/*
* Copyright (C) 2016 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <errno.h>
#include <string.h>
#include <gpio.h>
#include <spi.h>
#include <spi_priv.h>
#include <util.h>
#include <atomicBitset.h>
#include <atomic.h>
#include <platform.h>
#include <plat/cmsis.h>
#include <plat/dma.h>
#include <plat/gpio.h>
#include <plat/pwr.h>
#include <plat/exti.h>
#include <plat/syscfg.h>
#include <plat/spi.h>
#include <plat/plat.h>
#define SPI_CR1_CPHA (1 << 0)
#define SPI_CR1_CPOL (1 << 1)
#define SPI_CR1_MSTR (1 << 2)
#define SPI_CR1_BR(x) ((LOG2_CEIL(x) - 1) << 3)
#define SPI_CR1_BR_MIN 2
#define SPI_CR1_BR_MAX 256
#define SPI_CR1_BR_MASK (0x7 << 3)
#define SPI_CR1_SPE (1 << 6)
#define SPI_CR1_LSBFIRST (1 << 7)
#define SPI_CR1_SSI (1 << 8)
#define SPI_CR1_SSM (1 << 9)
#define SPI_CR1_RXONLY (1 << 10)
#define SPI_CR1_DFF (1 << 11)
#define SPI_CR1_BIDIOE (1 << 14)
#define SPI_CR1_BIDIMODE (1 << 15)
#define SPI_CR2_TXEIE (1 << 7)
#define SPI_CR2_RXNEIE (1 << 6)
#define SPI_CR2_ERRIE (1 << 5)
#define SPI_CR2_TXDMAEN (1 << 1)
#define SPI_CR2_RXDMAEN (1 << 0)
#define SPI_CR2_INT_MASK (SPI_CR2_TXEIE | SPI_CR2_RXNEIE | SPI_CR2_ERRIE)
#define SPI_CR2_SSOE (1 << 2)
#define SPI_SR_RXNE (1 << 0)
#define SPI_SR_TXE (1 << 1)
#define SPI_SR_BSY (1 << 7)
struct StmSpi {
volatile uint32_t CR1;
volatile uint32_t CR2;
volatile uint32_t SR;
volatile uint32_t DR;
volatile uint32_t CRCPR;
volatile uint32_t RXCRCR;
volatile uint32_t TXCRCR;
volatile uint32_t I2SCFGR;
volatile uint32_t I2SPR;
};
struct StmSpiState {
uint8_t bitsPerWord;
uint8_t xferEnable;
uint16_t rxWord;
uint16_t txWord;
bool rxDone;
bool txDone;
struct ChainedIsr isrNss;
bool nssChange;
};
struct StmSpiCfg {
struct StmSpi *regs;
uint32_t clockBus;
uint32_t clockUnit;
IRQn_Type irq;
uint8_t dmaBus;
};
struct StmSpiDev {
struct SpiDevice *base;
const struct StmSpiCfg *cfg;
const struct StmSpiBoardCfg *board;
struct StmSpiState state;
struct Gpio *miso;
struct Gpio *mosi;
struct Gpio *sck;
struct Gpio *nss;
};
static inline struct Gpio *stmSpiGpioInit(uint32_t gpioNum, enum StmGpioSpeed speed, enum StmGpioAltFunc func)
{
struct Gpio *gpio = gpioRequest(gpioNum);
if (gpio)
gpioConfigAlt(gpio, speed, GPIO_PULL_NONE, GPIO_OUT_PUSH_PULL, func);
return gpio;
}
static inline void stmSpiDataPullMode(struct StmSpiDev *pdev, enum StmGpioSpeed dataSpeed, enum GpioPullMode dataPull)
{
gpioConfigAlt(pdev->miso, dataSpeed, dataPull, GPIO_OUT_PUSH_PULL, pdev->board->gpioFunc);
gpioConfigAlt(pdev->mosi, dataSpeed, dataPull, GPIO_OUT_PUSH_PULL, pdev->board->gpioFunc);
}
static inline void stmSpiSckPullMode(struct StmSpiDev *pdev, enum StmGpioSpeed sckSpeed, enum GpioPullMode sckPull)
{
gpioConfigAlt(pdev->sck, sckSpeed, sckPull, GPIO_OUT_PUSH_PULL, pdev->board->gpioFunc);
}
static inline void stmSpiStartDma(struct StmSpiDev *pdev,
const struct StmSpiDmaCfg *dmaCfg, const void *buf, uint8_t bitsPerWord,
