullChecker>
void LoadDFromOffset(FRegister reg,
Register base,
int32_t offset,
ImplicitNullChecker null_checker = NoImplicitNullChecker()) {
AdjustBaseAndOffset(base, offset, /* is_doubleword */ true, /* is_float */ true);
if (IsAligned<kMipsDoublewordSize>(offset)) {
Ldc1(reg, base, offset);
null_checker();
} else {
if (Is32BitFPU()) {
Lwc1(reg, base, offset);
null_checker();
Lwc1(static_cast<FRegister>(reg + 1), base, offset + kMipsWordSize);
} else {
// 64-bit FPU.
Lwc1(reg, base, offset);
null_checker();
Lw(T8, base, offset + kMipsWordSize);
Mthc1(T8, reg);
}
}
}
template <typename ImplicitNullChecker = NoImplicitNullChecker>
void StoreToOffset(StoreOperandType type,
Register reg,
Register base,
int32_t offset,
ImplicitNullChecker null_checker = NoImplicitNullChecker()) {
// Must not use AT as `reg`, so as not to overwrite the value being stored
// with the adjusted `base`.
CHECK_NE(reg, AT);
AdjustBaseAndOffset(base, offset, /* is_doubleword */ (type == kStoreDoubleword));
switch (type) {
case kStoreByte:
Sb(reg, base, offset);
break;
case kStoreHalfword:
Sh(reg, base, offset);
break;
case kStoreWord:
Sw(reg, base, offset);
break;
case kStoreDoubleword:
CHECK_NE(reg, base);
CHECK_NE(static_cast<Register>(reg + 1), base);
Sw(reg, base, offset);
null_checker();
Sw(static_cast<Register>(reg + 1), base, offset + kMipsWordSize);
break;
default:
LOG(FATAL) << "UNREACHABLE";
}
if (type != kStoreDoubleword) {
null_checker();
}
}
template <typename ImplicitNullChecker = NoImplicitNullChecker>
void StoreSToOffset(FRegister reg,
Register base,
int32_t offset,
ImplicitNullChecker null_checker = NoImplicitNullChecker()) {
AdjustBaseAndOffset(base, offset, /* is_doubleword */ false, /* is_float */ true);
Swc1(reg, base, offset);
null_checker();
}
template <typename ImplicitNullChecker = NoImplicitNullChecker>
void StoreDToOffset(FRegister reg,
Register base,
int32_t offset,
ImplicitNullChecker null_checker = NoImplicitNullChecker()) {
AdjustBaseAndOffset(base, offset, /* is_doubleword */ true, /* is_float */ true);
if (IsAligned<kMipsDoublewordSize>(offset)) {
Sdc1(reg, base, offset);
null_checker();
} else {
if (Is32BitFPU()) {
Swc1(reg, base, offset);
null_checker();
Swc1(static_cast<FRegister>(reg + 1), base, offset + kMipsWordSize);
} else {
// 64-bit FPU.
Mfhc1(T8, reg);
Swc1(reg, base, offset);
null_checker();
Sw(T8, base, offset + kMipsWordSize);
}
}
}
void LoadFromOffset(LoadOperandType type, Register reg, Register base, int32_t offset);
void LoadSFromOffset(FRegister reg, Register base, int32_t offset);
void LoadDFromOffset(FRegister reg, Register base, int32_t offset);
void StoreToOffset(StoreOperandType type, Register reg, Register base, int32_t offset);
void StoreSToOffset(FRegister reg, Register base, int32_t offset);
void StoreDToOffset(FRegister reg, Register base, int32_t offset);
// Emit data (e.g. encoded instruction or immediate) to the instruction stream.
void Emit(uint32_t value);
// Push/pop composite routines.
void Push(Register rs);
void Pop(Register rd);
void PopAndReturn(Register rd, Register rt);
//
// Heap poisoning.
