/*-------------------------------------------------------------------------
* drawElements Quality Program OpenGL ES 3.1 Module
* -------------------------------------------------
*
* Copyright 2014 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*//*!
* \file
* \brief Geometry shader tests.
*//*--------------------------------------------------------------------*/
#include "es31fGeometryShaderTests.hpp"
#include "gluRenderContext.hpp"
#include "gluTextureUtil.hpp"
#include "gluObjectWrapper.hpp"
#include "gluPixelTransfer.hpp"
#include "gluContextInfo.hpp"
#include "gluCallLogWrapper.hpp"
#include "tcuRenderTarget.hpp"
#include "tcuTestLog.hpp"
#include "tcuVectorUtil.hpp"
#include "tcuImageCompare.hpp"
#include "tcuTextureUtil.hpp"
#include "tcuStringTemplate.hpp"
#include "glsStateQueryUtil.hpp"
#include "gluStrUtil.hpp"
#include "deStringUtil.hpp"
#include "deUniquePtr.hpp"
#include "deMemory.h"
#include "sglrContext.hpp"
#include "sglrReferenceContext.hpp"
#include "sglrGLContext.hpp"
#include "sglrReferenceUtils.hpp"
#include "glwDefs.hpp"
#include "glwEnums.hpp"
#include "glwFunctions.hpp"
#include <algorithm>
using namespace glw;
namespace deqp
{
namespace gles31
{
namespace Functional
{
namespace
{
using namespace gls::StateQueryUtil;
const int TEST_CANVAS_SIZE = 256;
static const char* const s_commonShaderSourceVertex = "${GLSL_VERSION_DECL}\n"
"in highp vec4 a_position;\n"
"in highp vec4 a_color;\n"
"out highp vec4 v_geom_FragColor;\n"
"void main (void)\n"
"{\n"
" gl_Position = a_position;\n"
" gl_PointSize = 1.0;\n"
" v_geom_FragColor = a_color;\n"
"}\n";
static const char* const s_commonShaderSourceFragment = "${GLSL_VERSION_DECL}\n"
"layout(location = 0) out mediump vec4 fragColor;\n"
"in mediump vec4 v_frag_FragColor;\n"
"void main (void)\n"
"{\n"
" fragColor = v_frag_FragColor;\n"
"}\n";
static const char* const s_expandShaderSourceGeometryBody = "in highp vec4 v_geom_FragColor[];\n"
"out highp vec4 v_frag_FragColor;\n"
"\n"
"void main (void)\n"
"{\n"
" const highp vec4 offset0 = vec4(-0.07, -0.01, 0.0, 0.0);\n"
" const highp vec4 offset1 = vec4( 0.03, -0.03, 0.0, 0.0);\n"
" const highp vec4 offset2 = vec4(-0.01, 0.08, 0.0, 0.0);\n"
" highp vec4 yoffset = float(gl_PrimitiveIDIn) * vec4(0.02, 0.1, 0.0, 0.0);\n"
"\n"
" for (highp int ndx = 0; ndx < gl_in.length(); ndx++)\n"
" {\n"
" gl_Position = gl_in[ndx].gl_Position + offset0 + yoffset;\n"
" gl_PrimitiveID = gl_PrimitiveIDIn;\n"
" v_frag_FragColor = v_geom_FragColor[ndx];\n"
" EmitVertex();\n"
"\n"
" gl_Position = gl_in[ndx].gl_Position + offset1 + yoffset;\n"
" gl_PrimitiveID = gl_PrimitiveIDIn;\n"
" v_frag_FragColor = v_geom_FragColor[ndx];\n"
" EmitVertex();\n"
"\n"
" gl_Position = gl_in[ndx].gl_Position + offset2 + yoffset;\n"
" gl_PrimitiveID = gl_PrimitiveIDIn;\n"
" v_frag_FragColor = v_geom_FragColor[ndx];\n"
" EmitVertex();\n"
" EndPrimitive();\n"
" }\n"
"}\n";
static std::string specializeShader (const std::string& shaderSource, const glu::ContextType& contextType)
{
const bool isES32 = glu::contextSupports(contextType, glu::ApiType::es(3, 2));
std::map<std::string, std::string> args;
args["GLSL_VERSION_DECL"] = glu::getGLSLVersionDeclaration(glu::getContextTypeGLSLVersion(contextType));
args["GLSL_EXT_GEOMETRY_SHADER"] = isES32 ? "" : "#extension GL_EXT_geometry_shader : require\n";
args["GLSL_OES_TEXTURE_STORAGE_MULTISAMPLE"]= isES32 ? "" : "#extension GL_OES_texture_storage_multisample_2d_array : require\n";
return tcu::StringTemplate(shaderSource).specialize(args);
}
std::string inputTypeToGLString (rr::GeometryShaderInputType inputType)
{
switch (inputType)
{
case rr::GEOMETRYSHADERINPUTTYPE_POINTS: return "points";
case rr::GEOMETRYSHADERINPUTTYPE_LINES: return "lines";
case rr::GEOMETRYSHADERINPUTTYPE_LINES_ADJACENCY: return "lines_adjacency";
case rr::GEOMETRYSHADERINPUTTYPE_TRIANGLES: return "triangles";
case rr::GEOMETRYSHADERINPUTTYPE_TRIANGLES_ADJACENCY: return "triangles_adjacency";
default:
DE_ASSERT(DE_FALSE);
return "error";
}
}
std::string outputTypeToGLString (rr::GeometryShaderOutputType outputType)
{
switch (outputType)
{
case rr::GEOMETRYSHADEROUTPUTTYPE_POINTS: return "points";
case rr::GEOMETRYSHADEROUTPUTTYPE_LINE_STRIP: return "line_strip";
case rr::GEOMETRYSHADEROUTPUTTYPE_TRIANGLE_STRIP: return "triangle_strip";
default:
DE_ASSERT(DE_FALSE);
return "error";
}
}
std::string primitiveTypeToString (GLenum primitive)
{
switch (primitive)
{
case GL_POINTS: return "points";
case GL_LINES: return "lines";
case GL_LINE_LOOP: return "line_loop";
case GL_LINE_STRIP: return "line_strip";
case GL_LINES_ADJACENCY: return "lines_adjacency";
case GL_LINE_STRIP_ADJACENCY: return "line_strip_adjacency";
case GL_TRIANGLES: return "triangles";
case GL_TRIANGLE_STRIP: return "triangle_strip";
case GL_TRIANGLE_FAN: return "triangle_fan";
case GL_TRIANGLES_ADJACENCY: return "triangles_adjacency";
case GL_TRIANGLE_STRIP_ADJACENCY: return "triangle_strip_adjacency";
default:
DE_ASSERT(DE_FALSE);
return "error";
}
}
struct OutputCountPatternSpec
{
OutputCountPatternSpec (int count);
OutputCountPatternSpec (int count0, int count1);
std::vector<int> pattern;
};
OutputCountPatternSpec::OutputCountPatternSpec (int count)
{
pattern.push_back(count);
}
OutputCountPatternSpec::OutputCountPatternSpec (int count0, int count1)
{
pattern.push_back(count0);
pattern.push_back(count1);
}
class VertexExpanderShader : public sglr::ShaderProgram
{
public:
VertexExpanderShader (const glu::ContextType& contextType, rr::GeometryShaderInputType inputType, rr::GeometryShaderOutputType outputType);
void shadeVertices (const rr::VertexAttrib* inputs, rr::VertexPacket* const* packets, const int numPackets) const;
void shadeFragments (rr::FragmentPacket* packets, const int numPackets, const rr::FragmentShadingContext& context) const;
void shadePrimitives (rr::GeometryEmitter& output, int verticesIn, const rr::PrimitivePacket* packets, const int numPackets, int invocationID) const;
private:
size_t calcOutputVertices (rr::GeometryShaderInputType inputType) const;
std::string genGeometrySource (const glu::ContextType& contextType, rr::GeometryShaderInputType inputType, rr::GeometryShaderOutputType outputType) const;
};
VertexExpanderShader::VertexExpanderShader (const glu::ContextType& contextType, rr::GeometryShaderInputType inputType, rr::GeometryShaderOutputType outputType)
: sglr::ShaderProgram(sglr::pdec::ShaderProgramDeclaration()
<< sglr::pdec::VertexAttribute("a_position", rr::GENERICVECTYPE_FLOAT)
<< sglr::pdec::VertexAttribute("a_color", rr::GENERICVECTYPE_FLOAT)
<< sglr::pdec::VertexToGeometryVarying(rr::GENERICVECTYPE_FLOAT)
<< sglr::pdec::GeometryToFragmentVarying(rr::GENERICVECTYPE_FLOAT)
<< sglr::pdec::FragmentOutput(rr::GENERICVECTYPE_FLOAT)
<< sglr::pdec::VertexSource(specializeShader(s_commonShaderSourceVertex, contextType))
<< sglr::pdec::FragmentSource(specializeShader(s_commonShaderSourceFragment, contextType))
<< sglr::pdec::GeometryShaderDeclaration(inputType, outputType, calcOutputVertices(inputType))
<< sglr::pdec::GeometrySource(genGeometrySource(contextType, inputType, outputType).c_str()))
{
}
void VertexExpanderShader::shadeVertices (const rr::VertexAttrib* inputs, rr::VertexPacket* const* packets, const int numPackets) const
{
for (int ndx = 0; ndx < numPackets; ++ndx)
{
packets[ndx]->position = rr::readVertexAttribFloat(inputs[0], packets[ndx]->instanceNdx, packets[ndx]->vertexNdx);
packets[ndx]->pointSize = 1.0f;
packets[ndx]->outputs[0] = rr::readVertexAttribFloat(inputs[1], packets[ndx]->instanceNdx, packets[ndx]->vertexNdx);
}
}
void VertexExpanderShader::shadeFragments (rr::FragmentPacket* packets, const int numPackets, const rr::FragmentShadingContext& context) const
{
for (int packetNdx = 0; packetNdx < numPackets; ++packetNdx)
for (int fragNdx = 0; fragNdx < 4; ++fragNdx)
rr::writeFragmentOutput(context, packetNdx, fragNdx, 0, rr::readVarying<float>(packets[packetNdx], context, 0, fragNdx));
}
void VertexExpanderShader::shadePrimitives (rr::GeometryEmitter& output, int verticesIn, const rr::PrimitivePacket* packets, const int numPackets, int invocationID) const
{
DE_UNREF(invocationID);
for (int ndx = 0; ndx < numPackets; ++ndx)
for (int verticeNdx = 0; verticeNdx < verticesIn; ++verticeNdx)
{
const tcu::Vec4 offsets[] =
{
tcu::Vec4(-0.07f, -0.01f, 0.0f, 0.0f),
tcu::Vec4( 0.03f, -0.03f, 0.0f, 0.0f),
tcu::Vec4(-0.01f, 0.08f, 0.0f, 0.0f)
};
const tcu::Vec4 yoffset = float(packets[ndx].primitiveIDIn) * tcu::Vec4(0.02f, 0.1f, 0, 0);
// Create new primitive at every input vertice
const rr::VertexPacket* vertex = packets[ndx].vertices[verticeNdx];
output.EmitVertex(vertex->position + offsets[0] + yoffset, vertex->pointSize, vertex->outputs, packets[ndx].primitiveIDIn);
output.EmitVertex(vertex->position + offsets[1] + yoffset, vertex->pointSize, vertex->outputs, packets[ndx].primitiveIDIn);
output.EmitVertex(vertex->position + offsets[2] + yoffset, vertex->pointSize, vertex->outputs, packets[ndx].primitiveIDIn);
output.EndPrimitive();
}
}
size_t VertexExpanderShader::calcOutputVertices (rr::GeometryShaderInputType inputType) const
{
switch (inputType)
{
case rr::GEOMETRYSHADERINPUTTYPE_POINTS: return 1 * 3;
case rr::GEOMETRYSHADERINPUTTYPE_LINES: return 2 * 3;
case rr::GEOMETRYSHADERINPUTTYPE_LINES_ADJACENCY: return 4 * 3;
case rr::GEOMETRYSHADERINPUTTYPE_TRIANGLES: return 3 * 3;
case rr::GEOMETRYSHADERINPUTTYPE_TRIANGLES_ADJACENCY: return 6 * 3;
default:
DE_ASSERT(DE_FALSE);
return 0;
}
}
std::string VertexExpanderShader::genGeometrySource (const glu::ContextType& contextType, rr::GeometryShaderInputType inputType, rr::GeometryShaderOutputType outputType) const
{
std::ostringstream str;
str << "${GLSL_VERSION_DECL}\n";
str << "${GLSL_EXT_GEOMETRY_SHADER}";
str << "layout(" << inputTypeToGLString(inputType) << ") in;\n";
str << "layout(" << outputTypeToGLString(outputType) << ", max_vertices = " << calcOutputVertices(inputType) << ") out;";
str << "\n";
str << s_expandShaderSourceGeometryBody;
return specializeShader(str.str(), contextType);
}
class VertexEmitterShader : public sglr::ShaderProgram
{
public:
VertexEmitterShader (const glu::ContextType& contextType, int emitCountA, int endCountA, int emitCountB, int endCountB, rr::GeometryShaderOutputType outputType);
void shadeVertices (const rr::VertexAttrib* inputs, rr::VertexPacket* const* packets, const int numPackets) const;
void shadeFragments (rr::FragmentPacket* packets, const int numPackets, const rr::FragmentShadingContext& context) const;
void shadePrimitives (rr::GeometryEmitter& output, int verticesIn, const rr::PrimitivePacket* packets, const int numPackets, int invocationID) const;
private:
std::string genGeometrySource (const glu::ContextType& contextType, int emitCountA, int endCountA, int emitCountB, int endCountB, rr::GeometryShaderOutputType outputType) const;
int m_emitCountA;
int m_endCountA;
int m_emitCountB;
int m_endCountB;
};
VertexEmitterShader::VertexEmitterShader (const glu::ContextType& contextType, int emitCountA, int endCountA, int emitCountB, int endCountB, rr::GeometryShaderOutputType outputType)
: sglr::ShaderProgram(sglr::pdec::ShaderProgramDeclaration()
<< sglr::pdec::VertexAttribute("a_position", rr::GENERICVECTYPE_FLOAT)
<< sglr::pdec::VertexAttribute("a_color", rr::GENERICVECTYPE_FLOAT)
<< sglr::pdec::VertexToGeometryVarying(rr::GENERICVECTYPE_FLOAT)
<< sglr::pdec::GeometryToFragmentVarying(rr::GENERICVECTYPE_FLOAT)
<< sglr::pdec::FragmentOutput(rr::GENERICVECTYPE_FLOAT)
<< sglr::pdec::VertexSource(specializeShader(s_commonShaderSourceVertex, contextType))
<< sglr::pdec::FragmentSource(specializeShader(s_commonShaderSourceFragment, contextType))
<< sglr::pdec::GeometryShaderDeclaration(rr::GEOMETRYSHADERINPUTTYPE_POINTS, outputType, emitCountA + emitCountB)
<< sglr::pdec::GeometrySource(genGeometrySource(contextType, emitCountA, endCountA, emitCountB, endCountB, outputType).c_str()))
, m_emitCountA (emitCountA)
, m_endCountA (endCountA)
, m_emitCountB (emitCountB)
, m_endCountB (endCountB)
{
}
void VertexEmitterShader::shadeVertices (const rr::VertexAttrib* inputs, rr::VertexPacket* const* packets, const int numPackets) const
{
for (int ndx = 0; ndx < numPackets; ++ndx)
{
packets[ndx]->position = rr::readVertexAttribFloat(inputs[0], packets[ndx]->instanceNdx, packets[ndx]->vertexNdx);
packets[ndx]->pointSize = 1.0f;
packets[ndx]->outputs[0] = rr::readVertexAttribFloat(inputs[1], packets[ndx]->instanceNdx, packets[ndx]->vertexNdx);
}
}
void VertexEmitterShader::shadeFragments (rr::FragmentPacket* packets, const int numPackets, const rr::FragmentShadingContext& context) const
{
for (int packetNdx = 0; packetNdx < numPackets; ++packetNdx)
for (int fragNdx = 0; fragNdx < 4; ++fragNdx)
rr::writeFragmentOutput(context, packetNdx, fragNdx, 0, rr::readVarying<float>(packets[packetNdx], context, 0, fragNdx));
}
void VertexEmitterShader::shadePrimitives (rr::GeometryEmitter& output, int verticesIn, const rr::PrimitivePacket* packets, const int numPackets, int invocationID) const
{
DE_UNREF(verticesIn);
DE_UNREF(invocationID);
for (int ndx = 0; ndx < numPackets; ++ndx)
{
const tcu::Vec4 positions[] =
{
tcu::Vec4(-0.5f, 0.5f, 0.0f, 0.0f),
tcu::Vec4( 0.0f, 0.1f, 0.0f, 0.0f),
tcu::Vec4( 0.5f, 0.5f, 0.0f, 0.0f),
tcu::Vec4( 0.7f, -0.2f, 0.0f, 0.0f),
tcu::Vec4( 0.2f, 0.2f, 0.0f, 0.0f),
tcu::Vec4( 0.4f, -0.3f, 0.0f, 0.0f),
};
// Create new primitive at this point
const rr::VertexPacket* vertex = packets[ndx].vertices[0];
for (int i = 0; i < m_emitCountA; ++i)
output.EmitVertex(vertex->position + positions[i], vertex->pointSize, vertex->outputs, packets[ndx].primitiveIDIn);
for (int i = 0; i < m_endCountA; ++i)
output.EndPrimitive();
for (int i = 0; i < m_emitCountB; ++i)
output.EmitVertex(vertex->position + positions[m_emitCountA + i], vertex->pointSize, vertex->outputs, packets[ndx].primitiveIDIn);
for (int i = 0; i < m_endCountB; ++i)
output.EndPrimitive();
}
}
std::string VertexEmitterShader::genGeometrySource (const glu::ContextType& contextType, int emitCountA, int endCountA, int emitCountB, int endCountB, rr::GeometryShaderOutputType outputType) const
{
std::ostringstream str;
str << "${GLSL_VERSION_DECL}\n";
str << "${GLSL_EXT_GEOMETRY_SHADER}";
str << "layout(points) in;\n";
str << "layout(" << outputTypeToGLString(outputType) << ", max_vertices = " << (emitCountA+emitCountB) << ") out;";
str << "\n";
str << "in highp vec4 v_geom_FragColor[];\n"
"out highp vec4 v_frag_FragColor;\n"
"\n"
"void main (void)\n"
"{\n"
" const highp vec4 position0 = vec4(-0.5, 0.5, 0.0, 0.0);\n"
" const highp vec4 position1 = vec4( 0.0, 0.1, 0.0, 0.0);\n"
" const highp vec4 position2 = vec4( 0.5, 0.5, 0.0, 0.0);\n"
" const highp vec4 position3 = vec4( 0.7, -0.2, 0.0, 0.0);\n"
" const highp vec4 position4 = vec4( 0.2, 0.2, 0.0, 0.0);\n"
" const highp vec4 position5 = vec4( 0.4, -0.3, 0.0, 0.0);\n"
"\n";
for (int i = 0; i < emitCountA; ++i)
str << " gl_Position = gl_in[0].gl_Position + position" << i << ";\n"