bool minc, size_t size, DmaCallbackF callback, bool rx)
{
struct StmSpi *regs = pdev->cfg->regs;
struct dmaMode mode;
memset(&mode, 0, sizeof(mode));
if (bitsPerWord == 8) {
mode.psize = DMA_SIZE_8_BITS;
mode.msize = DMA_SIZE_8_BITS;
} else {
mode.psize = DMA_SIZE_16_BITS;
mode.msize = DMA_SIZE_16_BITS;
}
mode.priority = DMA_PRIORITY_HIGH;
mode.direction = rx ? DMA_DIRECTION_PERIPH_TO_MEM :
DMA_DIRECTION_MEM_TO_PERIPH;
mode.periphAddr = (uintptr_t)®s->DR;
mode.minc = minc;
mode.channel = dmaCfg->channel;
dmaStart(pdev->cfg->dmaBus, dmaCfg->stream, buf, size, &mode, callback,
pdev);
}
static inline int stmSpiEnable(struct StmSpiDev *pdev,
const struct SpiMode *mode, bool master)
{
struct StmSpi *regs = pdev->cfg->regs;
struct StmSpiState *state = &pdev->state;
if (mode->bitsPerWord != 8 &&
mode->bitsPerWord != 16)
return -EINVAL;
unsigned int div;
if (master) {
if (!mode->speed)
return -EINVAL;
uint32_t pclk = pwrGetBusSpeed(PERIPH_BUS_AHB1);
div = pclk / mode->speed;
if (div > SPI_CR1_BR_MAX)
return -EINVAL;
else if (div < SPI_CR1_BR_MIN)
div = SPI_CR1_BR_MIN;
}
atomicWriteByte(&state->xferEnable, false);
state->txWord = mode->txWord;
state->bitsPerWord = mode->bitsPerWord;
pwrUnitClock(pdev->cfg->clockBus, pdev->cfg->clockUnit, true);
if (master) {
regs->CR1 &= ~SPI_CR1_BR_MASK;
regs->CR1 |= SPI_CR1_BR(div);
}
if (mode->cpol == SPI_CPOL_IDLE_LO)
regs->CR1 &= ~SPI_CR1_CPOL;
else
regs->CR1 |= SPI_CR1_CPOL;
if (mode->cpha == SPI_CPHA_LEADING_EDGE)
regs->CR1 &= ~SPI_CR1_CPHA;
else
regs->CR1 |= SPI_CR1_CPHA;
if (mode->bitsPerWord == 8)
regs->CR1 &= ~SPI_CR1_DFF;
else
regs->CR1 |= SPI_CR1_DFF;
if (mode->format == SPI_FORMAT_MSB_FIRST)
regs->CR1 &= ~SPI_CR1_LSBFIRST;
else
regs->CR1 |= SPI_CR1_LSBFIRST;
if (master)
regs->CR1 |= SPI_CR1_SSI | SPI_CR1_SSM | SPI_CR1_MSTR;
else
regs->CR1 &= ~(SPI_CR1_SSM | SPI_CR1_MSTR);
return 0;
}
static int stmSpiMasterStartSync(struct SpiDevice *dev, spi_cs_t cs,
const struct SpiMode *mode)
{
struct StmSpiDev *pdev = dev->pdata;
int err = stmSpiEnable(pdev, mode, true);
if (err < 0)
return err;
stmSpiDataPullMode(pdev, pdev->board->gpioSpeed, pdev->board->gpioPull);
stmSpiSckPullMode(pdev, pdev->board->gpioSpeed, mode->cpol ? GPIO_PULL_UP : GPIO_PULL_DOWN);
if (!pdev->nss)
pdev->nss = gpioRequest(cs);
if (!pdev->nss)
return -ENODEV;
gpioConfigOutput(pdev->nss, pdev->board->gpioSpeed, pdev->board->gpioPull, GPIO_OUT_PUSH_PULL, 1);
return 0;
}
static int stmSpiSlaveStartSync(struct SpiDevice *dev,
const struct SpiMode *mode)
{
struct StmSpiDev *pdev = dev->pdata;
stmSpiDataPullMode(pdev, pdev->board->gpioSpeed, GPIO_PULL_NONE);
stmSpiSckPullMode(pdev, pdev->board->gpioSpeed, GPIO_PULL_NONE);
if (!pdev->nss)
pdev->nss = stmSpiGpioInit(pdev->board->gpioNss, pdev->board->gpioSpeed, pdev->board->gpioFunc);
if (!pdev->nss)
return -ENODEV;
return stmSpiEnable(pdev, mode, false);
}
static inline bool stmSpiIsMaster(struct StmSpiDev *pdev)
{