//
// Poison a heap reference contained in `src` and store it in `dst`.
void PoisonHeapReference(Register dst, Register src) {
// dst = -src.
Subu(dst, ZERO, src);
}
// Poison a heap reference contained in `reg`.
void PoisonHeapReference(Register reg) {
// reg = -reg.
PoisonHeapReference(reg, reg);
}
// Unpoison a heap reference contained in `reg`.
void UnpoisonHeapReference(Register reg) {
// reg = -reg.
Subu(reg, ZERO, reg);
}
// Poison a heap reference contained in `reg` if heap poisoning is enabled.
void MaybePoisonHeapReference(Register reg) {
if (kPoisonHeapReferences) {
PoisonHeapReference(reg);
}
}
// Unpoison a heap reference contained in `reg` if heap poisoning is enabled.
void MaybeUnpoisonHeapReference(Register reg) {
if (kPoisonHeapReferences) {
UnpoisonHeapReference(reg);
}
}
void Bind(Label* label) OVERRIDE {
Bind(down_cast<MipsLabel*>(label));
}
void Jump(Label* label ATTRIBUTE_UNUSED) OVERRIDE {
UNIMPLEMENTED(FATAL) << "Do not use Jump for MIPS";
}
// Don't warn about a different virtual Bind/Jump in the base class.
using JNIBase::Bind;
using JNIBase::Jump;
// Create a new label that can be used with Jump/Bind calls.
std::unique_ptr<JNIMacroLabel> CreateLabel() OVERRIDE {
LOG(FATAL) << "Not implemented on MIPS32";
UNREACHABLE();
}
// Emit an unconditional jump to the label.
void Jump(JNIMacroLabel* label ATTRIBUTE_UNUSED) OVERRIDE {
LOG(FATAL) << "Not implemented on MIPS32";
UNREACHABLE();
}
// Emit a conditional jump to the label by applying a unary condition test to the register.
void Jump(JNIMacroLabel* label ATTRIBUTE_UNUSED,
JNIMacroUnaryCondition cond ATTRIBUTE_UNUSED,
ManagedRegister test ATTRIBUTE_UNUSED) OVERRIDE {
LOG(FATAL) << "Not implemented on MIPS32";
UNREACHABLE();
}
// Code at this offset will serve as the target for the Jump call.
void Bind(JNIMacroLabel* label ATTRIBUTE_UNUSED) OVERRIDE {
LOG(FATAL) << "Not implemented on MIPS32";
UNREACHABLE();
}
// Create a new literal with a given value.
// NOTE: Force the template parameter to be explicitly specified.
template <typename T>
Literal* NewLiteral(typename Identity<T>::type value) {
static_assert(std::is_integral<T>::value, "T must be an integral type.");
return NewLiteral(sizeof(value), reinterpret_cast<const uint8_t*>(&value));
}
// Load label address using the base register (for R2 only) or using PC-relative loads
// (for R6 only; base_reg must be ZERO). To be used with data labels in the literal /
// jump table area only and not with regular code labels.
void LoadLabelAddress(Register dest_reg, Register base_reg, MipsLabel* label);
// Create a new literal with the given data.
Literal* NewLiteral(size_t size, const uint8_t* data);
// Load literal using the base register (for R2 only) or using PC-relative loads
// (for R6 only; base_reg must be ZERO).
void LoadLiteral(Register dest_reg, Register base_reg, Literal* literal);
// Create a jump table for the given labels that will be emitted when finalizing.
// When the table is emitted, offsets will be relative to the location of the table.
// The table location is determined by the location of its label (the label precedes
// the table data) and should be loaded using LoadLabelAddress().
JumpTable* CreateJumpTable(std::vector<MipsLabel*>&& labels);
//
// Overridden common assembler high-level functionality.