" gl_PrimitiveID = gl_PrimitiveIDIn;\n"
" v_frag_FragColor = v_geom_FragColor[0];\n"
" EmitVertex();\n"
"\n";
for (int i = 0; i < endCountA; ++i)
str << " EndPrimitive();\n";
for (int i = 0; i < emitCountB; ++i)
str << " gl_Position = gl_in[0].gl_Position + position" << (emitCountA + i) << ";\n"
" gl_PrimitiveID = gl_PrimitiveIDIn;\n"
" v_frag_FragColor = v_geom_FragColor[0];\n"
" EmitVertex();\n"
"\n";
for (int i = 0; i < endCountB; ++i)
str << " EndPrimitive();\n";
str << "}\n";
return specializeShader(str.str(), contextType);
}
class VertexVaryingShader : public sglr::ShaderProgram
{
public:
VertexVaryingShader (const glu::ContextType& contextType, int vertexOut, int geometryOut);
void shadeVertices (const rr::VertexAttrib* inputs, rr::VertexPacket* const* packets, const int numPackets) const;
void shadeFragments (rr::FragmentPacket* packets, const int numPackets, const rr::FragmentShadingContext& context) const;
void shadePrimitives (rr::GeometryEmitter& output, int verticesIn, const rr::PrimitivePacket* packets, const int numPackets, int invocationID) const;
private:
static sglr::pdec::ShaderProgramDeclaration genProgramDeclaration (const glu::ContextType& contextType, int vertexOut, int geometryOut);
const int m_vertexOut;
const int m_geometryOut;
};
VertexVaryingShader::VertexVaryingShader (const glu::ContextType& contextType, int vertexOut, int geometryOut)
: sglr::ShaderProgram (genProgramDeclaration(contextType, vertexOut, geometryOut))
, m_vertexOut (vertexOut)
, m_geometryOut (geometryOut)
{
}
void VertexVaryingShader::shadeVertices (const rr::VertexAttrib* inputs, rr::VertexPacket* const* packets, const int numPackets) const
{
// vertex shader is no-op
if (m_vertexOut == -1)
return;
for (int ndx = 0; ndx < numPackets; ++ndx)
{
const tcu::Vec4 color = rr::readVertexAttribFloat(inputs[1], packets[ndx]->instanceNdx, packets[ndx]->vertexNdx);
packets[ndx]->position = rr::readVertexAttribFloat(inputs[0], packets[ndx]->instanceNdx, packets[ndx]->vertexNdx);
packets[ndx]->pointSize = 1.0f;
switch (m_vertexOut)
{
case 0:
break;
case 1:
packets[ndx]->outputs[0] = color;
break;
case 2:
packets[ndx]->outputs[0] = color * 0.5f;
packets[ndx]->outputs[1] = color.swizzle(2,1,0,3) * 0.5f;
break;
default:
DE_ASSERT(DE_FALSE);
}
}
}
void VertexVaryingShader::shadeFragments (rr::FragmentPacket* packets, const int numPackets, const rr::FragmentShadingContext& context) const
{
for (int packetNdx = 0; packetNdx < numPackets; ++packetNdx)
{
switch (m_geometryOut)
{
case 0:
for (int fragNdx = 0; fragNdx < 4; ++fragNdx)
rr::writeFragmentOutput(context, packetNdx, fragNdx, 0, tcu::Vec4(1.0f, 0.0f, 0.0f, 1.0f));
break;
case 1:
for (int fragNdx = 0; fragNdx < 4; ++fragNdx)
rr::writeFragmentOutput(context, packetNdx, fragNdx, 0, rr::readTriangleVarying<float>(packets[packetNdx], context, 0, fragNdx));
break;
case 2:
for (int fragNdx = 0; fragNdx < 4; ++fragNdx)
rr::writeFragmentOutput(context, packetNdx, fragNdx, 0, rr::readTriangleVarying<float>(packets[packetNdx], context, 0, fragNdx)
+ rr::readTriangleVarying<float>(packets[packetNdx], context, 1, fragNdx).swizzle(1, 0, 2, 3));
break;
default:
DE_ASSERT(DE_FALSE);
}
}
}
void VertexVaryingShader::shadePrimitives (rr::GeometryEmitter& output, int verticesIn, const rr::PrimitivePacket* packets, const int numPackets, int invocationID) const
{
DE_UNREF(invocationID);
const tcu::Vec4 vertexOffset(-0.2f, -0.2f, 0, 0);
if (m_vertexOut == -1)
{
// vertex is a no-op
const tcu::Vec4 inputColor = tcu::Vec4(1.0f, 0.0f, 0.0f, 1.0f);
rr::GenericVec4 outputs[2];
// output color
switch (m_geometryOut)
{
case 0:
break;
case 1:
outputs[0] = inputColor;
break;
case 2:
outputs[0] = inputColor * 0.5f;
outputs[1] = inputColor.swizzle(1, 0, 2, 3) * 0.5f;
break;
default:
DE_ASSERT(DE_FALSE);
}
for (int ndx = 0; ndx < numPackets; ++ndx)
{
output.EmitVertex(tcu::Vec4(0.0f, 0.0f, 0.0f, 1.0f) + vertexOffset, 1.0f, outputs, packets[ndx].primitiveIDIn);
output.EmitVertex(tcu::Vec4(1.0f, 0.0f, 0.0f, 1.0f) + vertexOffset, 1.0f, outputs, packets[ndx].primitiveIDIn);
output.EmitVertex(tcu::Vec4(1.0f, 1.0f, 0.0f, 1.0f) + vertexOffset, 1.0f, outputs, packets[ndx].primitiveIDIn);
output.EndPrimitive();
}
}
else
{
// vertex is not a no-op
for (int ndx = 0; ndx < numPackets; ++ndx)
{
for (int verticeNdx = 0; verticeNdx < verticesIn; ++verticeNdx)
{
tcu::Vec4 inputColor;
rr::GenericVec4 outputs[2];
// input color
switch (m_vertexOut)
{
case 0:
inputColor = tcu::Vec4(1.0f, 0.0f, 0.0f, 1.0f);
break;
case 1:
inputColor = packets[ndx].vertices[verticeNdx]->outputs[0].get<float>();
break;
case 2:
inputColor = (packets[ndx].vertices[verticeNdx]->outputs[0].get<float>() * 0.5f)
+ (packets[ndx].vertices[verticeNdx]->outputs[1].get<float>().swizzle(2, 1, 0, 3) * 0.5f);
break;
default:
DE_ASSERT(DE_FALSE);
}
// output color
switch (m_geometryOut)
{
case 0:
break;
case 1:
outputs[0] = inputColor;
break;
case 2:
outputs[0] = inputColor * 0.5f;
outputs[1] = inputColor.swizzle(1, 0, 2, 3) * 0.5f;
break;
default:
DE_ASSERT(DE_FALSE);
}
output.EmitVertex(packets[ndx].vertices[verticeNdx]->position + vertexOffset, packets[ndx].vertices[verticeNdx]->pointSize, outputs, packets[ndx].primitiveIDIn);
}
output.EndPrimitive();
}
}
}
sglr::pdec::ShaderProgramDeclaration VertexVaryingShader::genProgramDeclaration (const glu::ContextType& contextType, int vertexOut, int geometryOut)
{
sglr::pdec::ShaderProgramDeclaration decl;
std::ostringstream vertexSource;
std::ostringstream fragmentSource;
std::ostringstream geometrySource;
decl
<< sglr::pdec::VertexAttribute("a_position", rr::GENERICVECTYPE_FLOAT)
<< sglr::pdec::VertexAttribute("a_color", rr::GENERICVECTYPE_FLOAT);
for (int i = 0; i < vertexOut; ++i)
decl << sglr::pdec::VertexToGeometryVarying(rr::GENERICVECTYPE_FLOAT);
for (int i = 0; i < geometryOut; ++i)
decl << sglr::pdec::GeometryToFragmentVarying(rr::GENERICVECTYPE_FLOAT);
decl
<< sglr::pdec::FragmentOutput(rr::GENERICVECTYPE_FLOAT)
<< sglr::pdec::GeometryShaderDeclaration(rr::GEOMETRYSHADERINPUTTYPE_TRIANGLES, rr::GEOMETRYSHADEROUTPUTTYPE_TRIANGLE_STRIP, 3);
// vertexSource
vertexSource << "${GLSL_VERSION_DECL}\n"
"in highp vec4 a_position;\n"
"in highp vec4 a_color;\n";
// no-op case?
if (vertexOut == -1)
{
vertexSource << "void main (void)\n"
"{\n"
"}\n";
}
else
{
for (int i = 0; i < vertexOut; ++i)
vertexSource << "out highp vec4 v_geom_" << i << ";\n";
vertexSource << "void main (void)\n"
"{\n"
"\tgl_Position = a_position;\n"
"\tgl_PointSize = 1.0;\n";
switch (vertexOut)
{
case 0:
break;
case 1:
vertexSource << "\tv_geom_0 = a_color;\n";
break;
case 2:
vertexSource << "\tv_geom_0 = a_color * 0.5;\n";
vertexSource << "\tv_geom_1 = a_color.zyxw * 0.5;\n";
break;
default:
DE_ASSERT(DE_FALSE);
}
vertexSource << "}\n";
}
// fragmentSource
fragmentSource << "${GLSL_VERSION_DECL}\n"
"layout(location = 0) out mediump vec4 fragColor;\n";
for (int i = 0; i < geometryOut; ++i)
fragmentSource << "in mediump vec4 v_frag_" << i << ";\n";
fragmentSource << "void main (void)\n"
"{\n";
switch (geometryOut)
{
case 0:
fragmentSource << "\tfragColor = vec4(1.0, 0.0, 0.0, 1.0);\n";
break;
case 1:
fragmentSource << "\tfragColor = v_frag_0;\n";
break;
case 2:
fragmentSource << "\tfragColor = v_frag_0 + v_frag_1.yxzw;\n";
break;
default:
DE_ASSERT(DE_FALSE);
}
fragmentSource << "}\n";
// geometrySource
geometrySource << "${GLSL_VERSION_DECL}\n"
"${GLSL_EXT_GEOMETRY_SHADER}"
"layout(triangles) in;\n"
"layout(triangle_strip, max_vertices = 3) out;\n";
for (int i = 0; i < vertexOut; ++i)
geometrySource << "in highp vec4 v_geom_" << i << "[];\n";
for (int i = 0; i < geometryOut; ++i)
geometrySource << "out highp vec4 v_frag_" << i << ";\n";
geometrySource << "void main (void)\n"
"{\n"
"\thighp vec4 offset = vec4(-0.2, -0.2, 0.0, 0.0);\n"
"\thighp vec4 inputColor;\n\n";
for (int vertexNdx = 0; vertexNdx < 3; ++vertexNdx)
{
if (vertexOut == -1)
{
// vertex is a no-op
geometrySource << "\tinputColor = vec4(1.0, 0.0, 0.0, 1.0);\n"
"\tgl_Position = vec4(" << ((vertexNdx==0) ? ("0.0, 0.0") : ((vertexNdx==1) ? ("1.0, 0.0") : ("1.0, 1.0"))) << ", 0.0, 1.0) + offset;\n"
"\tgl_PrimitiveID = gl_PrimitiveIDIn;\n";
}
else
{
switch (vertexOut)
{
case 0:
geometrySource << "\tinputColor = vec4(1.0, 0.0, 0.0, 1.0);\n";
break;
case 1:
geometrySource << "\tinputColor = v_geom_0[" << vertexNdx << "];\n";
break;
case 2:
geometrySource << "\tinputColor = v_geom_0[" << vertexNdx << "] * 0.5 + v_geom_1[" << vertexNdx << "].zyxw * 0.5;\n";
break;
default:
DE_ASSERT(DE_FALSE);
}
geometrySource << "\tgl_Position = gl_in[" << vertexNdx << "].gl_Position + offset;\n"
"\tgl_PrimitiveID = gl_PrimitiveIDIn;\n";
}
switch (geometryOut)
{
case 0:
break;
case 1:
geometrySource << "\tv_frag_0 = inputColor;\n";
break;
case 2:
geometrySource << "\tv_frag_0 = inputColor * 0.5;\n";
geometrySource << "\tv_frag_1 = inputColor.yxzw * 0.5;\n";
break;
default:
DE_ASSERT(DE_FALSE);
}
geometrySource << "\tEmitVertex();\n\n";
}
geometrySource << "\tEndPrimitive();\n"
"}\n";
decl
<< sglr::pdec::VertexSource(specializeShader(vertexSource.str(), contextType).c_str())
<< sglr::pdec::FragmentSource(specializeShader(fragmentSource.str(), contextType).c_str())
<< sglr::pdec::GeometrySource(specializeShader(geometrySource.str(), contextType).c_str());
return decl;
}
class OutputCountShader : public sglr::ShaderProgram
{
public:
OutputCountShader (const glu::ContextType& contextType, const OutputCountPatternSpec& spec);
void shadeVertices (const rr::VertexAttrib* inputs, rr::VertexPacket* const* packets, const int numPackets) const;
void shadeFragments (rr::FragmentPacket* packets, const int numPackets, const rr::FragmentShadingContext& context) const;
void shadePrimitives (rr::GeometryEmitter& output, int verticesIn, const rr::PrimitivePacket* packets, const int numPackets, int invocationID) const;
private:
std::string genGeometrySource (const glu::ContextType& contextType, const OutputCountPatternSpec& spec) const;
size_t getPatternEmitCount (const OutputCountPatternSpec& spec) const;
const int m_patternLength;
const int m_patternMaxEmitCount;
const OutputCountPatternSpec m_spec;
};
OutputCountShader::OutputCountShader (const glu::ContextType& contextType, const OutputCountPatternSpec& spec)
: sglr::ShaderProgram (sglr::pdec::ShaderProgramDeclaration()
<< sglr::pdec::VertexAttribute("a_position", rr::GENERICVECTYPE_FLOAT)
<< sglr::pdec::VertexAttribute("a_color", rr::GENERICVECTYPE_FLOAT)
<< sglr::pdec::VertexToGeometryVarying(rr::GENERICVECTYPE_FLOAT)
<< sglr::pdec::GeometryToFragmentVarying(rr::GENERICVECTYPE_FLOAT)
<< sglr::pdec::FragmentOutput(rr::GENERICVECTYPE_FLOAT)
<< sglr::pdec::VertexSource(specializeShader(s_commonShaderSourceVertex, contextType))
<< sglr::pdec::FragmentSource(specializeShader(s_commonShaderSourceFragment, contextType))
<< sglr::pdec::GeometryShaderDeclaration(rr::GEOMETRYSHADERINPUTTYPE_POINTS, rr::GEOMETRYSHADEROUTPUTTYPE_TRIANGLE_STRIP, getPatternEmitCount(spec))
<< sglr::pdec::GeometrySource(genGeometrySource(contextType, spec).c_str()))
, m_patternLength ((int)spec.pattern.size())
, m_patternMaxEmitCount ((int)getPatternEmitCount(spec))
, m_spec (spec)
{
}
void OutputCountShader::shadeVertices (const rr::VertexAttrib* inputs, rr::VertexPacket* const* packets, const int numPackets) const
{
for (int ndx = 0; ndx < numPackets; ++ndx)
{
packets[ndx]->position = rr::readVertexAttribFloat(inputs[0], packets[ndx]->instanceNdx, packets[ndx]->vertexNdx);
packets[ndx]->pointSize = 1.0f;
packets[ndx]->outputs[0] = rr::readVertexAttribFloat(inputs[1], packets[ndx]->instanceNdx, packets[ndx]->vertexNdx);
}
}
void OutputCountShader::shadeFragments (rr::FragmentPacket* packets, const int numPackets, const rr::FragmentShadingContext& context) const
{
for (int packetNdx = 0; packetNdx < numPackets; ++packetNdx)
for (int fragNdx = 0; fragNdx < 4; ++fragNdx)
rr::writeFragmentOutput(context, packetNdx, fragNdx, 0, rr::readVarying<float>(packets[packetNdx], context, 0, fragNdx));
}
void OutputCountShader::shadePrimitives (rr::GeometryEmitter& output, int verticesIn, const rr::PrimitivePacket* packets, const int numPackets, int invocationID) const
{
DE_UNREF(verticesIn);
DE_UNREF(invocationID);
const float rowHeight = 2.0f / (float)m_patternLength;
const float colWidth = 2.0f / (float)m_patternMaxEmitCount;
for (int packetNdx = 0; packetNdx < numPackets; ++packetNdx)
{
// Create triangle strip at this point
const rr::VertexPacket* vertex = packets[packetNdx].vertices[0];
const int emitCount = m_spec.pattern[packets[packetNdx].primitiveIDIn];
for (int ndx = 0; ndx < emitCount / 2; ++ndx)
{
output.EmitVertex(vertex->position + tcu::Vec4(2 * (float)ndx * colWidth, 0.0, 0.0, 0.0), vertex->pointSize, vertex->outputs, packets[packetNdx].primitiveIDIn);
output.EmitVertex(vertex->position + tcu::Vec4(2 * (float)ndx * colWidth, rowHeight, 0.0, 0.0), vertex->pointSize, vertex->outputs, packets[packetNdx].primitiveIDIn);
}
output.EndPrimitive();
}
}
std::string OutputCountShader::genGeometrySource (const glu::ContextType& contextType, const OutputCountPatternSpec& spec) const
{
std::ostringstream str;
// draw row with a triangle strip, always make rectangles
for (int ndx = 0; ndx < (int)spec.pattern.size(); ++ndx)
DE_ASSERT(spec.pattern[ndx] % 2 == 0);
str << "${GLSL_VERSION_DECL}\n";
str << "${GLSL_EXT_GEOMETRY_SHADER}";
str << "layout(points) in;\n";
str << "layout(triangle_strip, max_vertices = " << getPatternEmitCount(spec) << ") out;";
str << "\n";
str << "in highp vec4 v_geom_FragColor[];\n"
"out highp vec4 v_frag_FragColor;\n"
"\n"
"void main (void)\n"
"{\n"
" const highp float rowHeight = 2.0 / float(" << spec.pattern.size() << ");\n"
" const highp float colWidth = 2.0 / float(" << getPatternEmitCount(spec) << ");\n"
"\n";
str << " highp int emitCount = ";
for (int ndx = 0; ndx < (int)spec.pattern.size() - 1; ++ndx)
str << "(gl_PrimitiveIDIn == " << ndx << ") ? (" << spec.pattern[ndx] << ") : (";
str << spec.pattern[(int)spec.pattern.size() - 1]
<< ((spec.pattern.size() == 1) ? ("") : (")"))
<< ";\n";
str << " for (highp int ndx = 0; ndx < emitCount / 2; ndx++)\n"
" {\n"
" gl_Position = gl_in[0].gl_Position + vec4(float(ndx) * 2.0 * colWidth, 0.0, 0.0, 0.0);\n"
" v_frag_FragColor = v_geom_FragColor[0];\n"
" EmitVertex();\n"
"\n"
" gl_Position = gl_in[0].gl_Position + vec4(float(ndx) * 2.0 * colWidth, rowHeight, 0.0, 0.0);\n"
" v_frag_FragColor = v_geom_FragColor[0];\n"
" EmitVertex();\n"
" }\n"
"}\n";
return specializeShader(str.str(), contextType);
}
size_t OutputCountShader::getPatternEmitCount (const OutputCountPatternSpec& spec) const
{
return *std::max_element(spec.pattern.begin(), spec.pattern.end());
}
class BuiltinVariableShader : public sglr::ShaderProgram
{
public:
enum VariableTest
{
TEST_POINT_SIZE = 0,
TEST_PRIMITIVE_ID_IN,
TEST_PRIMITIVE_ID,
TEST_LAST
};
BuiltinVariableShader (const glu::ContextType& contextType, VariableTest test);
void shadeVertices (const rr::VertexAttrib* inputs, rr::VertexPacket* const* packets, const int numPackets) const;
