/*
* Copyright (C) 2016 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <atomic.h>
#include <gpio.h>
#include <nanohubPacket.h>
#include <plat/exti.h>
#include <plat/gpio.h>
#include <platform.h>
#include <plat/syscfg.h>
#include <sensors.h>
#include <seos.h>
#include <spi.h>
#include <i2c.h>
#include <timer.h>
#include <stdlib.h>
#include <string.h>
#define LPS22HB_APP_ID APP_ID_MAKE(NANOHUB_VENDOR_STMICRO, 1)
#define LPS22HB_SPI_BUS_ID 1
#define LPS22HB_SPI_SPEED_HZ 8000000
/* Sensor defs */
#define LPS22HB_INT_CFG_REG_ADDR 0x0B
#define LPS22HB_LIR_BIT 0x04
#define LPS22HB_WAI_REG_ADDR 0x0F
#define LPS22HB_WAI_REG_VAL 0xB1
#define LPS22HB_SOFT_RESET_REG_ADDR 0x11
#define LPS22HB_SOFT_RESET_BIT 0x04
#define LPS22HB_ODR_REG_ADDR 0x10
#define LPS22HB_ODR_ONE_SHOT 0x00
#define LPS22HB_ODR_1_HZ 0x10
#define LPS22HB_ODR_10_HZ 0x20
#define LPS22HB_ODR_25_HZ 0x30
#define LPS22HB_ODR_50_HZ 0x40
#define LPS22HB_ODR_75_HZ 0x50
#define LPS22HB_PRESS_OUTXL_REG_ADDR 0x28
#define LPS22HB_TEMP_OUTL_REG_ADDR 0x2B
#define LPS22HB_INT1_REG_ADDR 0x23
#define LPS22HB_INT2_REG_ADDR 0x24
#define LPS22HB_INT1_PIN GPIO_PA(4)
#define LPS22HB_INT2_PIN GPIO_PB(0)
#define LPS22HB_HECTO_PASCAL(baro_val) (baro_val/4096)
#define LPS22HB_CENTIGRADES(temp_val) (temp_val/100)
enum lps22hbSensorEvents
{
EVT_COMM_DONE = EVT_APP_START + 1,
EVT_INT1_RAISED,
EVT_SENSOR_BARO_TIMER,
EVT_SENSOR_TEMP_TIMER,
EVT_TEST,
};
enum lps22hbSensorState {
SENSOR_BOOT,
SENSOR_VERIFY_ID,
SENSOR_INIT,
SENSOR_BARO_POWER_UP,
SENSOR_BARO_POWER_DOWN,
SENSOR_TEMP_POWER_UP,
SENSOR_TEMP_POWER_DOWN,
SENSOR_READ_SAMPLES,
};
#define LPS22HB_USE_I2C 1
#if defined(LPS22HB_USE_I2C)
#define I2C_BUS_ID 0
#define I2C_SPEED 400000
#define LPS22HB_I2C_ADDR 0x5D
#else
#define SPI_READ 0x80
#define SPI_WRITE 0x00
#define SPI_MAX_PCK_NUM 1
#endif
enum lps22hbSensorIndex {
BARO = 0,
TEMP,
NUM_OF_SENSOR,
};
//#define NUM_OF_SENSOR 1
struct lps22hbSensor {
uint32_t handle;
};
/* Task structure */
struct lps22hbTask {
uint32_t tid;
/* timer */
uint32_t baroTimerHandle;
uint32_t tempTimerHandle;
/* sensor flags */
bool baroOn;
bool baroReading;
bool baroWantRead;
bool tempOn;
bool tempReading;
bool tempWantRead;
//int sensLastRead;
#if defined(LPS22HB_USE_I2C)
#else
/* SPI */
spi_cs_t cs;
struct SpiMode mode;
struct SpiDevice *spiDev;
struct SpiPacket spi_pck[SPI_MAX_PCK_NUM];
#endif
unsigned char sens_buf[6];
/* Communication functions */
void (*comm_tx)(uint8_t addr, uint8_t data, uint32_t delay, void *cookie);
void (*comm_rx)(uint8_t addr, uint16_t len, uint32_t delay, void *cookie);
/* sensors */
struct lps22hbSensor sensors[NUM_OF_SENSOR];
};
static struct lps22hbTask mTask;
#if defined(LPS22HB_USE_I2C)
static void i2cCallback(void *cookie, size_t tx, size_t rx, int err)