//
// Emit code that will create an activation on the stack.
void BuildFrame(size_t frame_size,
ManagedRegister method_reg,
ArrayRef<const ManagedRegister> callee_save_regs,
const ManagedRegisterEntrySpills& entry_spills) OVERRIDE;
// Emit code that will remove an activation from the stack.
void RemoveFrame(size_t frame_size, ArrayRef<const ManagedRegister> callee_save_regs)
OVERRIDE;
void IncreaseFrameSize(size_t adjust) OVERRIDE;
void DecreaseFrameSize(size_t adjust) OVERRIDE;
// Store routines.
void Store(FrameOffset offs, ManagedRegister msrc, size_t size) OVERRIDE;
void StoreRef(FrameOffset dest, ManagedRegister msrc) OVERRIDE;
void StoreRawPtr(FrameOffset dest, ManagedRegister msrc) OVERRIDE;
void StoreImmediateToFrame(FrameOffset dest, uint32_t imm, ManagedRegister mscratch) OVERRIDE;
void StoreStackOffsetToThread(ThreadOffset32 thr_offs,
FrameOffset fr_offs,
ManagedRegister mscratch) OVERRIDE;
void StoreStackPointerToThread(ThreadOffset32 thr_offs) OVERRIDE;
void StoreSpanning(FrameOffset dest,
ManagedRegister msrc,
FrameOffset in_off,
ManagedRegister mscratch) OVERRIDE;
// Load routines.
void Load(ManagedRegister mdest, FrameOffset src, size_t size) OVERRIDE;
void LoadFromThread(ManagedRegister mdest, ThreadOffset32 src, size_t size) OVERRIDE;
void LoadRef(ManagedRegister dest, FrameOffset src) OVERRIDE;
void LoadRef(ManagedRegister mdest,
ManagedRegister base,
MemberOffset offs,
bool unpoison_reference) OVERRIDE;
void LoadRawPtr(ManagedRegister mdest, ManagedRegister base, Offset offs) OVERRIDE;
void LoadRawPtrFromThread(ManagedRegister mdest, ThreadOffset32 offs) OVERRIDE;
// Copying routines.
void Move(ManagedRegister mdest, ManagedRegister msrc, size_t size) OVERRIDE;
void CopyRawPtrFromThread(FrameOffset fr_offs,
ThreadOffset32 thr_offs,
ManagedRegister mscratch) OVERRIDE;
void CopyRawPtrToThread(ThreadOffset32 thr_offs,
FrameOffset fr_offs,
ManagedRegister mscratch) OVERRIDE;
void CopyRef(FrameOffset dest, FrameOffset src, ManagedRegister mscratch) OVERRIDE;
void Copy(FrameOffset dest, FrameOffset src, ManagedRegister mscratch, size_t size) OVERRIDE;
void Copy(FrameOffset dest,
ManagedRegister src_base,
Offset src_offset,
ManagedRegister mscratch,
size_t size) OVERRIDE;
void Copy(ManagedRegister dest_base,
Offset dest_offset,
FrameOffset src,
ManagedRegister mscratch,
size_t size) OVERRIDE;
void Copy(FrameOffset dest,
FrameOffset src_base,
Offset src_offset,
ManagedRegister mscratch,
size_t size) OVERRIDE;
void Copy(ManagedRegister dest,
Offset dest_offset,
ManagedRegister src,
Offset src_offset,
ManagedRegister mscratch,
size_t size) OVERRIDE;
void Copy(FrameOffset dest,
Offset dest_offset,
FrameOffset src,
Offset src_offset,
ManagedRegister mscratch,
size_t size) OVERRIDE;
void MemoryBarrier(ManagedRegister) OVERRIDE;
// Sign extension.
void SignExtend(ManagedRegister mreg, size_t size) OVERRIDE;
// Zero extension.
void ZeroExtend(ManagedRegister mreg, size_t size) OVERRIDE;
// Exploit fast access in managed code to Thread::Current().