void shadeFragments (rr::FragmentPacket* packets, const int numPackets, const rr::FragmentShadingContext& context) const;
void shadePrimitives (rr::GeometryEmitter& output, int verticesIn, const rr::PrimitivePacket* packets, const int numPackets, int invocationID) const;
static const char* getTestAttributeName (VariableTest test);
private:
std::string genGeometrySource (const glu::ContextType& contextType, VariableTest test) const;
std::string genVertexSource (const glu::ContextType& contextType, VariableTest test) const;
std::string genFragmentSource (const glu::ContextType& contextType, VariableTest test) const;
const VariableTest m_test;
};
BuiltinVariableShader::BuiltinVariableShader (const glu::ContextType& contextType, VariableTest test)
: sglr::ShaderProgram (sglr::pdec::ShaderProgramDeclaration()
<< sglr::pdec::VertexAttribute("a_position", rr::GENERICVECTYPE_FLOAT)
<< sglr::pdec::VertexAttribute(getTestAttributeName(test), rr::GENERICVECTYPE_FLOAT)
<< sglr::pdec::VertexToGeometryVarying(rr::GENERICVECTYPE_FLOAT)
<< sglr::pdec::GeometryToFragmentVarying(rr::GENERICVECTYPE_FLOAT)
<< sglr::pdec::FragmentOutput(rr::GENERICVECTYPE_FLOAT)
<< sglr::pdec::VertexSource(genVertexSource(contextType, test))
<< sglr::pdec::FragmentSource(genFragmentSource(contextType, test))
<< sglr::pdec::GeometryShaderDeclaration(rr::GEOMETRYSHADERINPUTTYPE_POINTS,
((test == TEST_POINT_SIZE) ? (rr::GEOMETRYSHADEROUTPUTTYPE_POINTS) : (rr::GEOMETRYSHADEROUTPUTTYPE_TRIANGLE_STRIP)),
((test == TEST_POINT_SIZE) ? (1) : (3)))
<< sglr::pdec::GeometrySource(genGeometrySource(contextType, test).c_str()))
, m_test (test)
{
}
void BuiltinVariableShader::shadeVertices (const rr::VertexAttrib* inputs, rr::VertexPacket* const* packets, const int numPackets) const
{
for (int ndx = 0; ndx < numPackets; ++ndx)
{
packets[ndx]->position = rr::readVertexAttribFloat(inputs[0], packets[ndx]->instanceNdx, packets[ndx]->vertexNdx);
packets[ndx]->pointSize = 1.0f;
packets[ndx]->outputs[0] = rr::readVertexAttribFloat(inputs[1], packets[ndx]->instanceNdx, packets[ndx]->vertexNdx);
}
}
void BuiltinVariableShader::shadeFragments (rr::FragmentPacket* packets, const int numPackets, const rr::FragmentShadingContext& context) const
{
const tcu::Vec4 red = tcu::Vec4(1.0f, 0.0f, 0.0f, 1.0f);
const tcu::Vec4 green = tcu::Vec4(0.0f, 1.0f, 0.0f, 1.0f);
const tcu::Vec4 blue = tcu::Vec4(0.0f, 0.0f, 1.0f, 1.0f);
const tcu::Vec4 yellow = tcu::Vec4(1.0f, 1.0f, 0.0f, 1.0f);
const tcu::Vec4 colors[4] = { yellow, red, green, blue };
if (m_test == TEST_POINT_SIZE || m_test == TEST_PRIMITIVE_ID_IN)
{
for (int packetNdx = 0; packetNdx < numPackets; ++packetNdx)
for (int fragNdx = 0; fragNdx < 4; ++fragNdx)
rr::writeFragmentOutput(context, packetNdx, fragNdx, 0, rr::readVarying<float>(packets[packetNdx], context, 0, fragNdx));
}
else if (m_test == TEST_PRIMITIVE_ID)
{
const tcu::Vec4 color = colors[context.primitiveID % 4];
for (int packetNdx = 0; packetNdx < numPackets; ++packetNdx)
for (int fragNdx = 0; fragNdx < 4; ++fragNdx)
rr::writeFragmentOutput(context, packetNdx, fragNdx, 0, color);
}
else
DE_ASSERT(DE_FALSE);
}
void BuiltinVariableShader::shadePrimitives (rr::GeometryEmitter& output, int verticesIn, const rr::PrimitivePacket* packets, const int numPackets, int invocationID) const
{
DE_UNREF(verticesIn);
DE_UNREF(invocationID);
const tcu::Vec4 red = tcu::Vec4(1.0f, 0.0f, 0.0f, 1.0f);
const tcu::Vec4 green = tcu::Vec4(0.0f, 1.0f, 0.0f, 1.0f);
const tcu::Vec4 blue = tcu::Vec4(0.0f, 0.0f, 1.0f, 1.0f);
const tcu::Vec4 yellow = tcu::Vec4(1.0f, 1.0f, 0.0f, 1.0f);
const tcu::Vec4 colors[4] = { red, green, blue, yellow };
for (int packetNdx = 0; packetNdx < numPackets; ++packetNdx)
{
const rr::VertexPacket* vertex = packets[packetNdx].vertices[0];
if (m_test == TEST_POINT_SIZE)
{
rr::GenericVec4 fragColor;
const float pointSize = vertex->outputs[0].get<float>().x() + 1.0f;
fragColor = tcu::Vec4(1.0f, 1.0f, 1.0f, 1.0f);
output.EmitVertex(vertex->position, pointSize, &fragColor, packets[packetNdx].primitiveIDIn);
}
else if (m_test == TEST_PRIMITIVE_ID_IN)
{
rr::GenericVec4 fragColor;
fragColor = colors[packets[packetNdx].primitiveIDIn % 4];
output.EmitVertex(vertex->position + tcu::Vec4(0.05f, 0.0f, 0.0f, 0.0f), 1.0f, &fragColor, packets[packetNdx].primitiveIDIn);
output.EmitVertex(vertex->position - tcu::Vec4(0.05f, 0.0f, 0.0f, 0.0f), 1.0f, &fragColor, packets[packetNdx].primitiveIDIn);
output.EmitVertex(vertex->position + tcu::Vec4(0.0f, 0.05f, 0.0f, 0.0f), 1.0f, &fragColor, packets[packetNdx].primitiveIDIn);
}
else if (m_test == TEST_PRIMITIVE_ID)
{
const int primitiveID = (int)deFloatFloor(vertex->outputs[0].get<float>().x()) + 3;
output.EmitVertex(vertex->position + tcu::Vec4(0.05f, 0.0f, 0.0f, 0.0f), 1.0f, vertex->outputs, primitiveID);
output.EmitVertex(vertex->position - tcu::Vec4(0.05f, 0.0f, 0.0f, 0.0f), 1.0f, vertex->outputs, primitiveID);
output.EmitVertex(vertex->position + tcu::Vec4(0.0f, 0.05f, 0.0f, 0.0f), 1.0f, vertex->outputs, primitiveID);
}
else
DE_ASSERT(DE_FALSE);
output.EndPrimitive();
}
}
const char* BuiltinVariableShader::getTestAttributeName (VariableTest test)
{
switch (test)
{
case TEST_POINT_SIZE: return "a_pointSize";
case TEST_PRIMITIVE_ID_IN: return "";
case TEST_PRIMITIVE_ID: return "a_primitiveID";
default:
DE_ASSERT(DE_FALSE);
return "";
}
}
std::string BuiltinVariableShader::genGeometrySource (const glu::ContextType& contextType, VariableTest test) const
{
std::ostringstream buf;
buf << "${GLSL_VERSION_DECL}\n"
"${GLSL_EXT_GEOMETRY_SHADER}";
if (test == TEST_POINT_SIZE)
buf << "#extension GL_EXT_geometry_point_size : require\n";
buf << "layout(points) in;\n";
if (test == TEST_POINT_SIZE)
buf << "layout(points, max_vertices = 1) out;\n";
else
buf << "layout(triangle_strip, max_vertices = 3) out;\n";
if (test == TEST_POINT_SIZE)
buf << "in highp vec4 v_geom_pointSize[];\n";
else if (test == TEST_PRIMITIVE_ID)
buf << "in highp vec4 v_geom_primitiveID[];\n";
if (test != TEST_PRIMITIVE_ID)
buf << "out highp vec4 v_frag_FragColor;\n";
buf << "\n"
"void main (void)\n"
"{\n";
if (test == TEST_POINT_SIZE)
{
buf << " gl_Position = gl_in[0].gl_Position;\n"
" gl_PointSize = v_geom_pointSize[0].x + 1.0;\n"
" v_frag_FragColor = vec4(1.0, 1.0, 1.0, 1.0);\n"
" EmitVertex();\n";
}
else if (test == TEST_PRIMITIVE_ID_IN)
{
buf << " const highp vec4 red = vec4(1.0, 0.0, 0.0, 1.0);\n"
" const highp vec4 green = vec4(0.0, 1.0, 0.0, 1.0);\n"
" const highp vec4 blue = vec4(0.0, 0.0, 1.0, 1.0);\n"
" const highp vec4 yellow = vec4(1.0, 1.0, 0.0, 1.0);\n"
" const highp vec4 colors[4] = vec4[4](red, green, blue, yellow);\n"
"\n"
" gl_Position = gl_in[0].gl_Position + vec4(0.05, 0.0, 0.0, 0.0);\n"
" v_frag_FragColor = colors[gl_PrimitiveIDIn % 4];\n"
" EmitVertex();\n"
"\n"
" gl_Position = gl_in[0].gl_Position - vec4(0.05, 0.0, 0.0, 0.0);\n"
" v_frag_FragColor = colors[gl_PrimitiveIDIn % 4];\n"
" EmitVertex();\n"
"\n"
" gl_Position = gl_in[0].gl_Position + vec4(0.0, 0.05, 0.0, 0.0);\n"
" v_frag_FragColor = colors[gl_PrimitiveIDIn % 4];\n"
" EmitVertex();\n";
}
else if (test == TEST_PRIMITIVE_ID)
{
buf << " gl_Position = gl_in[0].gl_Position + vec4(0.05, 0.0, 0.0, 0.0);\n"
" gl_PrimitiveID = int(floor(v_geom_primitiveID[0].x)) + 3;\n"
" EmitVertex();\n"
"\n"
" gl_Position = gl_in[0].gl_Position - vec4(0.05, 0.0, 0.0, 0.0);\n"
" gl_PrimitiveID = int(floor(v_geom_primitiveID[0].x)) + 3;\n"
" EmitVertex();\n"
"\n"
" gl_Position = gl_in[0].gl_Position + vec4(0.0, 0.05, 0.0, 0.0);\n"
" gl_PrimitiveID = int(floor(v_geom_primitiveID[0].x)) + 3;\n"
" EmitVertex();\n"
"\n";
}
else
DE_ASSERT(DE_FALSE);
buf << "}\n";
return specializeShader(buf.str(), contextType);
}
std::string BuiltinVariableShader::genVertexSource (const glu::ContextType& contextType, VariableTest test) const
{
std::ostringstream buf;
buf << "${GLSL_VERSION_DECL}\n"
"in highp vec4 a_position;\n";
if (test == TEST_POINT_SIZE)
buf << "in highp vec4 a_pointSize;\n";
else if (test == TEST_PRIMITIVE_ID)
buf << "in highp vec4 a_primitiveID;\n";
if (test == TEST_POINT_SIZE)
buf << "out highp vec4 v_geom_pointSize;\n";
else if (test == TEST_PRIMITIVE_ID)
buf << "out highp vec4 v_geom_primitiveID;\n";
buf << "void main (void)\n"
"{\n"
" gl_Position = a_position;\n"
" gl_PointSize = 1.0;\n";
if (test == TEST_POINT_SIZE)
buf << " v_geom_pointSize = a_pointSize;\n";
else if (test == TEST_PRIMITIVE_ID)
buf << " v_geom_primitiveID = a_primitiveID;\n";
buf << "}\n";
return specializeShader(buf.str(), contextType);
}
std::string BuiltinVariableShader::genFragmentSource (const glu::ContextType& contextType, VariableTest test) const
{
std::ostringstream buf;
if (test == TEST_POINT_SIZE || test == TEST_PRIMITIVE_ID_IN)
return specializeShader(s_commonShaderSourceFragment, contextType);
else if (test == TEST_PRIMITIVE_ID)
{
buf << "${GLSL_VERSION_DECL}\n"
"${GLSL_EXT_GEOMETRY_SHADER}"
"layout(location = 0) out mediump vec4 fragColor;\n"
"void main (void)\n"
"{\n"
" const mediump vec4 red = vec4(1.0, 0.0, 0.0, 1.0);\n"
" const mediump vec4 green = vec4(0.0, 1.0, 0.0, 1.0);\n"
" const mediump vec4 blue = vec4(0.0, 0.0, 1.0, 1.0);\n"
" const mediump vec4 yellow = vec4(1.0, 1.0, 0.0, 1.0);\n"
" const mediump vec4 colors[4] = vec4[4](yellow, red, green, blue);\n"
" fragColor = colors[gl_PrimitiveID % 4];\n"
"}\n";
return specializeShader(buf.str(), contextType);
}
else
{
DE_ASSERT(DE_FALSE);
return DE_NULL;
}
}
class VaryingOutputCountShader : public sglr::ShaderProgram
{
public:
enum VaryingSource
{
READ_ATTRIBUTE = 0,
READ_UNIFORM,
READ_TEXTURE,
READ_LAST
};
enum
{
EMIT_COUNT_VERTEX_0 = 6,
EMIT_COUNT_VERTEX_1 = 0,
EMIT_COUNT_VERTEX_2 = -1,
EMIT_COUNT_VERTEX_3 = 10,
};
VaryingOutputCountShader (const glu::ContextType& contextType, VaryingSource source, int maxEmitCount, bool instanced);
void shadeVertices (const rr::VertexAttrib* inputs, rr::VertexPacket* const* packets, const int numPackets) const;
void shadeFragments (rr::FragmentPacket* packets, const int numPackets, const rr::FragmentShadingContext& context) const;
void shadePrimitives (rr::GeometryEmitter& output, int verticesIn, const rr::PrimitivePacket* packets, const int numPackets, int invocationID) const;
static const char* getAttributeName (VaryingSource test);
private:
static std::string genGeometrySource (const glu::ContextType& contextType, VaryingSource test, int maxEmitCount, bool instanced);
static std::string genVertexSource (const glu::ContextType& contextType, VaryingSource test);
const VaryingSource m_test;
const sglr::UniformSlot& m_sampler;
const sglr::UniformSlot& m_emitCount;
const int m_maxEmitCount;
const bool m_instanced;
};
VaryingOutputCountShader::VaryingOutputCountShader (const glu::ContextType& contextType, VaryingSource source, int maxEmitCount, bool instanced)
: sglr::ShaderProgram (sglr::pdec::ShaderProgramDeclaration()
<< sglr::pdec::Uniform("u_sampler", glu::TYPE_SAMPLER_2D)
<< sglr::pdec::Uniform("u_emitCount", glu::TYPE_INT_VEC4)
<< sglr::pdec::VertexAttribute("a_position", rr::GENERICVECTYPE_FLOAT)
<< sglr::pdec::VertexAttribute(getAttributeName(source), rr::GENERICVECTYPE_FLOAT)
<< sglr::pdec::VertexToGeometryVarying(rr::GENERICVECTYPE_FLOAT)
<< sglr::pdec::GeometryToFragmentVarying(rr::GENERICVECTYPE_FLOAT)
<< sglr::pdec::FragmentOutput(rr::GENERICVECTYPE_FLOAT)
<< sglr::pdec::VertexSource(genVertexSource(contextType, source))
<< sglr::pdec::FragmentSource(specializeShader(s_commonShaderSourceFragment, contextType))
<< sglr::pdec::GeometryShaderDeclaration(rr::GEOMETRYSHADERINPUTTYPE_POINTS,
rr::GEOMETRYSHADEROUTPUTTYPE_TRIANGLE_STRIP,
maxEmitCount,
(instanced) ? (4) : (1))
<< sglr::pdec::GeometrySource(genGeometrySource(contextType, source, maxEmitCount, instanced).c_str()))
, m_test (source)
, m_sampler (getUniformByName("u_sampler"))
, m_emitCount (getUniformByName("u_emitCount"))
, m_maxEmitCount (maxEmitCount)
, m_instanced (instanced)
{
}
void VaryingOutputCountShader::shadeVertices (const rr::VertexAttrib* inputs, rr::VertexPacket* const* packets, const int numPackets) const
{
for (int ndx = 0; ndx < numPackets; ++ndx)
{
packets[ndx]->position = rr::readVertexAttribFloat(inputs[0], packets[ndx]->instanceNdx, packets[ndx]->vertexNdx);
packets[ndx]->outputs[0] = rr::readVertexAttribFloat(inputs[1], packets[ndx]->instanceNdx, packets[ndx]->vertexNdx);
}
}
void VaryingOutputCountShader::shadeFragments (rr::FragmentPacket* packets, const int numPackets, const rr::FragmentShadingContext& context) const
{
for (int packetNdx = 0; packetNdx < numPackets; ++packetNdx)
for (int fragNdx = 0; fragNdx < 4; ++fragNdx)
rr::writeFragmentOutput(context, packetNdx, fragNdx, 0, rr::readVarying<float>(packets[packetNdx], context, 0, fragNdx));
}
void VaryingOutputCountShader::shadePrimitives (rr::GeometryEmitter& output, int verticesIn, const rr::PrimitivePacket* packets, const int numPackets, int invocationID) const
{
DE_UNREF(verticesIn);
const tcu::Vec4 red = tcu::Vec4(1.0f, 0.0f, 0.0f, 1.0f);
const tcu::Vec4 green = tcu::Vec4(0.0f, 1.0f, 0.0f, 1.0f);
const tcu::Vec4 blue = tcu::Vec4(0.0f, 0.0f, 1.0f, 1.0f);
const tcu::Vec4 yellow = tcu::Vec4(1.0f, 1.0f, 0.0f, 1.0f);
const tcu::Vec4 colors[4] = { red, green, blue, yellow };
for (int packetNdx = 0; packetNdx < numPackets; ++packetNdx)
{
const rr::VertexPacket* vertex = packets[packetNdx].vertices[0];
int emitCount = 0;
tcu::Vec4 color = tcu::Vec4(0.0f, 0.0f, 0.0f, 0.0f);
if (m_test == READ_ATTRIBUTE)
{
emitCount = (int)vertex->outputs[0].get<float>()[(m_instanced) ? (invocationID) : (0)];
color = tcu::Vec4((emitCount < 10) ? (0.0f) : (1.0f), (emitCount > 10) ? (0.0f) : (1.0f), 1.0f, 1.0f);
}
else if (m_test == READ_UNIFORM)
{
const int primitiveNdx = (m_instanced) ? (invocationID) : ((int)vertex->outputs[0].get<float>().x());
DE_ASSERT(primitiveNdx >= 0);
DE_ASSERT(primitiveNdx < 4);
emitCount = m_emitCount.value.i4[primitiveNdx];
color = colors[primitiveNdx];
}
else if (m_test == READ_TEXTURE)
{
const int primitiveNdx = (m_instanced) ? (invocationID) : ((int)vertex->outputs[0].get<float>().x());
const tcu::Vec2 texCoord = tcu::Vec2(1.0f / 8.0f + (float)primitiveNdx / 4.0f, 0.5f);
const tcu::Vec4 texColor = m_sampler.sampler.tex2D->sample(texCoord.x(), texCoord.y(), 0.0f);
DE_ASSERT(primitiveNdx >= 0);
DE_ASSERT(primitiveNdx < 4);
color = colors[primitiveNdx];
emitCount = 0;
if (texColor.x() > 0.0f)
emitCount += (EMIT_COUNT_VERTEX_0 == -1) ? (m_maxEmitCount) : (EMIT_COUNT_VERTEX_0);
if (texColor.y() > 0.0f)
emitCount += (EMIT_COUNT_VERTEX_1 == -1) ? (m_maxEmitCount) : (EMIT_COUNT_VERTEX_1);
if (texColor.z() > 0.0f)
emitCount += (EMIT_COUNT_VERTEX_2 == -1) ? (m_maxEmitCount) : (EMIT_COUNT_VERTEX_2);
if (texColor.w() > 0.0f)
emitCount += (EMIT_COUNT_VERTEX_3 == -1) ? (m_maxEmitCount) : (EMIT_COUNT_VERTEX_3);
}
else
DE_ASSERT(DE_FALSE);
for (int ndx = 0; ndx < (int)emitCount / 2; ++ndx)
{
const float angle = (float(ndx) + 0.5f) / float(emitCount / 2) * 3.142f;
const tcu::Vec4 basePosition = (m_instanced) ?
