# Copyright 2014 The Android Open Source Project
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import its.image
import its.caps
import its.device
import its.objects
import os.path
def main():
"""Test face detection.
"""
NAME = os.path.basename(__file__).split(".")[0]
NUM_TEST_FRAMES = 20
FD_MODE_OFF = 0
FD_MODE_SIMPLE = 1
FD_MODE_FULL = 2
W, H = 640, 480
with its.device.ItsSession() as cam:
props = cam.get_camera_properties()
fd_modes = props['android.statistics.info.availableFaceDetectModes']
a = props['android.sensor.info.activeArraySize']
aw, ah = a['right'] - a['left'], a['bottom'] - a['top']
if its.caps.read_3a(props):
gain, exp, _, _, focus = cam.do_3a(get_results=True)
print 'iso = %d' % gain
print 'exp = %.2fms' % (exp*1.0E-6)
if focus == 0.0:
print 'fd = infinity'
else:
print 'fd = %.2fcm' % (1.0E2/focus)
for fd_mode in fd_modes:
assert(FD_MODE_OFF <= fd_mode <= FD_MODE_FULL)
req = its.objects.auto_capture_request()
req['android.statistics.faceDetectMode'] = fd_mode
fmt = {"format":"yuv", "width":W, "height":H}
caps = cam.do_capture([req]*NUM_TEST_FRAMES, fmt)
for i,cap in enumerate(caps):
md = cap['metadata']
assert(md['android.statistics.faceDetectMode'] == fd_mode)
faces = md['android.statistics.faces']
# 0 faces should be returned for OFF mode
if fd_mode == FD_MODE_OFF:
assert(len(faces) == 0)
continue
# Face detection could take several frames to warm up,
# but it should detect at least one face in last frame
if i == NUM_TEST_FRAMES - 1:
img = its.image.convert_capture_to_rgb_image(cap, props=props)
img = its.image.flip_mirror_img_per_argv(img)
img_name = "%s_fd_mode_%s.jpg" % (NAME, fd_mode)
its.image.write_image(img, img_name)
if len(faces) == 0:
print "Error: no face detected in mode", fd_mode
assert(0)
if len(faces) == 0:
continue
print "Frame %d face metadata:" % i
print " Faces:", faces
print ""
face_scores = [face['score'] for face in faces]
face_rectangles = [face['bounds'] for face in faces]
for score in face_scores:
assert(score >= 1 and score <= 100)
# Face bounds should be within active array
for rect in face_rectangles:
assert(rect['top'] < rect['bottom'])
assert(rect['left'] < rect['right'])
assert(0 <= rect['top'] <= ah)
assert(0 <= rect['bottom'] <= ah)
assert(0 <= rect['left'] <= aw)
assert(0 <= rect['right'] <= aw)
# Face landmarks are reported if and only if fd_mode is FULL
# Face ID should be -1 for SIMPLE and unique for FULL
if fd_mode == FD_MODE_SIMPLE:
for face in faces:
assert('leftEye' not in face)
assert('rightEye' not in face)
assert('mouth' not in face)
assert(face['id'] == -1)
elif fd_mode == FD_MODE_FULL:
face_ids = [face['id'] for face in faces]
assert(len(face_ids) == len(set(face_ids)))
# Face landmarks should be within face bounds
for face in faces:
left_eye = face['leftEye']
right_eye = face['rightEye']
mouth = face['mouth']
l, r = face['bounds']['left'], face['bounds']['right']
t, b = face['bounds']['top'], face['bounds']['bottom']
assert(l <= left_eye['x'] <= r)
assert(t <= left_eye['y'] <= b)
assert(l <= right_eye['x'] <= r)
assert(t <= right_eye['y'] <= b)
assert(l <= mouth['x'] <= r)
assert(t <= mouth['y'] <= b)
if __name__ == '__main__':
main()