struct StmSpi *regs = pdev->cfg->regs;
return !!(regs->CR1 & SPI_CR1_MSTR);
}
static void stmSpiDone(struct StmSpiDev *pdev, int err)
{
struct StmSpi *regs = pdev->cfg->regs;
struct StmSpiState *state = &pdev->state;
if (pdev->board->sleepDev >= 0)
platReleaseDevInSleepMode(pdev->board->sleepDev);
while (regs->SR & SPI_SR_BSY)
;
if (stmSpiIsMaster(pdev)) {
if (state->nssChange && pdev->nss)
gpioSet(pdev->nss, 1);
spiMasterRxTxDone(pdev->base, err);
} else {
regs->CR2 = SPI_CR2_TXEIE;
spiSlaveRxTxDone(pdev->base, err);
}
}
static void stmSpiRxDone(void *cookie, uint16_t bytesLeft, int err)
{
struct StmSpiDev *pdev = cookie;
struct StmSpi *regs = pdev->cfg->regs;
struct StmSpiState *state = &pdev->state;
regs->CR2 &= ~SPI_CR2_RXDMAEN;
state->rxDone = true;
if (state->txDone) {
atomicWriteByte(&state->xferEnable, false);
stmSpiDone(pdev, err);
}
}
static void stmSpiTxDone(void *cookie, uint16_t bytesLeft, int err)
{
struct StmSpiDev *pdev = cookie;
struct StmSpi *regs = pdev->cfg->regs;
struct StmSpiState *state = &pdev->state;
regs->CR2 &= ~SPI_CR2_TXDMAEN;
state->txDone = true;
if (state->rxDone) {
atomicWriteByte(&state->xferEnable, false);
stmSpiDone(pdev, err);
}
}
static int stmSpiRxTx(struct SpiDevice *dev, void *rxBuf, const void *txBuf,
size_t size, const struct SpiMode *mode)
{
struct StmSpiDev *pdev = dev->pdata;
struct StmSpi *regs = pdev->cfg->regs;
struct StmSpiState *state = &pdev->state;
bool rxMinc = true, txMinc = true;
uint32_t cr2 = SPI_CR2_TXDMAEN;
if (atomicXchgByte(&state->xferEnable, true) == true)
return -EBUSY;
if (stmSpiIsMaster(pdev) && pdev->nss)
gpioSet(pdev->nss, 0);
state->rxDone = false;
state->txDone = false;
state->nssChange = mode->nssChange;
/* In master mode, if RX is ignored at any point, then turning it on
* later may cause the SPI/DMA controllers to "receive" a stale byte
* sitting in a FIFO somewhere (even when their respective registers say
* their FIFOs are empty, and even if the SPI FIFO is explicitly cleared).
* Work around this by DMAing bytes we don't care about into a throwaway
* 1-word buffer.
*
* In slave mode, this specific WAR sometimes causes bigger problems
* (the first byte TXed is sometimes dropped or corrupted). Slave mode
* has its own WARs below.
*/
if (!rxBuf && stmSpiIsMaster(pdev)) {
rxBuf = &state->rxWord;
rxMinc = false;
}
if (rxBuf) {
stmSpiStartDma(pdev, &pdev->board->dmaRx, rxBuf, mode->bitsPerWord,
rxMinc, size, stmSpiRxDone, true);
cr2 |= SPI_CR2_RXDMAEN;
} else {
state->rxDone = true;
}
if (!txBuf) {
txBuf = &state->txWord;
txMinc = false;
}
stmSpiStartDma(pdev, &pdev->board->dmaTx, txBuf, mode->bitsPerWord, txMinc,
size, stmSpiTxDone, false);
/* Ensure the TXE and RXNE bits are cleared; otherwise the DMA controller
* may "receive" the byte sitting in the SPI controller's FIFO right now,
* or drop/corrupt the first TX byte. Timing is crucial here, so do it
* right before enabling DMA.