(vertex->position + tcu::Vec4(deFloatCos(float(invocationID)), deFloatSin(float(invocationID)), 0.0f, 0.0f) * 0.5f) :
(vertex->position);
const tcu::Vec4 position0 = basePosition + tcu::Vec4(deFloatCos(angle), deFloatSin(angle), 0.0f, 0.0f) * 0.15f;
const tcu::Vec4 position1 = basePosition + tcu::Vec4(deFloatCos(angle), -deFloatSin(angle), 0.0f, 0.0f) * 0.15f;
rr::GenericVec4 fragColor;
fragColor = color;
output.EmitVertex(position0, 0.0f, &fragColor, packets[packetNdx].primitiveIDIn);
output.EmitVertex(position1, 0.0f, &fragColor, packets[packetNdx].primitiveIDIn);
}
output.EndPrimitive();
}
}
const char* VaryingOutputCountShader::getAttributeName (VaryingSource test)
{
switch (test)
{
case READ_ATTRIBUTE: return "a_emitCount";
case READ_UNIFORM: return "a_vertexNdx";
case READ_TEXTURE: return "a_vertexNdx";
default:
DE_ASSERT(DE_FALSE);
return "";
}
}
std::string VaryingOutputCountShader::genGeometrySource (const glu::ContextType& contextType, VaryingSource test, int maxEmitCount, bool instanced)
{
std::ostringstream buf;
buf << "${GLSL_VERSION_DECL}\n"
"${GLSL_EXT_GEOMETRY_SHADER}"
"layout(points" << ((instanced) ? (",invocations=4") : ("")) << ") in;\n"
"layout(triangle_strip, max_vertices = " << maxEmitCount << ") out;\n";
if (test == READ_ATTRIBUTE)
buf << "in highp vec4 v_geom_emitCount[];\n";
else if (test == READ_UNIFORM)
buf << "in highp vec4 v_geom_vertexNdx[];\n"
"uniform highp ivec4 u_emitCount;\n";
else
buf << "in highp vec4 v_geom_vertexNdx[];\n"
"uniform highp sampler2D u_sampler;\n";
buf << "out highp vec4 v_frag_FragColor;\n"
"\n"
"void main (void)\n"
"{\n";
// emit count
if (test == READ_ATTRIBUTE)
{
buf << " highp vec4 attrEmitCounts = v_geom_emitCount[0];\n"
" mediump int emitCount = int(attrEmitCounts[" << ((instanced) ? ("gl_InvocationID") : ("0")) << "]);\n";
}
else if (test == READ_UNIFORM)
{
buf << " mediump int primitiveNdx = " << ((instanced) ? ("gl_InvocationID") : ("int(v_geom_vertexNdx[0].x)")) << ";\n"
" mediump int emitCount = u_emitCount[primitiveNdx];\n";
}
else if (test == READ_TEXTURE)
{
buf << " highp float primitiveNdx = " << ((instanced) ? ("float(gl_InvocationID)") : ("v_geom_vertexNdx[0].x")) << ";\n"
" highp vec2 texCoord = vec2(1.0 / 8.0 + primitiveNdx / 4.0, 0.5);\n"
" highp vec4 texColor = texture(u_sampler, texCoord);\n"
" mediump int emitCount = 0;\n"
" if (texColor.x > 0.0)\n"
" emitCount += " << ((EMIT_COUNT_VERTEX_0 == -1) ? (maxEmitCount) : (EMIT_COUNT_VERTEX_0)) << ";\n"
" if (texColor.y > 0.0)\n"
" emitCount += " << ((EMIT_COUNT_VERTEX_1 == -1) ? (maxEmitCount) : (EMIT_COUNT_VERTEX_1)) << ";\n"
" if (texColor.z > 0.0)\n"
" emitCount += " << ((EMIT_COUNT_VERTEX_2 == -1) ? (maxEmitCount) : (EMIT_COUNT_VERTEX_2)) << ";\n"
" if (texColor.w > 0.0)\n"
" emitCount += " << ((EMIT_COUNT_VERTEX_3 == -1) ? (maxEmitCount) : (EMIT_COUNT_VERTEX_3)) << ";\n";
}
else
DE_ASSERT(DE_FALSE);
// color
if (test == READ_ATTRIBUTE)
{
// We don't want color to be compile time constant
buf << " highp vec4 color = vec4((emitCount < 10) ? (0.0) : (1.0), (emitCount > 10) ? (0.0) : (1.0), 1.0, 1.0);\n";
}
else if (test == READ_UNIFORM || test == READ_TEXTURE)
{
buf << "\n"
" const highp vec4 red = vec4(1.0, 0.0, 0.0, 1.0);\n"
" const highp vec4 green = vec4(0.0, 1.0, 0.0, 1.0);\n"
" const highp vec4 blue = vec4(0.0, 0.0, 1.0, 1.0);\n"
" const highp vec4 yellow = vec4(1.0, 1.0, 0.0, 1.0);\n"
" const highp vec4 colors[4] = vec4[4](red, green, blue, yellow);\n"
" highp vec4 color = colors[int(primitiveNdx)];\n";
}
else
DE_ASSERT(DE_FALSE);
buf << "\n"
" highp vec4 basePos = " << ((instanced) ? ("gl_in[0].gl_Position + 0.5 * vec4(cos(float(gl_InvocationID)), sin(float(gl_InvocationID)), 0.0, 0.0)") : ("gl_in[0].gl_Position")) << ";\n"
" for (mediump int i = 0; i < emitCount / 2; i++)\n"
" {\n"
" highp float angle = (float(i) + 0.5) / float(emitCount / 2) * 3.142;\n"
" gl_Position = basePos + vec4(cos(angle), sin(angle), 0.0, 0.0) * 0.15;\n"
" v_frag_FragColor = color;\n"
" EmitVertex();\n"
" gl_Position = basePos + vec4(cos(angle), -sin(angle), 0.0, 0.0) * 0.15;\n"
" v_frag_FragColor = color;\n"
" EmitVertex();\n"
" }"
"}\n";
return specializeShader(buf.str(), contextType);
}
std::string VaryingOutputCountShader::genVertexSource (const glu::ContextType& contextType, VaryingSource test)
{
std::ostringstream buf;
buf << "${GLSL_VERSION_DECL}\n"
"in highp vec4 a_position;\n";
if (test == READ_ATTRIBUTE)
{
buf << "in highp vec4 a_emitCount;\n";
buf << "out highp vec4 v_geom_emitCount;\n";
}
else if (test == READ_UNIFORM || test == READ_TEXTURE)
{
buf << "in highp vec4 a_vertexNdx;\n";
buf << "out highp vec4 v_geom_vertexNdx;\n";
}
buf << "void main (void)\n"
"{\n"
" gl_Position = a_position;\n";
if (test == READ_ATTRIBUTE)
buf << " v_geom_emitCount = a_emitCount;\n";
else if (test == READ_UNIFORM || test == READ_TEXTURE)
buf << " v_geom_vertexNdx = a_vertexNdx;\n";
buf << "}\n";
return specializeShader(buf.str(), contextType);
}
class InvocationCountShader : public sglr::ShaderProgram
{
public:
enum OutputCase
{
CASE_FIXED_OUTPUT_COUNTS = 0,
CASE_DIFFERENT_OUTPUT_COUNTS,
CASE_LAST
};
InvocationCountShader (const glu::ContextType& contextType, int numInvocations, OutputCase testCase);
private:
void shadeVertices (const rr::VertexAttrib* inputs, rr::VertexPacket* const* packets, const int numPackets) const;
void shadeFragments (rr::FragmentPacket* packets, const int numPackets, const rr::FragmentShadingContext& context) const;
void shadePrimitives (rr::GeometryEmitter& output, int verticesIn, const rr::PrimitivePacket* packets, const int numPackets, int invocationID) const;
static std::string genGeometrySource (const glu::ContextType& contextType, int numInvocations, OutputCase testCase);
static size_t getNumVertices (int numInvocations, OutputCase testCase);
const int m_numInvocations;
const OutputCase m_testCase;
};
InvocationCountShader::InvocationCountShader (const glu::ContextType& contextType, int numInvocations, OutputCase testCase)
: sglr::ShaderProgram (sglr::pdec::ShaderProgramDeclaration()
<< sglr::pdec::VertexAttribute("a_position", rr::GENERICVECTYPE_FLOAT)
<< sglr::pdec::VertexAttribute("a_color", rr::GENERICVECTYPE_FLOAT)
<< sglr::pdec::VertexToGeometryVarying(rr::GENERICVECTYPE_FLOAT)
<< sglr::pdec::GeometryToFragmentVarying(rr::GENERICVECTYPE_FLOAT)
<< sglr::pdec::FragmentOutput(rr::GENERICVECTYPE_FLOAT)
<< sglr::pdec::VertexSource(specializeShader(s_commonShaderSourceVertex, contextType))
<< sglr::pdec::FragmentSource(specializeShader(s_commonShaderSourceFragment, contextType))
<< sglr::pdec::GeometryShaderDeclaration(rr::GEOMETRYSHADERINPUTTYPE_POINTS,
rr::GEOMETRYSHADEROUTPUTTYPE_TRIANGLE_STRIP,
getNumVertices(numInvocations, testCase),
numInvocations)
<< sglr::pdec::GeometrySource(genGeometrySource(contextType, numInvocations, testCase).c_str()))
, m_numInvocations (numInvocations)
, m_testCase (testCase)
{
}
void InvocationCountShader::shadeVertices (const rr::VertexAttrib* inputs, rr::VertexPacket* const* packets, const int numPackets) const
{
for (int ndx = 0; ndx < numPackets; ++ndx)
{
packets[ndx]->position = rr::readVertexAttribFloat(inputs[0], packets[ndx]->instanceNdx, packets[ndx]->vertexNdx);
packets[ndx]->outputs[0] = rr::readVertexAttribFloat(inputs[1], packets[ndx]->instanceNdx, packets[ndx]->vertexNdx);
}
}
void InvocationCountShader::shadeFragments (rr::FragmentPacket* packets, const int numPackets, const rr::FragmentShadingContext& context) const
{
for (int packetNdx = 0; packetNdx < numPackets; ++packetNdx)
for (int fragNdx = 0; fragNdx < 4; ++fragNdx)
rr::writeFragmentOutput(context, packetNdx, fragNdx, 0, rr::readVarying<float>(packets[packetNdx], context, 0, fragNdx));
}
void InvocationCountShader::shadePrimitives (rr::GeometryEmitter& output, int verticesIn, const rr::PrimitivePacket* packets, const int numPackets, int invocationID) const
{
DE_UNREF(verticesIn);
for (int packetNdx = 0; packetNdx < numPackets; ++packetNdx)
{
const float l_angle = float(invocationID) / float(m_numInvocations) * 5.5f;
const float l_radius = 0.6f;
const rr::VertexPacket* vertex = packets[packetNdx].vertices[0];
if (m_testCase == CASE_FIXED_OUTPUT_COUNTS)
{
const tcu::Vec4 position0 = vertex->position + tcu::Vec4(deFloatCos(l_angle) * (l_radius - 0.1f), deFloatSin(l_angle) * (l_radius - 0.1f), 0.0f, 0.0f);
const tcu::Vec4 position1 = vertex->position + tcu::Vec4(deFloatCos(l_angle+0.1f) * l_radius, deFloatSin(l_angle+0.1f) * l_radius, 0.0f, 0.0f);
const tcu::Vec4 position2 = vertex->position + tcu::Vec4(deFloatCos(l_angle-0.1f) * l_radius, deFloatSin(l_angle-0.1f) * l_radius, 0.0f, 0.0f);
rr::GenericVec4 tipColor;
rr::GenericVec4 baseColor;
tipColor = tcu::Vec4(1.0, 1.0, 0.0, 1.0) * packets[packetNdx].vertices[0]->outputs[0].get<float>();
baseColor = tcu::Vec4(1.0, 0.0, 0.0, 1.0) * packets[packetNdx].vertices[0]->outputs[0].get<float>();
output.EmitVertex(position0, 0.0f, &tipColor, packets[packetNdx].primitiveIDIn);
output.EmitVertex(position1, 0.0f, &baseColor, packets[packetNdx].primitiveIDIn);
output.EmitVertex(position2, 0.0f, &baseColor, packets[packetNdx].primitiveIDIn);
output.EndPrimitive();
}
else if (m_testCase == CASE_DIFFERENT_OUTPUT_COUNTS)
{
const tcu::Vec4 color = tcu::Vec4(float(invocationID % 2), (((invocationID / 2) % 2) == 0) ? (1.0f) : (0.0f), 1.0f, 1.0f);
const tcu::Vec4 basePosition = vertex->position + tcu::Vec4(deFloatCos(l_angle) * l_radius, deFloatSin(l_angle) * l_radius, 0.0f, 0.0f);
const int numNgonVtx = invocationID + 3;
rr::GenericVec4 outColor;
outColor = color;
for (int ndx = 0; ndx + 1 < numNgonVtx; ndx += 2)
{
const float subAngle = (float(ndx) + 1.0f) / float(numNgonVtx) * 3.141f;
output.EmitVertex(basePosition + tcu::Vec4(deFloatCos(subAngle) * 0.1f, deFloatSin(subAngle) * 0.1f, 0.0f, 0.0f), 0.0f, &outColor, packets[packetNdx].primitiveIDIn);
output.EmitVertex(basePosition + tcu::Vec4(deFloatCos(subAngle) * 0.1f, deFloatSin(subAngle) * -0.1f, 0.0f, 0.0f), 0.0f, &outColor, packets[packetNdx].primitiveIDIn);
}
if ((numNgonVtx % 2) == 1)
output.EmitVertex(basePosition + tcu::Vec4(-0.1f, 0.0f, 0.0f, 0.0f), 0.0f, &outColor, packets[packetNdx].primitiveIDIn);
output.EndPrimitive();
}
}
}
std::string InvocationCountShader::genGeometrySource (const glu::ContextType& contextType, int numInvocations, OutputCase testCase)
{
const int maxVertices = (int)getNumVertices(numInvocations, testCase);
std::ostringstream buf;
buf << "${GLSL_VERSION_DECL}\n"
"${GLSL_EXT_GEOMETRY_SHADER}"
"layout(points, invocations = " << numInvocations << ") in;\n"
"layout(triangle_strip, max_vertices = " << maxVertices << ") out;\n"
"\n"
"in highp vec4 v_geom_FragColor[];\n"
"out highp vec4 v_frag_FragColor;\n"
"\n"
"void main ()\n"
"{\n"
" highp float l_angle = float(gl_InvocationID) / float(" << numInvocations << ") * 5.5;\n"
" highp float l_radius = 0.6;\n"
"\n";
if (testCase == CASE_FIXED_OUTPUT_COUNTS)
{
buf << " v_frag_FragColor = vec4(1.0, 1.0, 0.0, 1.0) * v_geom_FragColor[0];\n"
" gl_Position = gl_in[0].gl_Position + vec4(cos(l_angle) * (l_radius - 0.1), sin(l_angle) * (l_radius - 0.1), 0.0, 0.0);\n"
" EmitVertex();\n"
"\n"
" v_frag_FragColor = vec4(1.0, 0.0, 0.0, 1.0) * v_geom_FragColor[0];\n"
" gl_Position = gl_in[0].gl_Position + vec4(cos(l_angle+0.1) * l_radius, sin(l_angle+0.1) * l_radius, 0.0, 0.0);\n"
" EmitVertex();\n"
"\n"
" v_frag_FragColor = vec4(1.0, 0.0, 0.0, 1.0) * v_geom_FragColor[0];\n"
" gl_Position = gl_in[0].gl_Position + vec4(cos(l_angle-0.1) * l_radius, sin(l_angle-0.1) * l_radius, 0.0, 0.0);\n"
" EmitVertex();\n";
}
else if (testCase == CASE_DIFFERENT_OUTPUT_COUNTS)
{
buf << " highp vec4 l_color = vec4(float(gl_InvocationID % 2), (((gl_InvocationID / 2) % 2) == 0) ? (1.0) : (0.0), 1.0, 1.0);\n"
" highp vec4 basePosition = gl_in[0].gl_Position + vec4(cos(l_angle) * l_radius, sin(l_angle) * l_radius, 0.0, 0.0);\n"
" mediump int numNgonVtx = gl_InvocationID + 3;\n"
"\n"
" for (int ndx = 0; ndx + 1 < numNgonVtx; ndx += 2)\n"
" {\n"
" highp float sub_angle = (float(ndx) + 1.0) / float(numNgonVtx) * 3.141;\n"
"\n"
" v_frag_FragColor = l_color;\n"
" gl_Position = basePosition + vec4(cos(sub_angle) * 0.1, sin(sub_angle) * 0.1, 0.0, 0.0);\n"
" EmitVertex();\n"
"\n"
" v_frag_FragColor = l_color;\n"
" gl_Position = basePosition + vec4(cos(sub_angle) * 0.1, sin(sub_angle) * -0.1, 0.0, 0.0);\n"
" EmitVertex();\n"
" }\n"
" if ((numNgonVtx % 2) == 1)\n"
" {\n"
" v_frag_FragColor = l_color;\n"
" gl_Position = basePosition + vec4(-0.1, 0.0, 0.0, 0.0);\n"
" EmitVertex();\n"
" }\n";
}
else
DE_ASSERT(false);
buf << "}\n";
return specializeShader(buf.str(), contextType);
}
size_t InvocationCountShader::getNumVertices (int numInvocations, OutputCase testCase)
{
switch (testCase)
{
case CASE_FIXED_OUTPUT_COUNTS: return 3;
case CASE_DIFFERENT_OUTPUT_COUNTS: return (size_t)(2 + numInvocations);
default:
DE_ASSERT(false);
return 0;
}
}
class InstancedExpansionShader : public sglr::ShaderProgram
{
public:
InstancedExpansionShader (const glu::ContextType& contextType, int numInvocations);
private:
void shadeVertices (const rr::VertexAttrib* inputs, rr::VertexPacket* const* packets, const int numPackets) const;
void shadeFragments (rr::FragmentPacket* packets, const int numPackets, const rr::FragmentShadingContext& context) const;
void shadePrimitives (rr::GeometryEmitter& output, int verticesIn, const rr::PrimitivePacket* packets, const int numPackets, int invocationID) const;
static std::string genVertexSource (const glu::ContextType& contextType);
static std::string genFragmentSource (const glu::ContextType& contextType);
static std::string genGeometrySource (const glu::ContextType& contextType, int numInvocations);
const int m_numInvocations;
};
InstancedExpansionShader::InstancedExpansionShader (const glu::ContextType& contextType, int numInvocations)
: sglr::ShaderProgram (sglr::pdec::ShaderProgramDeclaration()
<< sglr::pdec::VertexAttribute("a_position", rr::GENERICVECTYPE_FLOAT)
<< sglr::pdec::VertexAttribute("a_offset", rr::GENERICVECTYPE_FLOAT)
<< sglr::pdec::FragmentOutput(rr::GENERICVECTYPE_FLOAT)
<< sglr::pdec::VertexSource(genVertexSource(contextType))
<< sglr::pdec::FragmentSource(genFragmentSource(contextType))
<< sglr::pdec::GeometryShaderDeclaration(rr::GEOMETRYSHADERINPUTTYPE_POINTS,
rr::GEOMETRYSHADEROUTPUTTYPE_TRIANGLE_STRIP,
4,
numInvocations)
<< sglr::pdec::GeometrySource(genGeometrySource(contextType, numInvocations).c_str()))
, m_numInvocations (numInvocations)
{
}
void InstancedExpansionShader::shadeVertices (const rr::VertexAttrib* inputs, rr::VertexPacket* const* packets, const int numPackets) const
{
for (int ndx = 0; ndx < numPackets; ++ndx)
{
packets[ndx]->position = rr::readVertexAttribFloat(inputs[0], packets[ndx]->instanceNdx, packets[ndx]->vertexNdx) +
rr::readVertexAttribFloat(inputs[1], packets[ndx]->instanceNdx, packets[ndx]->vertexNdx);
}
}
void InstancedExpansionShader::shadeFragments (rr::FragmentPacket* packets, const int numPackets, const rr::FragmentShadingContext& context) const
{
DE_UNREF(packets);
for (int packetNdx = 0; packetNdx < numPackets; ++packetNdx)
for (int fragNdx = 0; fragNdx < 4; ++fragNdx)
rr::writeFragmentOutput(context, packetNdx, fragNdx, 0, tcu::Vec4(1.0f, 1.0f, 1.0f, 1.0f));
}
void InstancedExpansionShader::shadePrimitives (rr::GeometryEmitter& output, int verticesIn, const rr::PrimitivePacket* packets, const int numPackets, int invocationID) const
{
DE_UNREF(verticesIn);
for (int packetNdx = 0; packetNdx < numPackets; ++packetNdx)
{
const rr::VertexPacket* vertex = packets[packetNdx].vertices[0];
const tcu::Vec4 basePosition = vertex->position;
const float phase = float(invocationID) / float(m_numInvocations) * 6.3f;
const tcu::Vec4 centerPosition = basePosition + tcu::Vec4(deFloatCos(phase), deFloatSin(phase), 0.0f, 0.0f) * 0.1f;
output.EmitVertex(centerPosition + tcu::Vec4( 0.0f, -0.1f, 0.0f, 0.0f), 0.0f, DE_NULL, packets[packetNdx].primitiveIDIn);
output.EmitVertex(centerPosition + tcu::Vec4(-0.05f, 0.0f, 0.0f, 0.0f), 0.0f, DE_NULL, packets[packetNdx].primitiveIDIn);
output.EmitVertex(centerPosition + tcu::Vec4( 0.05f, 0.0f, 0.0f, 0.0f), 0.0f, DE_NULL, packets[packetNdx].primitiveIDIn);
output.EndPrimitive();
}
}
std::string InstancedExpansionShader::genVertexSource (const glu::ContextType& contextType)
{
std::ostringstream buf;
buf << "${GLSL_VERSION_DECL}\n"
"in highp vec4 a_position;\n"
"in highp vec4 a_offset;\n"
"void main (void)\n"
"{\n"
" gl_Position = a_position + a_offset;\n"
"}\n";
return specializeShader(buf.str(), contextType);
}
std::string InstancedExpansionShader::genFragmentSource (const glu::ContextType& contextType)
{
std::ostringstream buf;
buf << "${GLSL_VERSION_DECL}\n"
"layout(location = 0) out mediump vec4 fragColor;\n"
"void main (void)\n"
"{\n"
" fragColor = vec4(1.0, 1.0, 1.0, 1.0);\n"
"}\n";
return specializeShader(buf.str(), contextType);
}
std::string InstancedExpansionShader::genGeometrySource (const glu::ContextType& contextType, int numInvocations)
{
std::ostringstream buf;
buf << "${GLSL_VERSION_DECL}\n"
"${GLSL_EXT_GEOMETRY_SHADER}"
"layout(points,invocations=" << numInvocations << ") in;\n"
"layout(triangle_strip, max_vertices = 3) out;\n"
"\n"
"void main (void)\n"
"{\n"
" highp vec4 basePosition = gl_in[0].gl_Position;\n"
" highp float phase = float(gl_InvocationID) / float(" << numInvocations << ") * 6.3;\n"
" highp vec4 centerPosition = basePosition + 0.1 * vec4(cos(phase), sin(phase), 0.0, 0.0);\n"
"\n"
" gl_Position = centerPosition + vec4( 0.00, -0.1, 0.0, 0.0);\n"
" EmitVertex();\n"
" gl_Position = centerPosition + vec4(-0.05, 0.0, 0.0, 0.0);\n"
" EmitVertex();\n"
" gl_Position = centerPosition + vec4( 0.05, 0.0, 0.0, 0.0);\n"
" EmitVertex();\n"
"}\n";
return specializeShader(buf.str(), contextType);
}
class GeometryShaderRenderTest : public TestCase
{
public:
enum Flag
{
FLAG_DRAW_INSTANCED = 1,
FLAG_USE_INDICES = 2,
FLAG_USE_RESTART_INDEX = 4,
};
GeometryShaderRenderTest (Context& context, const char* name, const char* desc, GLenum inputPrimitives, GLenum outputPrimitives, const char* dataAttributeName, int flags = 0);
virtual ~GeometryShaderRenderTest (void);
void init (void);
void deinit (void);
IterateResult iterate (void);
bool compare (void);
virtual sglr::ShaderProgram& getProgram (void) = 0;
protected:
virtual void genVertexAttribData (void);
void renderWithContext (sglr::Context& ctx, sglr::ShaderProgram& program, tcu::Surface& dstSurface);
virtual void preRender (sglr::Context& ctx, GLuint programID);
virtual void postRender (sglr::Context& ctx, GLuint programID);
int m_numDrawVertices;
int m_numDrawInstances;
int m_vertexAttrDivisor;
const GLenum m_inputPrimitives;
const GLenum m_outputPrimitives;
const char* const m_dataAttributeName;
const int m_flags;
tcu::IVec2 m_viewportSize;
int m_interationCount;
tcu::Surface* m_glResult;
tcu::Surface* m_refResult;
sglr::ReferenceContextBuffers* m_refBuffers;
sglr::ReferenceContext* m_refContext;
sglr::Context* m_glContext;
std::vector<tcu::Vec4> m_vertexPosData;
std::vector<tcu::Vec4> m_vertexAttrData;
std::vector<deUint16> m_indices;
};
GeometryShaderRenderTest::GeometryShaderRenderTest (Context& context, const char* name, const char* desc, GLenum inputPrimitives, GLenum outputPrimitives, const char* dataAttributeName, int flags)
: TestCase (context, name, desc)
, m_numDrawVertices (0)
, m_numDrawInstances (0)
, m_vertexAttrDivisor (0)
, m_inputPrimitives (inputPrimitives)
, m_outputPrimitives (outputPrimitives)
, m_dataAttributeName (dataAttributeName)
, m_flags (flags)
, m_viewportSize (TEST_CANVAS_SIZE, TEST_CANVAS_SIZE)
, m_interationCount (0)
, m_glResult (DE_NULL)
, m_refResult (DE_NULL)
, m_refBuffers (DE_NULL)
, m_refContext (DE_NULL)
, m_glContext (DE_NULL)
{
// Disallow instanced drawElements
DE_ASSERT(((m_flags & FLAG_DRAW_INSTANCED) == 0) || ((m_flags & FLAG_USE_INDICES) == 0));
// Disallow restart without indices
DE_ASSERT(!(((m_flags & FLAG_USE_RESTART_INDEX) != 0) && ((m_flags & FLAG_USE_INDICES) == 0)));
}
GeometryShaderRenderTest::~GeometryShaderRenderTest (void)
{
deinit();
}
void GeometryShaderRenderTest::init (void)
{
// requirements
if (!glu::contextSupports(m_context.getRenderContext().getType(), glu::ApiType::es(3, 2)) && !m_context.getContextInfo().isExtensionSupported("GL_EXT_geometry_shader"))
TCU_THROW(NotSupportedError, "Tests require GL_EXT_geometry_shader extension or higher context version.");
// gen resources
{
sglr::ReferenceContextLimits limits;
m_glResult = new tcu::Surface(m_viewportSize.x(), m_viewportSize.y());
m_refResult = new tcu::Surface(m_viewportSize.x(), m_viewportSize.y());
m_refBuffers = new sglr::ReferenceContextBuffers(m_context.getRenderTarget().getPixelFormat(), m_context.getRenderTarget().getDepthBits(), 0, m_viewportSize.x(), m_viewportSize.y());
m_refContext = new sglr::ReferenceContext(limits, m_refBuffers->getColorbuffer(), m_refBuffers->getDepthbuffer(), m_refBuffers->getStencilbuffer());
m_glContext = new sglr::GLContext(m_context.getRenderContext(), m_testCtx.getLog(), sglr::GLCONTEXT_LOG_CALLS | sglr::GLCONTEXT_LOG_PROGRAMS, tcu::IVec4(0, 0, m_viewportSize.x(), m_viewportSize.y()));
}
}
void GeometryShaderRenderTest::deinit (void)
{
delete m_glResult;
delete m_refResult;
m_glResult = DE_NULL;
m_refResult = DE_NULL;
delete m_refContext;
delete m_glContext;
delete m_refBuffers;
m_refBuffers = DE_NULL;
m_refContext = DE_NULL;
m_glContext = DE_NULL;
}
tcu::TestCase::IterateResult GeometryShaderRenderTest::iterate (void)
{
// init() must be called
DE_ASSERT(m_glContext);
DE_ASSERT(m_refContext);
const int iteration = m_interationCount++;
if (iteration == 0)
{
// Check requirements
const int width = m_context.getRenderTarget().getWidth();
const int height = m_context.getRenderTarget().getHeight();
if (width < m_viewportSize.x() || height < m_viewportSize.y())
throw tcu::NotSupportedError(std::string("Render target size must be at least ") + de::toString(m_viewportSize.x()) + "x" + de::toString(m_viewportSize.y()));
// Gen data
genVertexAttribData();
return CONTINUE;
}
else if (iteration == 1)
{
// Render
sglr::ShaderProgram& program = getProgram();
renderWithContext(*m_glContext, program, *m_glResult);
renderWithContext(*m_refContext, program, *m_refResult);
return CONTINUE;
}
else
{
if (compare())
m_testCtx.setTestResult(QP_TEST_RESULT_PASS, "Pass");
else
m_testCtx.setTestResult(QP_TEST_RESULT_FAIL, "Image comparison failed");
return STOP;
}
}
bool GeometryShaderRenderTest::compare (void)
{
using tcu::TestLog;
if (m_context.getRenderTarget().getNumSamples() > 1)
{
return tcu::fuzzyCompare(m_testCtx.getLog(), "Compare Results", "Compare Results", m_refResult->getAccess(), m_glResult->getAccess(), 0.02f, tcu::COMPARE_LOG_RESULT);
}
else
{
tcu::Surface errorMask (m_viewportSize.x(), m_viewportSize.y());
const tcu::RGBA green (0, 255, 0, 255);
const tcu::RGBA red (255, 0, 0, 255);
const int colorComponentThreshold = 20;
bool testResult = true;
for (int x = 0; x < m_viewportSize.x(); ++x)
for (int y = 0; y < m_viewportSize.y(); ++y)
{
if (x == 0 || y == 0 || x + 1 == m_viewportSize.x() || y + 1 == m_viewportSize.y())
{
// Mark edge pixels as correct since their neighbourhood is undefined
errorMask.setPixel(x, y, green);
}
else
{
const tcu::RGBA refcolor = m_refResult->getPixel(x, y);
bool found = false;
// Got to find similar pixel near this pixel (3x3 kernel)
for (int dx = -1; dx <= 1; ++dx)
for (int dy = -1; dy <= 1; ++dy)
{
const tcu::RGBA testColor = m_glResult->getPixel(x + dx, y + dy);
const tcu::IVec4 colDiff = tcu::abs(testColor.toIVec() - refcolor.toIVec());
const int maxColDiff = de::max(de::max(colDiff.x(), colDiff.y()), colDiff.z()); // check RGB channels
if (maxColDiff <= colorComponentThreshold)
found = true;
}
if (!found)
testResult = false;
errorMask.setPixel(x, y, (found) ? (green) : (red));
}
}
if (testResult)
{
m_testCtx.getLog() << TestLog::ImageSet("Compare result", "Result of rendering")
<< TestLog::Image("Result", "Result", *m_glResult)
<< TestLog::EndImageSet;
m_testCtx.getLog() << TestLog::Message << "Image compare ok." << TestLog::EndMessage;
}
else
{
m_testCtx.getLog() << TestLog::ImageSet("Compare result", "Result of rendering")
<< TestLog::Image("Result", "Result", *m_glResult)
<< TestLog::Image("Reference", "Reference", *m_refResult)
<< TestLog::Image("ErrorMask", "Error mask", errorMask)
<< TestLog::EndImageSet;
m_testCtx.getLog() << TestLog::Message << "Image compare failed." << TestLog::EndMessage;
}
return testResult;
}
}
void GeometryShaderRenderTest::genVertexAttribData (void)
{
// Create 1 X 2 grid in triangle strip adjacent - order
const float scale = 0.3f;
const tcu::Vec4 offset(-0.5f, -0.2f, 0.0f, 1.0f);
m_vertexPosData.resize(12);
m_vertexPosData[ 0] = tcu::Vec4( 0, 0, 0.0f, 0.0f) * scale + offset;
m_vertexPosData[ 1] = tcu::Vec4(-1, -1, 0.0f, 0.0f) * scale + offset;
m_vertexPosData[ 2] = tcu::Vec4( 0, -1, 0.0f, 0.0f) * scale + offset;
m_vertexPosData[ 3] = tcu::Vec4( 1, 1, 0.0f, 0.0f) * scale + offset;
m_vertexPosData[ 4] = tcu::Vec4( 1, 0, 0.0f, 0.0f) * scale + offset;
m_vertexPosData[ 5] = tcu::Vec4( 0, -2, 0.0f, 0.0f) * scale + offset;
m_vertexPosData[ 6] = tcu::Vec4( 1, -1, 0.0f, 0.0f) * scale + offset;
m_vertexPosData[ 7] = tcu::Vec4( 2, 1, 0.0f, 0.0f) * scale + offset;
m_vertexPosData[ 8] = tcu::Vec4( 2, 0, 0.0f, 0.0f) * scale + offset;
m_vertexPosData[ 9] = tcu::Vec4( 1, -2, 0.0f, 0.0f) * scale + offset;
m_vertexPosData[10] = tcu::Vec4( 2, -1, 0.0f, 0.0f) * scale + offset;
m_vertexPosData[11] = tcu::Vec4( 3, 0, 0.0f, 0.0f) * scale + offset;
// Red and white
m_vertexAttrData.resize(12);
for (int i = 0; i < 12; ++i)
m_vertexAttrData[i] = (i % 2 == 0) ? tcu::Vec4(1, 1, 1, 1) : tcu::Vec4(1, 0, 0, 1);
m_numDrawVertices = 12;
}
void GeometryShaderRenderTest::renderWithContext (sglr::Context& ctx, sglr::ShaderProgram& program, tcu::Surface& dstSurface)
{
#define CHECK_GL_CTX_ERRORS() glu::checkError(ctx.getError(), DE_NULL, __FILE__, __LINE__)
const GLuint programId = ctx.createProgram(&program);
const GLint attrPosLoc = ctx.getAttribLocation(programId, "a_position");
const GLint attrColLoc = ctx.getAttribLocation(programId, m_dataAttributeName);
GLuint vaoId = 0;
GLuint vertexPosBuf = 0;