void GetCurrentThread(ManagedRegister tr) OVERRIDE;
void GetCurrentThread(FrameOffset dest_offset, ManagedRegister mscratch) OVERRIDE;
// Set up out_reg to hold a Object** into the handle scope, or to be null if the
// value is null and null_allowed. in_reg holds a possibly stale reference
// that can be used to avoid loading the handle scope entry to see if the value is
// null.
void CreateHandleScopeEntry(ManagedRegister out_reg,
FrameOffset handlescope_offset,
ManagedRegister in_reg,
bool null_allowed) OVERRIDE;
// Set up out_off to hold a Object** into the handle scope, or to be null if the
// value is null and null_allowed.
void CreateHandleScopeEntry(FrameOffset out_off,
FrameOffset handlescope_offset,
ManagedRegister mscratch,
bool null_allowed) OVERRIDE;
// src holds a handle scope entry (Object**) load this into dst.
void LoadReferenceFromHandleScope(ManagedRegister dst, ManagedRegister src) OVERRIDE;
// Heap::VerifyObject on src. In some cases (such as a reference to this) we
// know that src may not be null.
void VerifyObject(ManagedRegister src, bool could_be_null) OVERRIDE;
void VerifyObject(FrameOffset src, bool could_be_null) OVERRIDE;
// Call to address held at [base+offset].
void Call(ManagedRegister base, Offset offset, ManagedRegister mscratch) OVERRIDE;
void Call(FrameOffset base, Offset offset, ManagedRegister mscratch) OVERRIDE;
void CallFromThread(ThreadOffset32 offset, ManagedRegister mscratch) OVERRIDE;
// Generate code to check if Thread::Current()->exception_ is non-null
// and branch to a ExceptionSlowPath if it is.
void ExceptionPoll(ManagedRegister mscratch, size_t stack_adjust) OVERRIDE;
// Emit slow paths queued during assembly and promote short branches to long if needed.
void FinalizeCode() OVERRIDE;
// Emit branches and finalize all instructions.
void FinalizeInstructions(const MemoryRegion& region);
// Returns the (always-)current location of a label (can be used in class CodeGeneratorMIPS,
// must be used instead of MipsLabel::GetPosition()).
uint32_t GetLabelLocation(const MipsLabel* label) const;
// Get the final position of a label after local fixup based on the old position
// recorded before FinalizeCode().
uint32_t GetAdjustedPosition(uint32_t old_position);
// R2 doesn't have PC-relative addressing, which we need to access literals. We simulate it by
// reading the PC value into a general-purpose register with the NAL instruction and then loading
// literals through this base register. The code generator calls this method (at most once per
// method being compiled) to bind a label to the location for which the PC value is acquired.
// The assembler then computes literal offsets relative to this label.
void BindPcRelBaseLabel();
// Returns the location of the label bound with BindPcRelBaseLabel().
uint32_t GetPcRelBaseLabelLocation() const;
// Note that PC-relative literal loads are handled as pseudo branches because they need very
// similar relocation and may similarly expand in size to accomodate for larger offsets relative
// to PC.
enum BranchCondition {
kCondLT,
kCondGE,
kCondLE,
kCondGT,
kCondLTZ,
kCondGEZ,
kCondLEZ,
kCondGTZ,
kCondEQ,
kCondNE,
kCondEQZ,
kCondNEZ,
kCondLTU,
kCondGEU,
kCondF, // Floating-point predicate false.
kCondT, // Floating-point predicate true.
kUncond,
};
friend std::ostream& operator<<(std::ostream& os, const BranchCondition& rhs);
// Enables or disables instruction reordering (IOW, automatic filling of delay slots)
// similarly to ".set reorder" / ".set noreorder" in traditional MIPS assembly.
// Returns the last state, which may be useful for temporary enabling/disabling of
// reordering.
bool SetReorder(bool enable);
private:
// Description of the last instruction in terms of input and output registers.
