#include "common/math/levenberg_marquardt.h"
#include <stdbool.h>
#include <stdio.h>
#include <string.h>
#include "common/math/mat.h"
#include "common/math/vec.h"
// FORWARD DECLARATIONS
////////////////////////////////////////////////////////////////////////
static bool checkRelativeStepSize(const float *step, const float *state,
size_t dim, float relative_error_threshold);
static bool computeResidualAndGradients(ResidualAndJacobianFunction func,
const float *state, const void *f_data,
float *jacobian,
float gradient_threshold,
size_t state_dim, size_t meas_dim,
float *residual, float *gradient,
float *hessian);
static bool computeStep(const float *gradient, float *hessian, float *L,
float damping_factor, size_t dim, float *step);
const static float kEps = 1e-10f;
// FUNCTION IMPLEMENTATIONS
////////////////////////////////////////////////////////////////////////
void lmSolverInit(struct LmSolver *solver, const struct LmParams *params,
ResidualAndJacobianFunction func) {
ASSERT_NOT_NULL(solver);
ASSERT_NOT_NULL(params);
ASSERT_NOT_NULL(func);
memset(solver, 0, sizeof(struct LmSolver));
memcpy(&solver->params, params, sizeof(struct LmParams));
solver->func = func;
solver->num_iter = 0;
}
void lmSolverDestroy(struct LmSolver *solver) {
(void)solver;
}
void lmSolverSetData(struct LmSolver *solver, struct LmData *data) {
ASSERT_NOT_NULL(solver);
ASSERT_NOT_NULL(data);
solver->data = data;
}
enum LmStatus lmSolverSolve(struct LmSolver *solver, const float *initial_state,
void *f_data, size_t state_dim, size_t meas_dim,
float *state) {
// Initialize parameters.
float damping_factor = 0.0f;
float v = 2.0f;
// Check dimensions.
if (meas_dim > MAX_LM_MEAS_DIMENSION || state_dim > MAX_LM_STATE_DIMENSION) {
return INVALID_DATA_DIMENSIONS;
}
// Check pointers (note that f_data can be null if no additional data is
// required by the error function).
ASSERT_NOT_NULL(solver);
ASSERT_NOT_NULL(initial_state);
ASSERT_NOT_NULL(state);
ASSERT_NOT_NULL(solver->data);
// Allocate memory for intermediate variables.
float state_new[MAX_LM_STATE_DIMENSION];
struct LmData *data = solver->data;
// state = initial_state, num_iter = 0
memcpy(state, initial_state, sizeof(float) * state_dim);
solver->num_iter = 0;
// Compute initial cost function gradient and return if already sufficiently
// small to satisfy solution.
if (computeResidualAndGradients(solver->func, state, f_data, data->temp,
solver->params.gradient_threshold, state_dim,
meas_dim, data->residual,
data->gradient,
data->hessian)) {
return GRADIENT_SUFFICIENTLY_SMALL;
}
// Initialize damping parameter.
damping_factor = solver->params.initial_u_scale *
matMaxDiagonalElement(data->hessian, state_dim);
// Iterate solution.
for (solver->num_iter = 0;
solver->num_iter < solver->params.max_iterations;
++solver->num_iter) {
// Compute new solver step.
if (!computeStep(data->gradient, data->hessian, data->temp, damping_factor,
state_dim, data->step)) {
return CHOLESKY_FAIL;
}
// If the new step is already sufficiently small, we have a solution.
if (checkRelativeStepSize(data->step, state, state_dim,
solver->params.relative_step_threshold)) {
return RELATIVE_STEP_SUFFICIENTLY_SMALL;
}
// state_new = state + step.
vecAdd(state_new, state, data->step, state_dim);
// Compute new cost function residual.
solver->func(state_new, f_data, data->residual_new, NULL);
// Compute ratio of expected to actual cost function gain for this step.
const float gain_ratio = computeGainRatio(data->residual,
data->residual_new,
data->step, data->gradient,
damping_factor, state_dim,
meas_dim);
// If gain ratio is positive, the step size is good, otherwise adjust
// damping factor and compute a new step.
if (gain_ratio > 0.0f) {
// Set state to new state vector: state = state_new.
memcpy(state, state_new, sizeof(float) * state_dim);
// Check if cost function gradient is now sufficiently small,
// in which case we have a local solution.
if (computeResidualAndGradients(solver->func, state, f_data, data->temp,
solver->params.gradient_threshold,
state_dim, meas_dim, data->residual,
data->gradient, data->hessian)) {
return GRADIENT_SUFFICIENTLY_SMALL;
}
// Update damping factor based on gain ratio.
// Note, this update logic comes from Equation 2.21 in the following:
// [Madsen, Kaj, Hans Bruun Nielsen, and Ole Tingleff.