GLuint vertexAttrBuf = 0;
GLuint elementArrayBuf = 0;
ctx.genVertexArrays(1, &vaoId);
ctx.bindVertexArray(vaoId);
if (attrPosLoc != -1)
{
ctx.genBuffers(1, &vertexPosBuf);
ctx.bindBuffer(GL_ARRAY_BUFFER, vertexPosBuf);
ctx.bufferData(GL_ARRAY_BUFFER, m_vertexPosData.size() * sizeof(tcu::Vec4), &m_vertexPosData[0], GL_STATIC_DRAW);
ctx.vertexAttribPointer(attrPosLoc, 4, GL_FLOAT, GL_FALSE, 0, DE_NULL);
ctx.enableVertexAttribArray(attrPosLoc);
}
if (attrColLoc != -1)
{
ctx.genBuffers(1, &vertexAttrBuf);
ctx.bindBuffer(GL_ARRAY_BUFFER, vertexAttrBuf);
ctx.bufferData(GL_ARRAY_BUFFER, m_vertexAttrData.size() * sizeof(tcu::Vec4), &m_vertexAttrData[0], GL_STATIC_DRAW);
ctx.vertexAttribPointer(attrColLoc, 4, GL_FLOAT, GL_FALSE, 0, DE_NULL);
ctx.enableVertexAttribArray(attrColLoc);
if (m_vertexAttrDivisor)
ctx.vertexAttribDivisor(attrColLoc, m_vertexAttrDivisor);
}
if (m_flags & FLAG_USE_INDICES)
{
ctx.genBuffers(1, &elementArrayBuf);
ctx.bindBuffer(GL_ELEMENT_ARRAY_BUFFER, elementArrayBuf);
ctx.bufferData(GL_ELEMENT_ARRAY_BUFFER, m_indices.size() * sizeof(deUint16), &m_indices[0], GL_STATIC_DRAW);
}
ctx.clearColor(0, 0, 0, 1);
ctx.clear(GL_COLOR_BUFFER_BIT);
ctx.viewport(0, 0, m_viewportSize.x(), m_viewportSize.y());
CHECK_GL_CTX_ERRORS();
ctx.useProgram(programId);
CHECK_GL_CTX_ERRORS();
preRender(ctx, programId);
CHECK_GL_CTX_ERRORS();
if (m_flags & FLAG_USE_RESTART_INDEX)
{
ctx.enable(GL_PRIMITIVE_RESTART_FIXED_INDEX);
CHECK_GL_CTX_ERRORS();
}
if (m_flags & FLAG_USE_INDICES)
ctx.drawElements(m_inputPrimitives, m_numDrawVertices, GL_UNSIGNED_SHORT, DE_NULL);
else if (m_flags & FLAG_DRAW_INSTANCED)
ctx.drawArraysInstanced(m_inputPrimitives, 0, m_numDrawVertices, m_numDrawInstances);
else
ctx.drawArrays(m_inputPrimitives, 0, m_numDrawVertices);
CHECK_GL_CTX_ERRORS();
if (m_flags & FLAG_USE_RESTART_INDEX)
{
ctx.disable(GL_PRIMITIVE_RESTART_FIXED_INDEX);
CHECK_GL_CTX_ERRORS();
}
postRender(ctx, programId);
CHECK_GL_CTX_ERRORS();
ctx.useProgram(0);
if (attrPosLoc != -1)
ctx.disableVertexAttribArray(attrPosLoc);
if (attrColLoc != -1)
ctx.disableVertexAttribArray(attrColLoc);
if (vertexPosBuf)
ctx.deleteBuffers(1, &vertexPosBuf);
if (vertexAttrBuf)
ctx.deleteBuffers(1, &vertexAttrBuf);
if (elementArrayBuf)
ctx.deleteBuffers(1, &elementArrayBuf);
ctx.deleteVertexArrays(1, &vaoId);
CHECK_GL_CTX_ERRORS();
ctx.finish();
ctx.readPixels(dstSurface, 0, 0, m_viewportSize.x(), m_viewportSize.y());
#undef CHECK_GL_CTX_ERRORS
}
void GeometryShaderRenderTest::preRender (sglr::Context& ctx, GLuint programID)
{
DE_UNREF(ctx);
DE_UNREF(programID);
}
void GeometryShaderRenderTest::postRender (sglr::Context& ctx, GLuint programID)
{
DE_UNREF(ctx);
DE_UNREF(programID);
}
class GeometryExpanderRenderTest : public GeometryShaderRenderTest
{
public:
GeometryExpanderRenderTest (Context& context, const char* name, const char* desc, GLenum inputPrimitives, GLenum outputPrimitives);
virtual ~GeometryExpanderRenderTest (void);
sglr::ShaderProgram& getProgram (void);
private:
void init (void);
void deinit (void);
VertexExpanderShader* m_program;
};
GeometryExpanderRenderTest::GeometryExpanderRenderTest (Context& context, const char* name, const char* desc, GLenum inputPrimitives, GLenum outputPrimitives)
: GeometryShaderRenderTest (context, name, desc, inputPrimitives, outputPrimitives, "a_color")
, m_program (DE_NULL)
{
}
GeometryExpanderRenderTest::~GeometryExpanderRenderTest (void)
{
}
void GeometryExpanderRenderTest::init (void)
{
m_program = new VertexExpanderShader(m_context.getRenderContext().getType(), sglr::rr_util::mapGLGeometryShaderInputType(m_inputPrimitives), sglr::rr_util::mapGLGeometryShaderOutputType(m_outputPrimitives));
GeometryShaderRenderTest::init();
}
void GeometryExpanderRenderTest::deinit (void)
{
if (m_program)
{
delete m_program;
m_program = DE_NULL;
}
GeometryShaderRenderTest::deinit();
}
sglr::ShaderProgram& GeometryExpanderRenderTest::getProgram (void)
{
return *m_program;
}
class EmitTest : public GeometryShaderRenderTest
{
public:
EmitTest (Context& context, const char* name, const char* desc, int emitCountA, int endCountA, int emitCountB, int endCountB, GLenum outputType);
sglr::ShaderProgram& getProgram (void);
private:
void init (void);
void deinit (void);
void genVertexAttribData (void);
VertexEmitterShader* m_program;
int m_emitCountA;
int m_endCountA;
int m_emitCountB;
int m_endCountB;
GLenum m_outputType;
};
EmitTest::EmitTest (Context& context, const char* name, const char* desc, int emitCountA, int endCountA, int emitCountB, int endCountB, GLenum outputType)
: GeometryShaderRenderTest (context, name, desc, GL_POINTS, outputType, "a_color")
, m_program (DE_NULL)
, m_emitCountA (emitCountA)
, m_endCountA (endCountA)
, m_emitCountB (emitCountB)
, m_endCountB (endCountB)
, m_outputType (outputType)
{
}
void EmitTest::init(void)
{
m_program = new VertexEmitterShader(m_context.getRenderContext().getType(), m_emitCountA, m_endCountA, m_emitCountB, m_endCountB, sglr::rr_util::mapGLGeometryShaderOutputType(m_outputType));
GeometryShaderRenderTest::init();
}
void EmitTest::deinit (void)
{
if (m_program)
{
delete m_program;
m_program = DE_NULL;
}
GeometryShaderRenderTest::deinit();
}
sglr::ShaderProgram& EmitTest::getProgram (void)
{
return *m_program;
}
void EmitTest::genVertexAttribData (void)
{
m_vertexPosData.resize(1);
m_vertexPosData[0] = tcu::Vec4(0, 0, 0, 1);
m_vertexAttrData.resize(1);
m_vertexAttrData[0] = tcu::Vec4(1, 1, 1, 1);
m_numDrawVertices = 1;
}
class VaryingTest : public GeometryShaderRenderTest
{
public:
VaryingTest (Context& context, const char* name, const char* desc, int vertexOut, int geometryOut);
sglr::ShaderProgram& getProgram (void);
private:
void init (void);
void deinit (void);
void genVertexAttribData (void);
VertexVaryingShader* m_program;
int m_vertexOut;
int m_geometryOut;
};
VaryingTest::VaryingTest (Context& context, const char* name, const char* desc, int vertexOut, int geometryOut)
: GeometryShaderRenderTest (context, name, desc, GL_TRIANGLES, GL_TRIANGLE_STRIP, "a_color")
, m_program (DE_NULL)
, m_vertexOut (vertexOut)
, m_geometryOut (geometryOut)
{
}
void VaryingTest::init (void)
{
m_program = new VertexVaryingShader(m_context.getRenderContext().getType(), m_vertexOut, m_geometryOut);
GeometryShaderRenderTest::init();
}
void VaryingTest::deinit (void)
{
if (m_program)
{
delete m_program;
m_program = DE_NULL;
}
GeometryShaderRenderTest::deinit();
}
sglr::ShaderProgram& VaryingTest::getProgram (void)
{
return *m_program;
}
void VaryingTest::genVertexAttribData (void)
{
m_vertexPosData.resize(3);
m_vertexPosData[0] = tcu::Vec4(0.5f, 0.0f, 0.0f, 1.0f);
m_vertexPosData[1] = tcu::Vec4(0.0f, 0.5f, 0.0f, 1.0f);
m_vertexPosData[2] = tcu::Vec4(0.1f, 0.0f, 0.0f, 1.0f);
m_vertexAttrData.resize(3);
m_vertexAttrData[0] = tcu::Vec4(0.7f, 0.4f, 0.6f, 1.0f);
m_vertexAttrData[1] = tcu::Vec4(0.9f, 0.2f, 0.5f, 1.0f);
m_vertexAttrData[2] = tcu::Vec4(0.1f, 0.8f, 0.3f, 1.0f);
m_numDrawVertices = 3;
}
class TriangleStripAdjacencyVertexCountTest : public GeometryExpanderRenderTest
{
public:
TriangleStripAdjacencyVertexCountTest (Context& context, const char* name, const char* desc, int numInputVertices);
private:
void genVertexAttribData (void);
int m_numInputVertices;
};
TriangleStripAdjacencyVertexCountTest::TriangleStripAdjacencyVertexCountTest (Context& context, const char* name, const char* desc, int numInputVertices)
: GeometryExpanderRenderTest (context, name, desc, GL_TRIANGLE_STRIP_ADJACENCY, GL_TRIANGLE_STRIP)
, m_numInputVertices (numInputVertices)
{
}
void TriangleStripAdjacencyVertexCountTest::genVertexAttribData (void)
{
this->GeometryShaderRenderTest::genVertexAttribData();
m_numDrawVertices = m_numInputVertices;
}
class NegativeDrawCase : public TestCase
{
public:
NegativeDrawCase (Context& context, const char* name, const char* desc, GLenum inputType, GLenum inputPrimitives);
~NegativeDrawCase (void);
void init (void);
void deinit (void);
IterateResult iterate (void);
private:
sglr::Context* m_ctx;
VertexExpanderShader* m_program;
GLenum m_inputType;
GLenum m_inputPrimitives;
};
NegativeDrawCase::NegativeDrawCase (Context& context, const char* name, const char* desc, GLenum inputType, GLenum inputPrimitives)
: TestCase (context, name, desc)
, m_ctx (DE_NULL)
, m_program (DE_NULL)
, m_inputType (inputType)
, m_inputPrimitives (inputPrimitives)
{
}
NegativeDrawCase::~NegativeDrawCase (void)
{
deinit();
}
void NegativeDrawCase::init (void)
{
if (!glu::contextSupports(m_context.getRenderContext().getType(), glu::ApiType::es(3, 2)) && !m_context.getContextInfo().isExtensionSupported("GL_EXT_geometry_shader"))
TCU_THROW(NotSupportedError, "Tests require GL_EXT_geometry_shader extension or higher context version.");
m_ctx = new sglr::GLContext(m_context.getRenderContext(), m_testCtx.getLog(), sglr::GLCONTEXT_LOG_CALLS | sglr::GLCONTEXT_LOG_PROGRAMS, tcu::IVec4(0, 0, 1, 1));
m_program = new VertexExpanderShader(m_context.getRenderContext().getType() , sglr::rr_util::mapGLGeometryShaderInputType(m_inputType), rr::GEOMETRYSHADEROUTPUTTYPE_POINTS);
}
void NegativeDrawCase::deinit (void)
{
delete m_ctx;
delete m_program;
m_ctx = NULL;
m_program = DE_NULL;
}
NegativeDrawCase::IterateResult NegativeDrawCase::iterate (void)
{
const GLuint programId = m_ctx->createProgram(m_program);
const GLint attrPosLoc = m_ctx->getAttribLocation(programId, "a_position");
const tcu::Vec4 vertexPosData (0, 0, 0, 1);
GLuint vaoId = 0;
GLuint vertexPosBuf = 0;
GLenum errorCode = 0;
m_ctx->genVertexArrays(1, &vaoId);
m_ctx->bindVertexArray(vaoId);
m_ctx->genBuffers(1, &vertexPosBuf);
m_ctx->bindBuffer(GL_ARRAY_BUFFER, vertexPosBuf);
m_ctx->bufferData(GL_ARRAY_BUFFER, sizeof(tcu::Vec4), vertexPosData.m_data, GL_STATIC_DRAW);
m_ctx->vertexAttribPointer(attrPosLoc, 4, GL_FLOAT, GL_FALSE, 0, DE_NULL);
m_ctx->enableVertexAttribArray(attrPosLoc);
m_ctx->clearColor(0, 0, 0, 1);
m_ctx->clear(GL_COLOR_BUFFER_BIT);
m_ctx->viewport(0, 0, 1, 1);
m_ctx->useProgram(programId);
// no errors before
glu::checkError(m_ctx->getError(), "", __FILE__, __LINE__);
m_ctx->drawArrays(m_inputPrimitives, 0, 1);
errorCode = m_ctx->getError();
if (errorCode != GL_INVALID_OPERATION)
{
m_testCtx.getLog() << tcu::TestLog::Message << "Expected GL_INVALID_OPERATION, got " << glu::getErrorStr(errorCode) << tcu::TestLog::EndMessage;
m_testCtx.setTestResult(QP_TEST_RESULT_FAIL, "Got wrong error code");
}
else
{
m_testCtx.setTestResult(QP_TEST_RESULT_PASS, "Pass");
}
m_ctx->useProgram(0);
m_ctx->disableVertexAttribArray(attrPosLoc);
m_ctx->deleteBuffers(1, &vertexPosBuf);
m_ctx->deleteVertexArrays(1, &vaoId);
return STOP;
}
class OutputCountCase : public GeometryShaderRenderTest
{
public:
OutputCountCase (Context& context, const char* name, const char* desc, const OutputCountPatternSpec&);
private:
void init (void);
void deinit (void);
sglr::ShaderProgram& getProgram (void);
void genVertexAttribData (void);
const int m_primitiveCount;
OutputCountShader* m_program;
OutputCountPatternSpec m_spec;
};
OutputCountCase::OutputCountCase (Context& context, const char* name, const char* desc, const OutputCountPatternSpec& spec)
: GeometryShaderRenderTest (context, name, desc, GL_POINTS, GL_TRIANGLE_STRIP, "a_color")
, m_primitiveCount ((int)spec.pattern.size())
, m_program (DE_NULL)
, m_spec (spec)
{
}
void OutputCountCase::init (void)
{
// Check requirements and adapt to them
{
const int componentsPerVertex = 4 + 4; // vec4 pos, vec4 color
const int testVertices = *std::max_element(m_spec.pattern.begin(), m_spec.pattern.end());
glw::GLint maxVertices = 0;
glw::GLint maxComponents = 0;
// check the extension before querying anything
if (!glu::contextSupports(m_context.getRenderContext().getType(), glu::ApiType::es(3, 2)) && !m_context.getContextInfo().isExtensionSupported("GL_EXT_geometry_shader"))
TCU_THROW(NotSupportedError, "Tests require GL_EXT_geometry_shader extension or higher context version.");
m_context.getRenderContext().getFunctions().getIntegerv(GL_MAX_GEOMETRY_OUTPUT_VERTICES, &maxVertices);
m_context.getRenderContext().getFunctions().getIntegerv(GL_MAX_GEOMETRY_TOTAL_OUTPUT_COMPONENTS, &maxComponents);
m_testCtx.getLog() << tcu::TestLog::Message << "GL_MAX_GEOMETRY_OUTPUT_VERTICES = " << maxVertices << tcu::TestLog::EndMessage;
m_testCtx.getLog() << tcu::TestLog::Message << "GL_MAX_GEOMETRY_TOTAL_OUTPUT_COMPONENTS = " << maxComponents << tcu::TestLog::EndMessage;
m_testCtx.getLog() << tcu::TestLog::Message << "Components per vertex = " << componentsPerVertex << tcu::TestLog::EndMessage;
if (testVertices == -1)
{
// "max vertices"-case
DE_ASSERT((int)m_spec.pattern.size() == 1);
m_spec.pattern[0] = de::min(maxVertices, maxComponents / componentsPerVertex);
// make sure size is dividable by 2, as OutputShader requires
m_spec.pattern[0] = m_spec.pattern[0] & ~0x00000001;
if (m_spec.pattern[0] == 0)
throw tcu::InternalError("Pattern size is invalid.");
}
else
{
// normal case
if (testVertices > maxVertices)
throw tcu::NotSupportedError(de::toString(testVertices) + " output vertices required.");
if (testVertices * componentsPerVertex > maxComponents)