// Used to make the decision of moving the instruction into a delay slot.
struct DelaySlot {
DelaySlot();
// Encoded instruction that may be used to fill the delay slot or 0
// (0 conveniently represents NOP).
uint32_t instruction_;
// Mask of output GPRs for the instruction.
uint32_t gpr_outs_mask_;
// Mask of input GPRs for the instruction.
uint32_t gpr_ins_mask_;
// Mask of output FPRs for the instruction.
uint32_t fpr_outs_mask_;
// Mask of input FPRs for the instruction.
uint32_t fpr_ins_mask_;
// Mask of output FPU condition code flags for the instruction.
uint32_t cc_outs_mask_;
// Mask of input FPU condition code flags for the instruction.
uint32_t cc_ins_mask_;
// Branches never operate on the LO and HI registers, hence there's
// no mask for LO and HI.
};
// Delay slot finite state machine's (DS FSM's) state. The FSM state is updated
// upon every new instruction and label generated. The FSM detects instructions
// suitable for delay slots and immediately preceded with labels. These are target
// instructions for branches. If an unconditional R2 branch does not get its delay
// slot filled with the immediately preceding instruction, it may instead get the
// slot filled with the target instruction (the branch will need its offset
// incremented past the target instruction). We call this "absorption". The FSM
// records PCs of the target instructions suitable for this optimization.
enum DsFsmState {
kExpectingLabel,
kExpectingInstruction,
kExpectingCommit
};
friend std::ostream& operator<<(std::ostream& os, const DsFsmState& rhs);
class Branch {
public:
enum Type {
// R2 short branches.
kUncondBranch,
kCondBranch,
kCall,
// R2 near label.
kLabel,
// R2 near literal.
kLiteral,
// R2 long branches.
kLongUncondBranch,
kLongCondBranch,
kLongCall,
// R2 far label.
kFarLabel,
// R2 far literal.
kFarLiteral,
// R6 short branches.
kR6UncondBranch,
kR6CondBranch,
kR6Call,
// R6 near label.
kR6Label,
// R6 near literal.
kR6Literal,
// R6 long branches.
kR6LongUncondBranch,
kR6LongCondBranch,
kR6LongCall,
// R6 far label.
kR6FarLabel,
// R6 far literal.
kR6FarLiteral,
};
// Bit sizes of offsets defined as enums to minimize chance of typos.
enum OffsetBits {
kOffset16 = 16,
kOffset18 = 18,
kOffset21 = 21,
kOffset23 = 23,
kOffset28 = 28,
kOffset32 = 32,
};
static constexpr uint32_t kUnresolved = 0xffffffff; // Unresolved target_
static constexpr int32_t kMaxBranchLength = 32;
static constexpr int32_t kMaxBranchSize = kMaxBranchLength * sizeof(uint32_t);
// The following two instruction encodings can never legally occur in branch delay
// slots and are used as markers.
//
// kUnfilledDelaySlot means that the branch may use either the preceding or the target
// instruction to fill its delay slot (the latter is only possible with unconditional
// R2 branches and is termed here as "absorption").
static constexpr uint32_t kUnfilledDelaySlot = 0x10000000; // beq zero, zero, 0.
// kUnfillableDelaySlot means that the branch cannot use an instruction (other than NOP)
// to fill its delay slot. This is only used for unconditional R2 branches to prevent
// absorption of the target instruction when reordering is disabled.
static constexpr uint32_t kUnfillableDelaySlot = 0x13FF0000; // beq ra, ra, 0.
struct BranchInfo {
// Branch length as a number of 4-byte-long instructions.
uint32_t length;
// Ordinal number (0-based) of the first (or the only) instruction that contains the branch's
// PC-relative offset (or its most significant 16-bit half, which goes first).
uint32_t instr_offset;
// Different MIPS instructions with PC-relative offsets apply said offsets to slightly
// different origins, e.g. to PC or PC+4. Encode the origin distance (as a number of 4-byte
// instructions) from the instruction containing the offset.
uint32_t pc_org;
// How large (in bits) a PC-relative offset can be for a given type of branch (kR6CondBranch
// is an exception: use kOffset23 for beqzc/bnezc).