// "Methods for non-linear least squares problems." (2004)].
const float tmp = 2.f * gain_ratio - 1.f;
damping_factor *= NANO_MAX(0.33333f, 1.f - tmp * tmp * tmp);
v = 2.f;
} else {
// Update damping factor and try again.
damping_factor *= v;
v *= 2.f;
}
}
return HIT_MAX_ITERATIONS;
}
float computeGainRatio(const float *residual, const float *residual_new,
const float *step, const float *gradient,
float damping_factor, size_t state_dim,
size_t meas_dim) {
// Compute true_gain = residual' residual - residual_new' residual_new.
const float true_gain = vecDot(residual, residual, meas_dim)
- vecDot(residual_new, residual_new, meas_dim);
// predicted gain = 0.5 * step' * (damping_factor * step + gradient).
float tmp[MAX_LM_STATE_DIMENSION];
vecScalarMul(tmp, step, damping_factor, state_dim);
vecAddInPlace(tmp, gradient, state_dim);
const float predicted_gain = 0.5f * vecDot(step, tmp, state_dim);
// Check that we don't divide by zero! If denominator is too small,
// set gain_ratio = 1 to use the current step.
if (predicted_gain < kEps) {
return 1.f;
}
return true_gain / predicted_gain;
}
/*
* Tests if a solution is found based on the size of the step relative to the
* current state magnitude. Returns true if a solution is found.
*
* TODO(dvitus): consider optimization of this function to use squared norm
* rather than norm for relative error computation to avoid square root.
*/
bool checkRelativeStepSize(const float *step, const float *state,
size_t dim, float relative_error_threshold) {
// r = eps * (||x|| + eps)
const float relative_error = relative_error_threshold *
(vecNorm(state, dim) + relative_error_threshold);
// solved if ||step|| <= r
// use squared version of this compare to avoid square root.
return (vecNormSquared(step, dim) <= relative_error * relative_error);
}
/*
* Computes the residual, f(x), as well as the gradient and hessian of the cost
* function for the given state.
*
* Returns a boolean indicating if the computed gradient is sufficiently small
* to indicate that a solution has been found.
*
* INPUTS:
* state: state estimate (x) for which to compute the gradient & hessian.
* f_data: pointer to parameter data needed for the residual or jacobian.
* jacobian: pointer to temporary memory for storing jacobian.
* Must be at least MAX_LM_STATE_DIMENSION * MAX_LM_MEAS_DIMENSION.
* gradient_threshold: if gradient is below this threshold, function returns 1.
*
* OUTPUTS:
* residual: f(x).
* gradient: - J' f(x), where J = df(x)/dx
* hessian: df^2(x)/dx^2 = J' J
*/
bool computeResidualAndGradients(ResidualAndJacobianFunction func,
const float *state, const void *f_data,
float *jacobian, float gradient_threshold,
size_t state_dim, size_t meas_dim,
float *residual, float *gradient,
float *hessian) {
// Compute residual and Jacobian.
ASSERT_NOT_NULL(state);
ASSERT_NOT_NULL(residual);
ASSERT_NOT_NULL(gradient);
ASSERT_NOT_NULL(hessian);
func(state, f_data, residual, jacobian);
// Compute the cost function hessian = jacobian' jacobian and
// gradient = -jacobian' residual
matTransposeMultiplyMat(hessian, jacobian, meas_dim, state_dim);
matTransposeMultiplyVec(gradient, jacobian, residual, meas_dim, state_dim);
vecScalarMulInPlace(gradient, -1.f, state_dim);
// Check if solution is found (cost function gradient is sufficiently small).
return (vecMaxAbsoluteValue(gradient, state_dim) < gradient_threshold);
}
/*
* Computes the Levenberg-Marquardt solver step to satisfy the following:
* (J'J + uI) * step = - J' f
*
* INPUTS:
* gradient: -J'f
* hessian: J'J
* L: temp memory of at least MAX_LM_STATE_DIMENSION * MAX_LM_STATE_DIMENSION.
* damping_factor: u
* dim: state dimension
*
* OUTPUTS:
* step: solution to the above equation.
* Function returns false if the solution fails (due to cholesky failure),
* otherwise returns true.
*
* Note that the hessian is modified in this function in order to reduce
* local memory requirements.
*/
bool computeStep(const float *gradient, float *hessian, float *L,
float damping_factor, size_t dim, float *step) {
// 1) A = hessian + damping_factor * Identity.
matAddConstantDiagonal(hessian, damping_factor, dim);
// 2) Solve A * step = gradient for step.
// a) compute cholesky decomposition of A = L L^T.
if (!matCholeskyDecomposition(L, hessian, dim)) {
return false;
}
// b) solve for step via back-solve.
return matLinearSolveCholesky(step, L, gradient, dim);
}