#else
static void spiCallback(void *cookie, int err)
#endif
{
osEnqueuePrivateEvt(EVT_COMM_DONE, cookie, NULL, mTask.tid);
}
#if defined(LPS22HB_USE_I2C)
static void i2c_read(uint8_t addr, uint16_t len, uint32_t delay, void *cookie)
{
mTask.sens_buf[0] = 0x80 | addr;
i2cMasterTxRx(I2C_BUS_ID, LPS22HB_I2C_ADDR, &mTask.sens_buf[0], 1,
&mTask.sens_buf[1], len, &i2cCallback, cookie);
}
static void i2c_write(uint8_t addr, uint8_t data, uint32_t delay, void *cookie)
{
mTask.sens_buf[0] = addr;
mTask.sens_buf[1] = data;
i2cMasterTx(I2C_BUS_ID, LPS22HB_I2C_ADDR, mTask.sens_buf, 2, &i2cCallback, cookie);
}
#else
static void spi_read(uint8_t addr, uint16_t len, uint32_t delay, void *cookie)
{
mTask.sens_buf[0] = SPI_READ | addr;
mTask.spi_pck[0].size = len + 1;
mTask.spi_pck[0].txBuf = mTask.spi_pck[0].rxBuf = &mTask.sens_buf[0];
mTask.spi_pck[0].delay = delay * 1000;
spiMasterRxTx(mTask.spiDev, mTask.cs, &mTask.spi_pck[0], 1/*mTask.spi_pck_num*/, &mTask.mode, spiCallback, cookie);
}
static void spi_write(uint8_t addr, uint8_t data, uint32_t delay, void *cookie)
{
mTask.sens_buf[0] = SPI_WRITE | addr;
mTask.sens_buf[1] = data;
mTask.spi_pck[0].size = 2;
mTask.spi_pck[0].txBuf = mTask.spi_pck[0].rxBuf = &mTask.sens_buf[0];
mTask.spi_pck[0].delay = delay * 1000;
spiMasterRxTx(mTask.spiDev, mTask.cs, &mTask.spi_pck[0], 1/*mTask.spi_pck_num*/, &mTask.mode, spiCallback, cookie);
}
static void spi_init(void)
{
mTask.mode.speed = LPS22HB_SPI_SPEED_HZ;
mTask.mode.bitsPerWord = 8;
mTask.mode.cpol = SPI_CPOL_IDLE_HI;
mTask.mode.cpha = SPI_CPHA_TRAILING_EDGE;
mTask.mode.nssChange = true;
mTask.mode.format = SPI_FORMAT_MSB_FIRST;
mTask.cs = GPIO_PB(12);
spiMasterRequest(LPS22HB_SPI_BUS_ID, &(mTask.spiDev));
}
#endif
/* Sensor Info */
static void sensorBaroTimerCallback(uint32_t timerId, void *data)
{
osEnqueuePrivateEvt(EVT_SENSOR_BARO_TIMER, data, NULL, mTask.tid);
}
static void sensorTempTimerCallback(uint32_t timerId, void *data)
{
osEnqueuePrivateEvt(EVT_SENSOR_TEMP_TIMER, data, NULL, mTask.tid);
}
#define DEC_INFO(name, type, axis, inter, samples, rates, raw, scale, bias) \
.sensorName = name, \
.sensorType = type, \
.numAxis = axis, \
.interrupt = inter, \
.minSamples = samples, \
.supportedRates = rates, \
.rawType = raw, \
.rawScale = scale, \
.biasType = bias
static uint32_t lps22hbRates[] = {
SENSOR_HZ(1.0f),
SENSOR_HZ(10.0f),
SENSOR_HZ(25.0f),
SENSOR_HZ(50.0f),
SENSOR_HZ(75.0f),
0
};
// should match "supported rates in length" and be the timer length for that rate in nanosecs
static const uint64_t lps22hbRatesRateVals[] =
{
1 * 1000000000ULL,
1000000000ULL / 10,
1000000000ULL / 25,
1000000000ULL / 50,
1000000000ULL / 75,
};
static const struct SensorInfo lps22hbSensorInfo[NUM_OF_SENSOR] =