OffsetBits offset_size;
// Some MIPS instructions with PC-relative offsets shift the offset by 2. Encode the shift
// count.
int offset_shift;
};
static const BranchInfo branch_info_[/* Type */];
// Unconditional branch or call.
Branch(bool is_r6, uint32_t location, uint32_t target, bool is_call);
// Conditional branch.
Branch(bool is_r6,
uint32_t location,
uint32_t target,
BranchCondition condition,
Register lhs_reg,
Register rhs_reg);
// Label address (in literal area) or literal.
Branch(bool is_r6,
uint32_t location,
Register dest_reg,
Register base_reg,
Type label_or_literal_type);
// Some conditional branches with lhs = rhs are effectively NOPs, while some
// others are effectively unconditional. MIPSR6 conditional branches require lhs != rhs.
// So, we need a way to identify such branches in order to emit no instructions for them
// or change them to unconditional.
static bool IsNop(BranchCondition condition, Register lhs, Register rhs);
static bool IsUncond(BranchCondition condition, Register lhs, Register rhs);
static BranchCondition OppositeCondition(BranchCondition cond);
Type GetType() const;
BranchCondition GetCondition() const;
Register GetLeftRegister() const;
Register GetRightRegister() const;
uint32_t GetTarget() const;
uint32_t GetLocation() const;
uint32_t GetOldLocation() const;
uint32_t GetPrecedingInstructionLength(Type type) const;
uint32_t GetPrecedingInstructionSize(Type type) const;
uint32_t GetLength() const;
uint32_t GetOldLength() const;
uint32_t GetSize() const;
uint32_t GetOldSize() const;
uint32_t GetEndLocation() const;
uint32_t GetOldEndLocation() const;
bool IsLong() const;
bool IsResolved() const;
// Various helpers for branch delay slot management.
bool CanHaveDelayedInstruction(const DelaySlot& delay_slot) const;
void SetDelayedInstruction(uint32_t instruction);
uint32_t GetDelayedInstruction() const;
void DecrementLocations();
// Returns the bit size of the signed offset that the branch instruction can handle.
OffsetBits GetOffsetSize() const;
// Calculates the distance between two byte locations in the assembler buffer and
// returns the number of bits needed to represent the distance as a signed integer.
//
// Branch instructions have signed offsets of 16, 19 (addiupc), 21 (beqzc/bnezc),
// and 26 (bc) bits, which are additionally shifted left 2 positions at run time.
//
// Composite branches (made of several instructions) with longer reach have 32-bit
// offsets encoded as 2 16-bit "halves" in two instructions (high half goes first).
// The composite branches cover the range of PC + +/-2GB on MIPS32 CPUs. However,
// the range is not end-to-end on MIPS64 (unless addresses are forced to zero- or
// sign-extend from 32 to 64 bits by the appropriate CPU configuration).
// Consider the following implementation of a long unconditional branch, for
// example:
//
// auipc at, offset_31_16 // at = pc + sign_extend(offset_31_16) << 16
// jic at, offset_15_0 // pc = at + sign_extend(offset_15_0)
//
// Both of the above instructions take 16-bit signed offsets as immediate operands.
// When bit 15 of offset_15_0 is 1, it effectively causes subtraction of 0x10000
// due to sign extension. This must be compensated for by incrementing offset_31_16
// by 1. offset_31_16 can only be incremented by 1 if it's not 0x7FFF. If it is
// 0x7FFF, adding 1 will overflow the positive offset into the negative range.
// Therefore, the long branch range is something like from PC - 0x80000000 to
// PC + 0x7FFF7FFF, IOW, shorter by 32KB on one side.