*/
if (!stmSpiIsMaster(pdev)) {
regs->CR2 &= ~SPI_CR2_TXEIE;
NVIC_ClearPendingIRQ(pdev->cfg->irq);
if (regs->SR & SPI_SR_RXNE)
(void)regs->DR;
if (regs->SR & SPI_SR_TXE)
regs->DR = mode->txWord;
}
if (pdev->board->sleepDev >= 0)
platRequestDevInSleepMode(pdev->board->sleepDev, 12);
regs->CR2 = cr2;
regs->CR1 |= SPI_CR1_SPE;
return 0;
}
static int stmSpiSlaveIdle(struct SpiDevice *dev, const struct SpiMode *mode)
{
struct StmSpiDev *pdev = dev->pdata;
struct StmSpi *regs = pdev->cfg->regs;
struct StmSpiState *state = &pdev->state;
if (atomicXchgByte(&state->xferEnable, true) == true)
return -EBUSY;
regs->CR2 = SPI_CR2_TXEIE;
regs->CR1 |= SPI_CR1_SPE;
atomicXchgByte(&state->xferEnable, false);
return 0;
}
static inline void stmSpiDisable(struct SpiDevice *dev, bool master)
{
struct StmSpiDev *pdev = dev->pdata;
struct StmSpi *regs = pdev->cfg->regs;
while (regs->SR & SPI_SR_BSY)
;
if (master) {
stmSpiSckPullMode(pdev, pdev->board->gpioSpeed, pdev->board->gpioPull);
}
regs->CR2 &= ~(SPI_CR2_RXDMAEN | SPI_CR2_TXDMAEN | SPI_CR2_TXEIE);
regs->CR1 &= ~SPI_CR1_SPE;
pwrUnitClock(pdev->cfg->clockBus, pdev->cfg->clockUnit, false);
}
static int stmSpiMasterStopSync(struct SpiDevice *dev)
{
struct StmSpiDev *pdev = dev->pdata;
if (pdev->nss) {
gpioSet(pdev->nss, 1);
gpioRelease(pdev->nss);
}
stmSpiDisable(dev, true);
pdev->nss = NULL;
return 0;
}
static int stmSpiSlaveStopSync(struct SpiDevice *dev)
{
struct StmSpiDev *pdev = dev->pdata;
if (pdev->nss)
gpioRelease(pdev->nss);
stmSpiDisable(dev, false);
pdev->nss = NULL;
return 0;
}
static bool stmSpiExtiIsr(struct ChainedIsr *isr)
{
struct StmSpiState *state = container_of(isr, struct StmSpiState, isrNss);
struct StmSpiDev *pdev = container_of(state, struct StmSpiDev, state);
if (pdev->nss && !extiIsPendingGpio(pdev->nss))
return false;
spiSlaveCsInactive(pdev->base);
if (pdev->nss)
extiClearPendingGpio(pdev->nss);
return true;
}
static void stmSpiSlaveSetCsInterrupt(struct SpiDevice *dev, bool enabled)
{
struct StmSpiDev *pdev = dev->pdata;
struct ChainedIsr *isr = &pdev->state.isrNss;
if (enabled) {
isr->func = stmSpiExtiIsr;
if (pdev->nss) {
syscfgSetExtiPort(pdev->nss);
extiEnableIntGpio(pdev->nss, EXTI_TRIGGER_RISING);
}
extiChainIsr(pdev->board->irqNss, isr);
} else {
extiUnchainIsr(pdev->board->irqNss, isr);
if (pdev->nss)
extiDisableIntGpio(pdev->nss);
}
}
static bool stmSpiSlaveCsIsActive(struct SpiDevice *dev)
{
struct StmSpiDev *pdev = dev->pdata;
return pdev->nss && !gpioGet(pdev->nss);
}
static inline void stmSpiTxe(struct StmSpiDev *pdev)
{
struct StmSpi *regs = pdev->cfg->regs;
/**
* n.b.: if nothing handles the TXE interrupt in slave mode, the SPI
* controller will just keep reading the existing value from DR anytime it
* needs data
*/
regs->DR = pdev->state.txWord;
regs->CR2 &= ~SPI_CR2_TXEIE;
}