{
{ DEC_INFO("Pressure", SENS_TYPE_BARO, NUM_AXIS_EMBEDDED, NANOHUB_INT_NONWAKEUP,
300, lps22hbRates, 0, 0, 0) },
{ DEC_INFO("Temperature", SENS_TYPE_TEMP, NUM_AXIS_EMBEDDED, NANOHUB_INT_NONWAKEUP,
20, lps22hbRates, 0, 0, 0) },
};
/* Sensor Operations */
static bool baroPower(bool on, void *cookie)
{
bool oldMode = mTask.baroOn || mTask.tempOn;
bool newMode = on || mTask.tempOn;
uint32_t state = on ? SENSOR_BARO_POWER_UP : SENSOR_BARO_POWER_DOWN;
//osLog(LOG_INFO, "baro power %d (%d) %d %d\n", oldMode, newMode, mTask.baroOn, mTask.tempOn);
if (!on && mTask.baroTimerHandle) {
timTimerCancel(mTask.baroTimerHandle);
mTask.baroTimerHandle = 0;
mTask.baroReading = false;
}
if (oldMode != newMode) {
if (on)
mTask.comm_tx(LPS22HB_ODR_REG_ADDR, LPS22HB_ODR_10_HZ, 0, (void *)state);
else
mTask.comm_tx(LPS22HB_ODR_REG_ADDR, LPS22HB_ODR_ONE_SHOT, 0, (void *)state);
} else
sensorSignalInternalEvt(mTask.sensors[BARO].handle,
SENSOR_INTERNAL_EVT_POWER_STATE_CHG, on, 0);
mTask.baroReading = false;
mTask.baroOn = on;
return true;
}
static bool baroFwUpload(void *cookie)
{
return sensorSignalInternalEvt(mTask.sensors[BARO].handle, SENSOR_INTERNAL_EVT_FW_STATE_CHG, 1, 0);
}
static bool baroSetRate(uint32_t rate, uint64_t latency, void *cookie)
{
//osLog(LOG_INFO, "baro set rate %ld (%lld)\n", rate, latency);
if (mTask.baroTimerHandle)
timTimerCancel(mTask.baroTimerHandle);
mTask.baroTimerHandle = timTimerSet(sensorTimerLookupCommon(lps22hbRates,
lps22hbRatesRateVals, rate), 0, 50, sensorBaroTimerCallback, NULL, false);
return sensorSignalInternalEvt(mTask.sensors[BARO].handle,
SENSOR_INTERNAL_EVT_RATE_CHG, rate, latency);
}
static bool baroFlush(void *cookie)
{
return osEnqueueEvt(sensorGetMyEventType(SENS_TYPE_BARO), SENSOR_DATA_EVENT_FLUSH, NULL);
}
static bool tempPower(bool on, void *cookie)
{
bool oldMode = mTask.baroOn || mTask.tempOn;
bool newMode = on || mTask.baroOn;
uint32_t state = on ? SENSOR_TEMP_POWER_UP : SENSOR_TEMP_POWER_DOWN;
//osLog(LOG_INFO, "temp power %d (%d) %d %d\n", oldMode, newMode, mTask.baroOn, mTask.tempOn);
if (!on && mTask.tempTimerHandle) {
timTimerCancel(mTask.tempTimerHandle);
mTask.tempTimerHandle = 0;
mTask.tempReading = false;
}
if (oldMode != newMode) {
if (on)
mTask.comm_tx(LPS22HB_ODR_REG_ADDR, LPS22HB_ODR_10_HZ, 0, (void *)state);
else
mTask.comm_tx(LPS22HB_ODR_REG_ADDR, LPS22HB_ODR_ONE_SHOT, 0, (void *)state);
} else
sensorSignalInternalEvt(mTask.sensors[TEMP].handle,
SENSOR_INTERNAL_EVT_POWER_STATE_CHG, on, 0);
mTask.tempReading = false;
mTask.tempOn = on;
return true;
}
static bool tempFwUpload(void *cookie)
{
return sensorSignalInternalEvt(mTask.sensors[TEMP].handle, SENSOR_INTERNAL_EVT_FW_STATE_CHG, 1, 0);
}