//
// The returned values are therefore: 18, 21, 23, 28 and 32. There's also a special
// case with the addiu instruction and a 16 bit offset.
static OffsetBits GetOffsetSizeNeeded(uint32_t location, uint32_t target);
// Resolve a branch when the target is known.
void Resolve(uint32_t target);
// Relocate a branch by a given delta if needed due to expansion of this or another
// branch at a given location by this delta (just changes location_ and target_).
void Relocate(uint32_t expand_location, uint32_t delta);
// If the branch is short, changes its type to long.
void PromoteToLong();
// If necessary, updates the type by promoting a short branch to a long branch
// based on the branch location and target. Returns the amount (in bytes) by
// which the branch size has increased.
// max_short_distance caps the maximum distance between location_ and target_
// that is allowed for short branches. This is for debugging/testing purposes.
// max_short_distance = 0 forces all short branches to become long.
// Use the implicit default argument when not debugging/testing.
uint32_t PromoteIfNeeded(uint32_t location,
uint32_t max_short_distance = std::numeric_limits<uint32_t>::max());
// Returns the location of the instruction(s) containing the offset.
uint32_t GetOffsetLocation() const;
// Calculates and returns the offset ready for encoding in the branch instruction(s).
uint32_t GetOffset(uint32_t location) const;
private:
// Completes branch construction by determining and recording its type.
void InitializeType(Type initial_type, bool is_r6);
// Helper for the above.
void InitShortOrLong(OffsetBits ofs_size, Type short_type, Type long_type);
uint32_t old_location_; // Offset into assembler buffer in bytes.
uint32_t location_; // Offset into assembler buffer in bytes.
uint32_t target_; // Offset into assembler buffer in bytes.
uint32_t lhs_reg_; // Left-hand side register in conditional branches or
// FPU condition code. Destination register in literals.
uint32_t rhs_reg_; // Right-hand side register in conditional branches.
// Base register in literals (ZERO on R6).
BranchCondition condition_; // Condition for conditional branches.
Type type_; // Current type of the branch.
Type old_type_; // Initial type of the branch.
uint32_t delayed_instruction_; // Encoded instruction for the delay slot or
// kUnfilledDelaySlot if none but fillable or
// kUnfillableDelaySlot if none and unfillable
// (the latter is only used for unconditional R2
// branches).
};
friend std::ostream& operator<<(std::ostream& os, const Branch::Type& rhs);
friend std::ostream& operator<<(std::ostream& os, const Branch::OffsetBits& rhs);
uint32_t EmitR(int opcode, Register rs, Register rt, Register rd, int shamt, int funct);
uint32_t EmitI(int opcode, Register rs, Register rt, uint16_t imm);
uint32_t EmitI21(int opcode, Register rs, uint32_t imm21);
uint32_t EmitI26(int opcode, uint32_t imm26);
uint32_t EmitFR(int opcode, int fmt, FRegister ft, FRegister fs, FRegister fd, int funct);
uint32_t EmitFI(int opcode, int fmt, FRegister rt, uint16_t imm);
void EmitBcondR2(BranchCondition cond, Register rs, Register rt, uint16_t imm16);
void EmitBcondR6(BranchCondition cond, Register rs, Register rt, uint32_t imm16_21);
void Buncond(MipsLabel* label);
void Bcond(MipsLabel* label, BranchCondition condition, Register lhs, Register rhs = ZERO);
void Call(MipsLabel* label);
void FinalizeLabeledBranch(MipsLabel* label);
// Various helpers for branch delay slot management.