static void stmSpiIsr(struct StmSpiDev *pdev)
{
struct StmSpi *regs = pdev->cfg->regs;
if (regs->SR & SPI_SR_TXE) {
stmSpiTxe(pdev);
}
/* TODO: error conditions */
}
static int stmSpiRelease(struct SpiDevice *dev)
{
struct StmSpiDev *pdev = dev->pdata;
NVIC_DisableIRQ(pdev->cfg->irq);
pdev->base = NULL;
return 0;
}
#define DECLARE_IRQ_HANDLER(_n) \
void SPI##_n##_IRQHandler(); \
void SPI##_n##_IRQHandler() \
{ \
stmSpiIsr(&mStmSpiDevs[_n - 1]); \
}
const struct SpiDevice_ops mStmSpiOps = {
.masterStartSync = stmSpiMasterStartSync,
.masterRxTx = stmSpiRxTx,
.masterStopSync = stmSpiMasterStopSync,
.slaveStartSync = stmSpiSlaveStartSync,
.slaveIdle = stmSpiSlaveIdle,
.slaveRxTx = stmSpiRxTx,
.slaveStopSync = stmSpiSlaveStopSync,
.slaveSetCsInterrupt = stmSpiSlaveSetCsInterrupt,
.slaveCsIsActive = stmSpiSlaveCsIsActive,
.release = stmSpiRelease,
};
static const struct StmSpiCfg mStmSpiCfgs[] = {
[0] = {
.regs = (struct StmSpi *)SPI1_BASE,
.clockBus = PERIPH_BUS_APB2,
.clockUnit = PERIPH_APB2_SPI1,
.irq = SPI1_IRQn,
.dmaBus = SPI1_DMA_BUS,
},
[1] = {
.regs = (struct StmSpi *)SPI2_BASE,
.clockBus = PERIPH_BUS_APB1,
.clockUnit = PERIPH_APB1_SPI2,
.irq = SPI2_IRQn,
.dmaBus = SPI2_DMA_BUS,
},
[2] = {
.regs = (struct StmSpi *)SPI3_BASE,
.clockBus = PERIPH_BUS_APB1,
.clockUnit = PERIPH_APB1_SPI3,
.irq = SPI3_IRQn,
.dmaBus = SPI3_DMA_BUS,
},
};
static struct StmSpiDev mStmSpiDevs[ARRAY_SIZE(mStmSpiCfgs)];
DECLARE_IRQ_HANDLER(1)
DECLARE_IRQ_HANDLER(2)
DECLARE_IRQ_HANDLER(3)
static void stmSpiInit(struct StmSpiDev *pdev, const struct StmSpiCfg *cfg,
const struct StmSpiBoardCfg *board, struct SpiDevice *dev)
{
pdev->miso = stmSpiGpioInit(board->gpioMiso, board->gpioSpeed, board->gpioFunc);
pdev->mosi = stmSpiGpioInit(board->gpioMosi, board->gpioSpeed, board->gpioFunc);
pdev->sck = stmSpiGpioInit(board->gpioSclk, board->gpioSpeed, board->gpioFunc);
NVIC_EnableIRQ(cfg->irq);
pdev->base = dev;
pdev->cfg = cfg;
pdev->board = board;
}
int spiRequest(struct SpiDevice *dev, uint8_t busId)
{
if (busId >= ARRAY_SIZE(mStmSpiDevs))
return -ENODEV;
const struct StmSpiBoardCfg *board = boardStmSpiCfg(busId);
if (!board)
return -ENODEV;
struct StmSpiDev *pdev = &mStmSpiDevs[busId];
const struct StmSpiCfg *cfg = &mStmSpiCfgs[busId];
if (!pdev->base)
stmSpiInit(pdev, cfg, board, dev);
memset(&pdev->state, 0, sizeof(pdev->state));
dev->ops = &mStmSpiOps;
dev->pdata = pdev;
return 0;
}
const enum IRQn spiRxIrq(uint8_t busId)
{
if (busId >= ARRAY_SIZE(mStmSpiDevs))
return -ENODEV;
struct StmSpiDev *pdev = &mStmSpiDevs[busId];
return dmaIrq(pdev->cfg->dmaBus, pdev->board->dmaRx.stream);
}
const enum IRQn spiTxIrq(uint8_t busId)
{
if (busId >= ARRAY_SIZE(mStmSpiDevs))
return -ENODEV;
struct StmSpiDev *pdev = &mStmSpiDevs[busId];
return dmaIrq(pdev->cfg->dmaBus, pdev->board->dmaTx.stream);
}