static bool tempSetRate(uint32_t rate, uint64_t latency, void *cookie)
{
if (mTask.tempTimerHandle)
timTimerCancel(mTask.tempTimerHandle);
//osLog(LOG_INFO, "temp set rate %ld (%lld)\n", rate, latency);
mTask.tempTimerHandle = timTimerSet(sensorTimerLookupCommon(lps22hbRates,
lps22hbRatesRateVals, rate), 0, 50, sensorTempTimerCallback, NULL, false);
return sensorSignalInternalEvt(mTask.sensors[TEMP].handle,
SENSOR_INTERNAL_EVT_RATE_CHG, rate, latency);
}
static bool tempFlush(void *cookie)
{
return osEnqueueEvt(sensorGetMyEventType(SENS_TYPE_BARO), SENSOR_DATA_EVENT_FLUSH, NULL);
}
#define DEC_OPS(power, firmware, rate, flush, cal, cfg) \
.sensorPower = power, \
.sensorFirmwareUpload = firmware, \
.sensorSetRate = rate, \
.sensorFlush = flush, \
.sensorCalibrate = cal, \
.sensorCfgData = cfg
static const struct SensorOps lps22hbSensorOps[NUM_OF_SENSOR] =
{
{ DEC_OPS(baroPower, baroFwUpload, baroSetRate, baroFlush, NULL, NULL) },
{ DEC_OPS(tempPower, tempFwUpload, tempSetRate, tempFlush, NULL, NULL) },
};
static uint8_t *wai;
static uint8_t *baro_samples;
static uint8_t *temp_samples;
static void handleCommDoneEvt(const void* evtData)
{
uint8_t i;
int baro_val;
short temp_val;
uint32_t state = (uint32_t)evtData;
union EmbeddedDataPoint sample;
switch (state) {
case SENSOR_BOOT:
mTask.comm_rx(LPS22HB_WAI_REG_ADDR, 1, 1, (void *)SENSOR_VERIFY_ID);
break;
case SENSOR_VERIFY_ID:
wai = &mTask.sens_buf[1];
if (LPS22HB_WAI_REG_VAL != wai[0]) {
osLog(LOG_INFO, "WAI returned is: %02x\n", *wai);
break;
}
osLog(LOG_INFO, "Device ID is correct! (%02x)\n", *wai);
for (i = 0; i < NUM_OF_SENSOR; i++)
sensorRegisterInitComplete(mTask.sensors[i].handle);
/* TEST the environment in standalone mode */
//osEnqueuePrivateEvt(EVT_TEST, NULL, NULL, mTask.tid);
break;
case SENSOR_INIT:
for (i = 0; i < NUM_OF_SENSOR; i++)
sensorRegisterInitComplete(mTask.sensors[i].handle);
break;
case SENSOR_BARO_POWER_UP:
sensorSignalInternalEvt(mTask.sensors[BARO].handle,
SENSOR_INTERNAL_EVT_POWER_STATE_CHG, true, 0);
break;
case SENSOR_BARO_POWER_DOWN:
sensorSignalInternalEvt(mTask.sensors[BARO].handle,
SENSOR_INTERNAL_EVT_POWER_STATE_CHG, false, 0);
break;
case SENSOR_TEMP_POWER_UP:
sensorSignalInternalEvt(mTask.sensors[TEMP].handle,
SENSOR_INTERNAL_EVT_POWER_STATE_CHG, true, 0);
break;
case SENSOR_TEMP_POWER_DOWN:
sensorSignalInternalEvt(mTask.sensors[TEMP].handle,
SENSOR_INTERNAL_EVT_POWER_STATE_CHG, false, 0);
break;
case SENSOR_READ_SAMPLES:
if (mTask.baroOn && mTask.baroWantRead) {
mTask.baroWantRead = false;
baro_samples = &mTask.sens_buf[1];
baro_val = ((baro_samples[2] << 16) & 0xff0000) |
((baro_samples[1] << 8) & 0xff00) |
(baro_samples[0]);
mTask.baroReading = false;
sample.fdata = LPS22HB_HECTO_PASCAL((float)baro_val);