void DsFsmInstr(uint32_t instruction,
uint32_t gpr_outs_mask,
uint32_t gpr_ins_mask,
uint32_t fpr_outs_mask,
uint32_t fpr_ins_mask,
uint32_t cc_outs_mask,
uint32_t cc_ins_mask);
void DsFsmInstrNop(uint32_t instruction);
void DsFsmInstrRrr(uint32_t instruction, Register out, Register in1, Register in2);
void DsFsmInstrRrrr(uint32_t instruction, Register in1_out, Register in2, Register in3);
void DsFsmInstrFff(uint32_t instruction, FRegister out, FRegister in1, FRegister in2);
void DsFsmInstrFfff(uint32_t instruction, FRegister in1_out, FRegister in2, FRegister in3);
void DsFsmInstrFffr(uint32_t instruction, FRegister in1_out, FRegister in2, Register in3);
void DsFsmInstrRf(uint32_t instruction, Register out, FRegister in);
void DsFsmInstrFr(uint32_t instruction, FRegister out, Register in);
void DsFsmInstrFR(uint32_t instruction, FRegister in1, Register in2);
void DsFsmInstrCff(uint32_t instruction, int cc_out, FRegister in1, FRegister in2);
void DsFsmInstrRrrc(uint32_t instruction, Register in1_out, Register in2, int cc_in);
void DsFsmInstrFffc(uint32_t instruction, FRegister in1_out, FRegister in2, int cc_in);
void DsFsmLabel();
void DsFsmCommitLabel();
void DsFsmDropLabel();
void MoveInstructionToDelaySlot(Branch& branch);
bool CanExchangeWithSlt(Register rs, Register rt) const;
void ExchangeWithSlt(const DelaySlot& forwarded_slot);
void GenerateSltForCondBranch(bool unsigned_slt, Register rs, Register rt);
Branch* GetBranch(uint32_t branch_id);
const Branch* GetBranch(uint32_t branch_id) const;
uint32_t GetBranchLocationOrPcRelBase(const MipsAssembler::Branch* branch) const;
uint32_t GetBranchOrPcRelBaseForEncoding(const MipsAssembler::Branch* branch) const;
void EmitLiterals();
void ReserveJumpTableSpace();
void EmitJumpTables();
void PromoteBranches();
void EmitBranch(Branch* branch);
void EmitBranches();
void PatchCFI(size_t number_of_delayed_adjust_pcs);
// Emits exception block.
void EmitExceptionPoll(MipsExceptionSlowPath* exception);
bool IsR6() const {
if (isa_features_ != nullptr) {
return isa_features_->IsR6();
} else {
return false;
}
}
bool Is32BitFPU() const {
if (isa_features_ != nullptr) {
return isa_features_->Is32BitFloatingPoint();
} else {
return true;
}
}
// List of exception blocks to generate at the end of the code cache.
std::vector<MipsExceptionSlowPath> exception_blocks_;
std::vector<Branch> branches_;
// Whether appending instructions at the end of the buffer or overwriting the existing ones.
bool overwriting_;
// The current overwrite location.
uint32_t overwrite_location_;
// Whether instruction reordering (IOW, automatic filling of delay slots) is enabled.
bool reordering_;
// Information about the last instruction that may be used to fill a branch delay slot.
DelaySlot delay_slot_;
// Delay slot FSM state.
DsFsmState ds_fsm_state_;
// PC of the current labeled target instruction.
uint32_t ds_fsm_target_pc_;
// PCs of labeled target instructions.
std::vector<uint32_t> ds_fsm_target_pcs_;
// Use std::deque<> for literal labels to allow insertions at the end
// without invalidating pointers and references to existing elements.
ArenaDeque<Literal> literals_;
// Jump table list.
ArenaDeque<JumpTable> jump_tables_;
// There's no PC-relative addressing on MIPS32R2. So, in order to access literals relative to PC
// we get PC using the NAL instruction. This label marks the position within the assembler buffer
// that PC (from NAL) points to.
MipsLabel pc_rel_base_label_;
// Data for GetAdjustedPosition(), see the description there.
uint32_t last_position_adjustment_;
uint32_t last_old_position_;
uint32_t last_branch_id_;
const MipsInstructionSetFeatures* isa_features_;
DISALLOW_COPY_AND_ASSIGN(MipsAssembler);
};
} // namespace mips
} // namespace art
#endif // ART_COMPILER_UTILS_MIPS_ASSEMBLER_MIPS_H_