# Copyright 2014 The Android Open Source Project
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os.path
import cv2
import its.caps
import its.device
import its.image
import its.objects
NAME = os.path.basename(__file__).split('.')[0]
NUM_TEST_FRAMES = 20
NUM_FACES = 3
FD_MODE_OFF = 0
FD_MODE_SIMPLE = 1
FD_MODE_FULL = 2
W, H = 640, 480
def main():
"""Test face detection."""
with its.device.ItsSession() as cam:
props = cam.get_camera_properties()
fd_modes = props['android.statistics.info.availableFaceDetectModes']
a = props['android.sensor.info.activeArraySize']
aw, ah = a['right'] - a['left'], a['bottom'] - a['top']
if its.caps.read_3a(props):
_, _, _, _, _ = cam.do_3a(get_results=True)
for fd_mode in fd_modes:
assert FD_MODE_OFF <= fd_mode <= FD_MODE_FULL
req = its.objects.auto_capture_request()
req['android.statistics.faceDetectMode'] = fd_mode
fmt = {'format': 'yuv', 'width': W, 'height': H}
caps = cam.do_capture([req]*NUM_TEST_FRAMES, fmt)
for i, cap in enumerate(caps):
md = cap['metadata']
assert md['android.statistics.faceDetectMode'] == fd_mode
faces = md['android.statistics.faces']
# 0 faces should be returned for OFF mode
if fd_mode == FD_MODE_OFF:
assert not faces
continue
# Face detection could take several frames to warm up,
# but should detect the correct number of faces in last frame
if i == NUM_TEST_FRAMES - 1:
img = its.image.convert_capture_to_rgb_image(cap,
props=props)
fnd_faces = len(faces)
print 'Found %d face(s), expected %d.' % (fnd_faces,
NUM_FACES)
# draw boxes around faces
for rect in [face['bounds'] for face in faces]:
top_left = (int(round(rect['left']*W/aw)),
int(round(rect['top']*H/ah)))
bot_rght = (int(round(rect['right']*W/aw)),
int(round(rect['bottom']*H/ah)))
cv2.rectangle(img, top_left, bot_rght, (0, 1, 0), 2)
img_name = '%s_fd_mode_%s.jpg' % (NAME, fd_mode)
its.image.write_image(img, img_name)
assert fnd_faces == NUM_FACES
if not faces:
continue
print 'Frame %d face metadata:' % i
print ' Faces:', faces
print ''
# Reasonable scores for faces
face_scores = [face['score'] for face in faces]
for score in face_scores:
assert score >= 1 and score <= 100
# Face bounds should be within active array
face_rectangles = [face['bounds'] for face in faces]
for rect in face_rectangles:
assert rect['top'] < rect['bottom']
assert rect['left'] < rect['right']
assert 0 <= rect['top'] <= ah
assert 0 <= rect['bottom'] <= ah
assert 0 <= rect['left'] <= aw
assert 0 <= rect['right'] <= aw
if __name__ == '__main__':
main()