//osLog(LOG_INFO, "baro: %p\n", sample.vptr);
osEnqueueEvt(sensorGetMyEventType(SENS_TYPE_BARO), sample.vptr, NULL);
}
if (mTask.tempOn && mTask.tempWantRead) {
mTask.tempWantRead = false;
temp_samples = &mTask.sens_buf[4];
temp_val = ((temp_samples[1] << 8) & 0xff00) |
(temp_samples[0]);
mTask.tempReading = false;
sample.fdata = LPS22HB_CENTIGRADES((float)temp_val);
//osLog(LOG_INFO, "temp: %p\n", sample.vptr);
osEnqueueEvt(sensorGetMyEventType(SENS_TYPE_TEMP), sample.vptr, NULL);
}
break;
default:
break;
}
}
static void handleEvent(uint32_t evtType, const void* evtData)
{
switch (evtType) {
case EVT_APP_START:
osLog(LOG_INFO, "LPS22HB DRIVER: EVT_APP_START\n");
osEventUnsubscribe(mTask.tid, EVT_APP_START);
mTask.comm_tx(LPS22HB_SOFT_RESET_REG_ADDR,
LPS22HB_SOFT_RESET_BIT, 0, (void *)SENSOR_BOOT);
break;
case EVT_COMM_DONE:
//osLog(LOG_INFO, "LPS22HB DRIVER: EVT_COMM_DONE %d\n", (int)evtData);
handleCommDoneEvt(evtData);
break;
case EVT_SENSOR_BARO_TIMER:
//osLog(LOG_INFO, "LPS22HB DRIVER: EVT_SENSOR_BARO_TIMER\n");
mTask.baroWantRead = true;
/* Start sampling for a value */
if (!mTask.baroReading && !mTask.tempReading) {
mTask.baroReading = true;
mTask.comm_rx(LPS22HB_PRESS_OUTXL_REG_ADDR, 5, 1, (void *)SENSOR_READ_SAMPLES);
}
break;
case EVT_SENSOR_TEMP_TIMER:
//osLog(LOG_INFO, "LPS22HB DRIVER: EVT_SENSOR_TEMP_TIMER\n");
mTask.tempWantRead = true;
/* Start sampling for a value */
if (!mTask.baroReading && !mTask.tempReading) {
mTask.tempReading = true;
mTask.comm_rx(LPS22HB_PRESS_OUTXL_REG_ADDR, 5, 1, (void *)SENSOR_READ_SAMPLES);
}
break;
case EVT_INT1_RAISED:
osLog(LOG_INFO, "LPS22HB DRIVER: EVT_INT1_RAISED\n");
break;
case EVT_TEST:
osLog(LOG_INFO, "LPS22HB DRIVER: EVT_TEST\n");
baroPower(true, NULL);
tempPower(true, NULL);
baroSetRate(SENSOR_HZ(1), 0, NULL);
tempSetRate(SENSOR_HZ(1), 0, NULL);
break;
default:
break;
}
}
static bool startTask(uint32_t task_id)
{
uint8_t i;
mTask.tid = task_id;
osLog(LOG_INFO, "LPS22HB DRIVER started\n");
mTask.baroOn = mTask.tempOn = false;
mTask.baroReading = mTask.tempReading = false;
/* Init the communication part */
#if defined(LPS22HB_USE_I2C)
i2cMasterRequest(I2C_BUS_ID, I2C_SPEED);
mTask.comm_tx = i2c_write;
mTask.comm_rx = i2c_read;
#else
spi_init();
mTask.comm_tx = spi_write;
mTask.comm_rx = spi_read;
#endif
for (i = 0; i < NUM_OF_SENSOR; i++) {
mTask.sensors[i].handle =
sensorRegister(&lps22hbSensorInfo[i], &lps22hbSensorOps[i], NULL, false);
}
osEventSubscribe(mTask.tid, EVT_APP_START);
return true;
}
static void endTask(void)
{
osLog(LOG_INFO, "LPS22HB DRIVER ended\n");
#if defined(LPS22HB_USE_I2C)
#else
spiMasterRelease(mTask.spiDev);
#endif
}
INTERNAL_APP_INIT(LPS22HB_APP_ID, 0, startTask, endTask, handleEvent);