throw tcu::NotSupportedError(de::toString(testVertices * componentsPerVertex) + " output components required.");
}
}
// Log what the test tries to do
m_testCtx.getLog() << tcu::TestLog::Message << "Rendering " << (int)m_spec.pattern.size() << " row(s).\nOne geometry shader invocation generates one row.\nRow sizes:" << tcu::TestLog::EndMessage;
for (int ndx = 0; ndx < (int)m_spec.pattern.size(); ++ndx)
m_testCtx.getLog() << tcu::TestLog::Message << "Row " << ndx << ": " << m_spec.pattern[ndx] << " vertices." << tcu::TestLog::EndMessage;
// Gen shader
DE_ASSERT(!m_program);
m_program = new OutputCountShader(m_context.getRenderContext().getType(), m_spec);
// Case init
GeometryShaderRenderTest::init();
}
void OutputCountCase::deinit (void)
{
if (m_program)
{
delete m_program;
m_program = DE_NULL;
}
GeometryShaderRenderTest::deinit();
}
sglr::ShaderProgram& OutputCountCase::getProgram (void)
{
return *m_program;
}
void OutputCountCase::genVertexAttribData (void)
{
m_vertexPosData.resize(m_primitiveCount);
m_vertexAttrData.resize(m_primitiveCount);
for (int ndx = 0; ndx < m_primitiveCount; ++ndx)
{
m_vertexPosData[ndx] = tcu::Vec4(-1.0f, ((float)ndx) / (float)m_primitiveCount * 2.0f - 1.0f, 0.0f, 1.0f);
m_vertexAttrData[ndx] = (ndx % 2 == 0) ? tcu::Vec4(1, 1, 1, 1) : tcu::Vec4(1, 0, 0, 1);
}
m_numDrawVertices = m_primitiveCount;
}
class BuiltinVariableRenderTest : public GeometryShaderRenderTest
{
public:
BuiltinVariableRenderTest (Context& context, const char* name, const char* desc, BuiltinVariableShader::VariableTest test, int flags = 0);
private:
void init (void);
void deinit (void);
sglr::ShaderProgram& getProgram (void);
void genVertexAttribData (void);
BuiltinVariableShader* m_program;
const BuiltinVariableShader::VariableTest m_test;
};
BuiltinVariableRenderTest::BuiltinVariableRenderTest (Context& context, const char* name, const char* desc, BuiltinVariableShader::VariableTest test, int flags)
: GeometryShaderRenderTest (context, name, desc, GL_POINTS, GL_POINTS, BuiltinVariableShader::getTestAttributeName(test), flags)
, m_program (DE_NULL)
, m_test (test)
{
}
void BuiltinVariableRenderTest::init (void)
{
// Requirements
if (m_test == BuiltinVariableShader::TEST_POINT_SIZE)
{
const float requiredPointSize = 5.0f;
tcu::Vec2 range = tcu::Vec2(1.0f, 1.0f);
if (!m_context.getContextInfo().isExtensionSupported("GL_EXT_geometry_point_size"))
TCU_THROW(NotSupportedError, "Tests require GL_EXT_geometry_point_size extension.");
m_context.getRenderContext().getFunctions().getFloatv(GL_ALIASED_POINT_SIZE_RANGE, range.getPtr());
if (range.y() < requiredPointSize)
throw tcu::NotSupportedError("Test case requires point size " + de::toString(requiredPointSize));
}
m_program = new BuiltinVariableShader(m_context.getRenderContext().getType(), m_test);
// Shader init
GeometryShaderRenderTest::init();
}
void BuiltinVariableRenderTest::deinit(void)
{
if (m_program)
{
delete m_program;
m_program = DE_NULL;
}
GeometryShaderRenderTest::deinit();
}
sglr::ShaderProgram& BuiltinVariableRenderTest::getProgram (void)
{
return *m_program;
}
void BuiltinVariableRenderTest::genVertexAttribData (void)
{
m_vertexPosData.resize(4);
m_vertexPosData[0] = tcu::Vec4( 0.5f, 0.0f, 0.0f, 1.0f);
m_vertexPosData[1] = tcu::Vec4( 0.0f, 0.5f, 0.0f, 1.0f);
m_vertexPosData[2] = tcu::Vec4(-0.7f, -0.1f, 0.0f, 1.0f);
m_vertexPosData[3] = tcu::Vec4(-0.1f, -0.7f, 0.0f, 1.0f);
m_vertexAttrData.resize(4);
m_vertexAttrData[0] = tcu::Vec4(0.0f, 0.0f, 0.0f, 0.0f);
m_vertexAttrData[1] = tcu::Vec4(1.0f, 0.0f, 0.0f, 0.0f);
m_vertexAttrData[2] = tcu::Vec4(2.0f, 0.0f, 0.0f, 0.0f);
m_vertexAttrData[3] = tcu::Vec4(3.0f, 0.0f, 0.0f, 0.0f);
// Only used by primitive ID restart test
m_indices.resize(4);
m_indices[0] = 3;
m_indices[1] = 2;
m_indices[2] = 0xFFFF; // restart
m_indices[3] = 1;
m_numDrawVertices = 4;
}
class LayeredRenderCase : public TestCase
{
public:
enum LayeredRenderTargetType
{
TARGET_CUBE = 0,
TARGET_3D,
TARGET_1D_ARRAY,
TARGET_2D_ARRAY,
TARGET_2D_MS_ARRAY,
TARGET_LAST
};
enum TestType
{
TEST_DEFAULT_LAYER, // !< draw to default layer
TEST_SINGLE_LAYER, // !< draw to single layer
TEST_ALL_LAYERS, // !< draw all layers
TEST_DIFFERENT_LAYERS, // !< draw different content to different layers
TEST_INVOCATION_PER_LAYER, // !< draw to all layers, one invocation per layer
TEST_MULTIPLE_LAYERS_PER_INVOCATION, // !< draw to all layers, multiple invocations write to multiple layers
TEST_LAYER_ID, // !< draw to all layers, verify gl_Layer fragment input
TEST_LAYER_PROVOKING_VERTEX, // !< draw primitive with vertices in different layers, check which layer it was drawn to
TEST_LAST
};
LayeredRenderCase (Context& context, const char* name, const char* desc, LayeredRenderTargetType target, TestType test);
~LayeredRenderCase (void);
void init (void);
void deinit (void);
IterateResult iterate (void);
private:
void initTexture (void);
void initFbo (void);
void initRenderShader (void);
void initSamplerShader (void);
std::string genFragmentSource (const glu::ContextType& contextType) const;
std::string genGeometrySource (const glu::ContextType& contextType) const;
std::string genSamplerFragmentSource (const glu::ContextType& contextType) const;
void renderToTexture (void);
void sampleTextureLayer (tcu::Surface& dst, int layer);
bool verifyLayerContent (const tcu::Surface& layer, int layerNdx);
bool verifyImageSingleColoredRow (const tcu::Surface& layer, float rowWidthRatio, const tcu::Vec4& color, bool logging = true);
bool verifyEmptyImage (const tcu::Surface& layer, bool logging = true);
bool verifyProvokingVertexLayers (const tcu::Surface& layer0, const tcu::Surface& layer1);
static int getTargetLayers (LayeredRenderTargetType target);
static glw::GLenum getTargetTextureTarget (LayeredRenderTargetType target);
static tcu::IVec3 getTargetDimensions (LayeredRenderTargetType target);
static tcu::IVec2 getResolveDimensions (LayeredRenderTargetType target);
const LayeredRenderTargetType m_target;
const TestType m_test;
const int m_numLayers;
const int m_targetLayer;
const tcu::IVec2 m_resolveDimensions;
int m_iteration;
bool m_allLayersOk;
glw::GLuint m_texture;
glw::GLuint m_fbo;
glu::ShaderProgram* m_renderShader;
glu::ShaderProgram* m_samplerShader;
glw::GLint m_samplerSamplerLoc;
glw::GLint m_samplerLayerLoc;
glw::GLenum m_provokingVertex;
};
LayeredRenderCase::LayeredRenderCase (Context& context, const char* name, const char* desc, LayeredRenderTargetType target, TestType test)
: TestCase (context, name, desc)
, m_target (target)
, m_test (test)
, m_numLayers (getTargetLayers(target))
, m_targetLayer (m_numLayers / 2)
, m_resolveDimensions (getResolveDimensions(target))
, m_iteration (0)
, m_allLayersOk (true)
, m_texture (0)
, m_fbo (0)
, m_renderShader (DE_NULL)
, m_samplerShader (DE_NULL)
, m_samplerSamplerLoc (-1)
, m_samplerLayerLoc (-1)
, m_provokingVertex (0)
{
}
LayeredRenderCase::~LayeredRenderCase (void)
{
deinit();
}
void LayeredRenderCase::init (void)
{
// Requirements
if (!glu::contextSupports(m_context.getRenderContext().getType(), glu::ApiType::es(3, 2)) && !m_context.getContextInfo().isExtensionSupported("GL_EXT_geometry_shader"))
TCU_THROW(NotSupportedError, "Tests require GL_EXT_geometry_shader extension or higher context version.");
if (m_target == TARGET_2D_MS_ARRAY && !glu::contextSupports(m_context.getRenderContext().getType(), glu::ApiType::es(3, 2)) && !m_context.getContextInfo().isExtensionSupported("GL_OES_texture_storage_multisample_2d_array"))
TCU_THROW(NotSupportedError, "Test requires OES_texture_storage_multisample_2d_array extension or higher context version.");
if (m_context.getRenderTarget().getWidth() < m_resolveDimensions.x() || m_context.getRenderTarget().getHeight() < m_resolveDimensions.y())
throw tcu::NotSupportedError("Render target size must be at least " + de::toString(m_resolveDimensions.x()) + "x" + de::toString(m_resolveDimensions.y()));
// log what the test tries to do
if (m_test == TEST_DEFAULT_LAYER)
m_testCtx.getLog() << tcu::TestLog::Message << "Rendering to the default layer." << tcu::TestLog::EndMessage;
else if (m_test == TEST_SINGLE_LAYER)
m_testCtx.getLog() << tcu::TestLog::Message << "Rendering to a single layer." << tcu::TestLog::EndMessage;
else if (m_test == TEST_ALL_LAYERS)
m_testCtx.getLog() << tcu::TestLog::Message << "Rendering to all layers." << tcu::TestLog::EndMessage;
else if (m_test == TEST_DIFFERENT_LAYERS)
m_testCtx.getLog() << tcu::TestLog::Message << "Outputting different number of vertices to each layer." << tcu::TestLog::EndMessage;
else if (m_test == TEST_INVOCATION_PER_LAYER)
m_testCtx.getLog() << tcu::TestLog::Message << "Using a different invocation to output to each layer." << tcu::TestLog::EndMessage;
else if (m_test == TEST_MULTIPLE_LAYERS_PER_INVOCATION)
m_testCtx.getLog() << tcu::TestLog::Message << "Outputting to each layer from multiple invocations." << tcu::TestLog::EndMessage;
else if (m_test == TEST_LAYER_ID)
m_testCtx.getLog() << tcu::TestLog::Message << "Using gl_Layer in fragment shader." << tcu::TestLog::EndMessage;
else if (m_test == TEST_LAYER_PROVOKING_VERTEX)
m_testCtx.getLog() << tcu::TestLog::Message << "Verifying LAYER_PROVOKING_VERTEX." << tcu::TestLog::EndMessage;
else
DE_ASSERT(false);
// init resources
initTexture();
initFbo();
initRenderShader();
initSamplerShader();
}
void LayeredRenderCase::deinit (void)
{
if (m_texture)
{
m_context.getRenderContext().getFunctions().deleteTextures(1, &m_texture);
m_texture = 0;
}
if (m_fbo)
{
m_context.getRenderContext().getFunctions().deleteFramebuffers(1, &m_fbo);
m_fbo = 0;
}
delete m_renderShader;
delete m_samplerShader;
m_renderShader = DE_NULL;
m_samplerShader = DE_NULL;
}
LayeredRenderCase::IterateResult LayeredRenderCase::iterate (void)
{
++m_iteration;
if (m_iteration == 1)
{
if (m_test == TEST_LAYER_PROVOKING_VERTEX)
{
// which layer the implementation claims to render to
gls::StateQueryUtil::StateQueryMemoryWriteGuard<glw::GLint> state;
m_context.getRenderContext().getFunctions().getIntegerv(GL_LAYER_PROVOKING_VERTEX, &state);
GLU_EXPECT_NO_ERROR(m_context.getRenderContext().getFunctions().getError(), "getInteger(GL_LAYER_PROVOKING_VERTEX)");
if (!state.verifyValidity(m_testCtx))
return STOP;
m_testCtx.getLog() << tcu::TestLog::Message << "GL_LAYER_PROVOKING_VERTEX = " << glu::getProvokingVertexStr(state) << tcu::TestLog::EndMessage;
if (state != GL_FIRST_VERTEX_CONVENTION &&
state != GL_LAST_VERTEX_CONVENTION &&
state != GL_UNDEFINED_VERTEX)
{
m_testCtx.getLog() << tcu::TestLog::Message << "getInteger(GL_LAYER_PROVOKING_VERTEX) returned illegal value. Got " << state << tcu::TestLog::EndMessage;
m_testCtx.setTestResult(QP_TEST_RESULT_FAIL, "got unexpected provoking vertex value");
return STOP;
}
m_provokingVertex = (glw::GLenum)state;
}
// render to texture
{
const tcu::ScopedLogSection section(m_testCtx.getLog(), "RenderToTexture", "Render to layered texture");
// render to layered texture with the geometry shader
renderToTexture();
}
return CONTINUE;
}
else if (m_test == TEST_LAYER_PROVOKING_VERTEX && m_provokingVertex == GL_UNDEFINED_VERTEX)
{
// Verification requires information from another layers, layers not independent
{
const tcu::ScopedLogSection section (m_testCtx.getLog(), "VerifyLayers", "Verify layers 0 and 1");
tcu::Surface layer0 (m_resolveDimensions.x(), m_resolveDimensions.y());
tcu::Surface layer1 (m_resolveDimensions.x(), m_resolveDimensions.y());
// sample layer to frame buffer
sampleTextureLayer(layer0, 0);
sampleTextureLayer(layer1, 1);
m_allLayersOk &= verifyProvokingVertexLayers(layer0, layer1);
}
// Other layers empty
for (int layerNdx = 2; layerNdx < m_numLayers; ++layerNdx)
{
const tcu::ScopedLogSection section (m_testCtx.getLog(), "VerifyLayer", "Verify layer " + de::toString(layerNdx));
tcu::Surface layer (m_resolveDimensions.x(), m_resolveDimensions.y());
// sample layer to frame buffer
sampleTextureLayer(layer, layerNdx);
// verify
m_allLayersOk &= verifyEmptyImage(layer);
}
}
else
{
// Layers independent
const int layerNdx = m_iteration - 2;
const tcu::ScopedLogSection section (m_testCtx.getLog(), "VerifyLayer", "Verify layer " + de::toString(layerNdx));
tcu::Surface layer (m_resolveDimensions.x(), m_resolveDimensions.y());
// sample layer to frame buffer
sampleTextureLayer(layer, layerNdx);
// verify
m_allLayersOk &= verifyLayerContent(layer, layerNdx);
if (layerNdx < m_numLayers-1)
return CONTINUE;
}
// last iteration
if (m_allLayersOk)
m_testCtx.setTestResult(QP_TEST_RESULT_PASS, "Pass");
else
m_testCtx.setTestResult(QP_TEST_RESULT_FAIL, "Detected invalid layer content");
return STOP;
}
void LayeredRenderCase::initTexture (void)
{
DE_ASSERT(!m_texture);
const glw::Functions& gl = m_context.getRenderContext().getFunctions();
const tcu::IVec3 texSize = getTargetDimensions(m_target);
const tcu::TextureFormat texFormat = glu::mapGLInternalFormat(GL_RGBA8);
const glu::TransferFormat transferFormat = glu::getTransferFormat(texFormat);
gl.genTextures(1, &m_texture);
GLU_EXPECT_NO_ERROR(gl.getError(), "gen texture");
switch (m_target)
{
case TARGET_CUBE:
m_testCtx.getLog() << tcu::TestLog::Message << "Creating cubemap texture, size = " << texSize.x() << "x" << texSize.y() << tcu::TestLog::EndMessage;
gl.bindTexture(GL_TEXTURE_CUBE_MAP, m_texture);
gl.texImage2D(GL_TEXTURE_CUBE_MAP_POSITIVE_X, 0, GL_RGBA8, texSize.x(), texSize.y(), 0, transferFormat.format, transferFormat.dataType, DE_NULL);
gl.texImage2D(GL_TEXTURE_CUBE_MAP_NEGATIVE_X, 0, GL_RGBA8, texSize.x(), texSize.y(), 0, transferFormat.format, transferFormat.dataType, DE_NULL);
gl.texImage2D(GL_TEXTURE_CUBE_MAP_POSITIVE_Y, 0, GL_RGBA8, texSize.x(), texSize.y(), 0, transferFormat.format, transferFormat.dataType, DE_NULL);
gl.texImage2D(GL_TEXTURE_CUBE_MAP_NEGATIVE_Y, 0, GL_RGBA8, texSize.x(), texSize.y(), 0, transferFormat.format, transferFormat.dataType, DE_NULL);
gl.texImage2D(GL_TEXTURE_CUBE_MAP_POSITIVE_Z, 0, GL_RGBA8, texSize.x(), texSize.y(), 0, transferFormat.format, transferFormat.dataType, DE_NULL);
gl.texImage2D(GL_TEXTURE_CUBE_MAP_NEGATIVE_Z, 0, GL_RGBA8, texSize.x(), texSize.y(), 0, transferFormat.format, transferFormat.dataType, DE_NULL);
break;
case TARGET_3D:
m_testCtx.getLog() << tcu::TestLog::Message << "Creating 3d texture, size = " << texSize.x() << "x" << texSize.y() << "x" << texSize.z() << tcu::TestLog::EndMessage;
gl.bindTexture(GL_TEXTURE_3D, m_texture);
gl.texImage3D(GL_TEXTURE_3D, 0, GL_RGBA8, texSize.x(), texSize.y(), texSize.z(), 0, transferFormat.format, transferFormat.dataType, DE_NULL);
break;
case TARGET_1D_ARRAY:
m_testCtx.getLog() << tcu::TestLog::Message << "Creating 1d texture array, size = " << texSize.x() << ", layers = " << texSize.y() << tcu::TestLog::EndMessage;
gl.bindTexture(GL_TEXTURE_1D_ARRAY, m_texture);
gl.texImage2D(GL_TEXTURE_1D_ARRAY, 0, GL_RGBA8, texSize.x(), texSize.y(), 0, transferFormat.format, transferFormat.dataType, DE_NULL);
break;
case TARGET_2D_ARRAY:
m_testCtx.getLog() << tcu::TestLog::Message << "Creating 2d texture array, size = " << texSize.x() << "x" << texSize.y() << ", layers = " << texSize.z() << tcu::TestLog::EndMessage;
gl.bindTexture(GL_TEXTURE_2D_ARRAY, m_texture);
gl.texImage3D(GL_TEXTURE_2D_ARRAY, 0, GL_RGBA8, texSize.x(), texSize.y(), texSize.z(), 0, transferFormat.format, transferFormat.dataType, DE_NULL);
break;
case TARGET_2D_MS_ARRAY:
{
const int numSamples = 2;
int maxSamples = 0;
gl.getIntegerv(GL_MAX_COLOR_TEXTURE_SAMPLES, &maxSamples);
m_testCtx.getLog() << tcu::TestLog::Message << "Creating 2d multisample texture array, size = " << texSize.x() << "x" << texSize.y() << ", layers = " << texSize.z() << ", samples = " << numSamples << tcu::TestLog::EndMessage;
if (numSamples > maxSamples)
throw tcu::NotSupportedError("Test requires " + de::toString(numSamples) + " color texture samples." );
gl.bindTexture(GL_TEXTURE_2D_MULTISAMPLE_ARRAY, m_texture);
gl.texStorage3DMultisample(GL_TEXTURE_2D_MULTISAMPLE_ARRAY, numSamples, GL_RGBA8, texSize.x(), texSize.y(), texSize.z(), GL_TRUE);
break;
}
default:
DE_ASSERT(DE_FALSE);
}
GLU_EXPECT_NO_ERROR(gl.getError(), "tex image");
// Multisample textures don't use filters
if (getTargetTextureTarget(m_target) != GL_TEXTURE_2D_MULTISAMPLE_ARRAY)
{
gl.texParameteri(getTargetTextureTarget(m_target), GL_TEXTURE_MAG_FILTER, GL_NEAREST);
gl.texParameteri(getTargetTextureTarget(m_target), GL_TEXTURE_MIN_FILTER, GL_NEAREST);
gl.texParameteri(getTargetTextureTarget(m_target), GL_TEXTURE_WRAP_S, GL_REPEAT);
gl.texParameteri(getTargetTextureTarget(m_target), GL_TEXTURE_WRAP_T, GL_REPEAT);
gl.texParameteri(getTargetTextureTarget(m_target), GL_TEXTURE_WRAP_R, GL_REPEAT);
GLU_EXPECT_NO_ERROR(gl.getError(), "tex filter");
}
}
void LayeredRenderCase::initFbo (void)
{
DE_ASSERT(!m_fbo);
const glw::Functions& gl = m_context.getRenderContext().getFunctions();
m_testCtx.getLog() << tcu::TestLog::Message << "Creating FBO" << tcu::TestLog::EndMessage;
gl.genFramebuffers(1, &m_fbo);
gl.bindFramebuffer(GL_FRAMEBUFFER, m_fbo);
gl.framebufferTexture(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, m_texture, 0);
gl.bindFramebuffer(GL_FRAMEBUFFER, 0);
GLU_EXPECT_NO_ERROR(gl.getError(), "setup fbo");
}
void LayeredRenderCase::initRenderShader (void)
{
const tcu::ScopedLogSection section(m_testCtx.getLog(), "RenderToTextureShader", "Create layered rendering shader program");
static const char* const positionVertex = "${GLSL_VERSION_DECL}\n"
"void main (void)\n"
"{\n"
" gl_Position = vec4(0.0, 0.0, 0.0, 1.0);\n"
"}\n";
m_renderShader = new glu::ShaderProgram(m_context.getRenderContext(), glu::ProgramSources()
<< glu::VertexSource(specializeShader(positionVertex, m_context.getRenderContext().getType()))
<< glu::FragmentSource(genFragmentSource(m_context.getRenderContext().getType()))
<< glu::GeometrySource(genGeometrySource(m_context.getRenderContext().getType())));
m_testCtx.getLog() << *m_renderShader;
if (!m_renderShader->isOk())
throw tcu::TestError("failed to build render shader");
}
void LayeredRenderCase::initSamplerShader (void)
{
const tcu::ScopedLogSection section(m_testCtx.getLog(), "TextureSamplerShader", "Create shader sampler program");
static const char* const positionVertex = "${GLSL_VERSION_DECL}\n"
"in highp vec4 a_position;\n"
"void main (void)\n"
"{\n"
" gl_Position = a_position;\n"
"}\n";
m_samplerShader = new glu::ShaderProgram(m_context.getRenderContext(), glu::ProgramSources()
<< glu::VertexSource(specializeShader(positionVertex, m_context.getRenderContext().getType()))
<< glu::FragmentSource(genSamplerFragmentSource(m_context.getRenderContext().getType())));
m_testCtx.getLog() << *m_samplerShader;
if (!m_samplerShader->isOk())
throw tcu::TestError("failed to build sampler shader");
m_samplerSamplerLoc = m_context.getRenderContext().getFunctions().getUniformLocation(m_samplerShader->getProgram(), "u_sampler");
if (m_samplerSamplerLoc == -1)
throw tcu::TestError("u_sampler uniform location = -1");
m_samplerLayerLoc = m_context.getRenderContext().getFunctions().getUniformLocation(m_samplerShader->getProgram(), "u_layer");
if (m_samplerLayerLoc == -1)
throw tcu::TestError("u_layer uniform location = -1");
}
std::string LayeredRenderCase::genFragmentSource (const glu::ContextType& contextType) const
{
static const char* const fragmentLayerIdShader = "${GLSL_VERSION_DECL}\n"
"${GLSL_EXT_GEOMETRY_SHADER}"
"layout(location = 0) out mediump vec4 fragColor;\n"
"void main (void)\n"
"{\n"
" fragColor = vec4(((gl_Layer % 2) == 1) ? 1.0 : 0.5,\n"
" (((gl_Layer / 2) % 2) == 1) ? 1.0 : 0.5,\n"
" (gl_Layer == 0) ? 1.0 : 0.0,\n"
" 1.0);\n"
"}\n";
if (m_test != TEST_LAYER_ID)
return specializeShader(s_commonShaderSourceFragment, contextType);
else
return specializeShader(fragmentLayerIdShader, contextType);
}
std::string LayeredRenderCase::genGeometrySource (const glu::ContextType& contextType) const
{
// TEST_DIFFERENT_LAYERS: draw 0 quad to first layer, 1 to second, etc.
// TEST_ALL_LAYERS: draw 1 quad to all layers
// TEST_MULTIPLE_LAYERS_PER_INVOCATION: draw 1 triangle to "current layer" and 1 triangle to another layer
// else: draw 1 quad to some single layer
const int maxVertices = (m_test == TEST_DIFFERENT_LAYERS) ? ((2 + m_numLayers-1) * m_numLayers) :
(m_test == TEST_ALL_LAYERS || m_test == TEST_LAYER_ID) ? (m_numLayers * 4) :
(m_test == TEST_MULTIPLE_LAYERS_PER_INVOCATION) ? (6) :
(m_test == TEST_LAYER_PROVOKING_VERTEX) ? (6) :
(4);
std::ostringstream buf;
buf << "${GLSL_VERSION_DECL}\n"
"${GLSL_EXT_GEOMETRY_SHADER}";
if (m_test == TEST_INVOCATION_PER_LAYER || m_test == TEST_MULTIPLE_LAYERS_PER_INVOCATION)
buf << "layout(points, invocations=" << m_numLayers << ") in;\n";
else
buf << "layout(points) in;\n";
buf << "layout(triangle_strip, max_vertices = " << maxVertices << ") out;\n"
"out highp vec4 v_frag_FragColor;\n"
"\n"
"void main (void)\n"
"{\n";
if (m_test == TEST_DEFAULT_LAYER)
{
buf << " const highp vec4 white = vec4(1.0, 1.0, 1.0, 1.0);\n\n"
" gl_Position = vec4(-1.0, -1.0, 0.0, 1.0);\n"
" v_frag_FragColor = white;\n"
" EmitVertex();\n\n"
" gl_Position = vec4(-1.0, 1.0, 0.0, 1.0);\n"
" v_frag_FragColor = white;\n"
" EmitVertex();\n\n"
" gl_Position = vec4( 0.0, -1.0, 0.0, 1.0);\n"
" v_frag_FragColor = white;\n"
" EmitVertex();\n\n"
" gl_Position = vec4( 0.0, 1.0, 0.0, 1.0);\n"
" v_frag_FragColor = white;\n"
" EmitVertex();\n";
}
else if (m_test == TEST_SINGLE_LAYER)
{
buf << " const highp vec4 white = vec4(1.0, 1.0, 1.0, 1.0);\n\n"
" gl_Position = vec4(-1.0, -1.0, 0.0, 1.0);\n"
" gl_Layer = " << m_targetLayer << ";\n"
" v_frag_FragColor = white;\n"
" EmitVertex();\n\n"
" gl_Position = vec4(-1.0, 1.0, 0.0, 1.0);\n"
" gl_Layer = " << m_targetLayer << ";\n"
" v_frag_FragColor = white;\n"
" EmitVertex();\n\n"
" gl_Position = vec4( 0.0, -1.0, 0.0, 1.0);\n"
" gl_Layer = " << m_targetLayer << ";\n"
" v_frag_FragColor = white;\n"
" EmitVertex();\n\n"
" gl_Position = vec4( 0.0, 1.0, 0.0, 1.0);\n"
" gl_Layer = " << m_targetLayer << ";\n"
" v_frag_FragColor = white;\n"
" EmitVertex();\n";
}
else if (m_test == TEST_ALL_LAYERS || m_test == TEST_LAYER_ID)
{
DE_ASSERT(m_numLayers <= 6);
buf << " const highp vec4 white = vec4(1.0, 1.0, 1.0, 1.0);\n"
" const highp vec4 red = vec4(1.0, 0.0, 0.0, 1.0);\n"
" const highp vec4 green = vec4(0.0, 1.0, 0.0, 1.0);\n"
" const highp vec4 blue = vec4(0.0, 0.0, 1.0, 1.0);\n"
" const highp vec4 yellow = vec4(1.0, 1.0, 0.0, 1.0);\n"
" const highp vec4 magenta = vec4(1.0, 0.0, 1.0, 1.0);\n"
" const highp vec4 colors[6] = vec4[6](white, red, green, blue, yellow, magenta);\n\n"
" for (mediump int layerNdx = 0; layerNdx < " << m_numLayers << "; ++layerNdx)\n"
" {\n"
" gl_Position = vec4(-1.0, -1.0, 0.0, 1.0);\n"
" gl_Layer = layerNdx;\n"
" v_frag_FragColor = colors[layerNdx];\n"
" EmitVertex();\n\n"
" gl_Position = vec4(-1.0, 1.0, 0.0, 1.0);\n"
" gl_Layer = layerNdx;\n"
" v_frag_FragColor = colors[layerNdx];\n"
" EmitVertex();\n\n"
" gl_Position = vec4( 0.0, -1.0, 0.0, 1.0);\n"
" gl_Layer = layerNdx;\n"
" v_frag_FragColor = colors[layerNdx];\n"
" EmitVertex();\n\n"
" gl_Position = vec4( 0.0, 1.0, 0.0, 1.0);\n"
" gl_Layer = layerNdx;\n"
" v_frag_FragColor = colors[layerNdx];\n"
" EmitVertex();\n"
" EndPrimitive();\n"
" }\n";
}
else if (m_test == TEST_DIFFERENT_LAYERS)
{
DE_ASSERT(m_numLayers <= 6);
buf << " const highp vec4 white = vec4(1.0, 1.0, 1.0, 1.0);\n\n"
" for (mediump int layerNdx = 0; layerNdx < " << m_numLayers << "; ++layerNdx)\n"
" {\n"
" for (mediump int colNdx = 0; colNdx <= layerNdx; ++colNdx)\n"
" {\n"
" highp float posX = float(colNdx) / float(" << m_numLayers << ") * 2.0 - 1.0;\n\n"
" gl_Position = vec4(posX, 1.0, 0.0, 1.0);\n"
" gl_Layer = layerNdx;\n"
" v_frag_FragColor = white;\n"
" EmitVertex();\n\n"
" gl_Position = vec4(posX, -1.0, 0.0, 1.0);\n"
" gl_Layer = layerNdx;\n"
" v_frag_FragColor = white;\n"
" EmitVertex();\n"
" }\n"
" EndPrimitive();\n"
" }\n";
}
else if (m_test == TEST_INVOCATION_PER_LAYER)
{
buf << " const highp vec4 white = vec4(1.0, 1.0, 1.0, 1.0);\n"
" const highp vec4 red = vec4(1.0, 0.0, 0.0, 1.0);\n"
" const highp vec4 green = vec4(0.0, 1.0, 0.0, 1.0);\n"
" const highp vec4 blue = vec4(0.0, 0.0, 1.0, 1.0);\n"
" const highp vec4 yellow = vec4(1.0, 1.0, 0.0, 1.0);\n"
" const highp vec4 magenta = vec4(1.0, 0.0, 1.0, 1.0);\n"
" const highp vec4 colors[6] = vec4[6](white, red, green, blue, yellow, magenta);\n"
"\n"
" gl_Position = vec4(-1.0, -1.0, 0.0, 1.0);\n"
" gl_Layer = gl_InvocationID;\n"
" v_frag_FragColor = colors[gl_InvocationID];\n"
" EmitVertex();\n\n"
" gl_Position = vec4(-1.0, 1.0, 0.0, 1.0);\n"
" gl_Layer = gl_InvocationID;\n"
" v_frag_FragColor = colors[gl_InvocationID];\n"
" EmitVertex();\n\n"
" gl_Position = vec4( 0.0, -1.0, 0.0, 1.0);\n"
" gl_Layer = gl_InvocationID;\n"
" v_frag_FragColor = colors[gl_InvocationID];\n"
" EmitVertex();\n\n"
" gl_Position = vec4( 0.0, 1.0, 0.0, 1.0);\n"
" gl_Layer = gl_InvocationID;\n"
" v_frag_FragColor = colors[gl_InvocationID];\n"
" EmitVertex();\n"
" EndPrimitive();\n";
}
else if (m_test == TEST_MULTIPLE_LAYERS_PER_INVOCATION)
{
buf << " const highp vec4 white = vec4(1.0, 1.0, 1.0, 1.0);\n"
"\n"
" mediump int layerA = gl_InvocationID;\n"
" mediump int layerB = (gl_InvocationID + 1) % " << m_numLayers << ";\n"
" highp float aEnd = float(layerA) / float(" << m_numLayers << ") * 2.0 - 1.0;\n"
" highp float bEnd = float(layerB) / float(" << m_numLayers << ") * 2.0 - 1.0;\n"
"\n"
" gl_Position = vec4(-1.0, -1.0, 0.0, 1.0);\n"
" gl_Layer = layerA;\n"
" v_frag_FragColor = white;\n"
" EmitVertex();\n\n"
" gl_Position = vec4(-1.0, 1.0, 0.0, 1.0);\n"
" gl_Layer = layerA;\n"
" v_frag_FragColor = white;\n"
" EmitVertex();\n\n"
" gl_Position = vec4(aEnd, -1.0, 0.0, 1.0);\n"
" gl_Layer = layerA;\n"
" v_frag_FragColor = white;\n"
" EmitVertex();\n\n"
" EndPrimitive();\n"
"\n"
" gl_Position = vec4(-1.0, 1.0, 0.0, 1.0);\n"
" gl_Layer = layerB;\n"
" v_frag_FragColor = white;\n"
" EmitVertex();\n\n"
" gl_Position = vec4(bEnd, 1.0, 0.0, 1.0);\n"
" gl_Layer = layerB;\n"
" v_frag_FragColor = white;\n"
" EmitVertex();\n\n"
" gl_Position = vec4(bEnd, -1.0, 0.0, 1.0);\n"
" gl_Layer = layerB;\n"
" v_frag_FragColor = white;\n"
" EmitVertex();\n\n"
" EndPrimitive();\n";
}
else if (m_test == TEST_LAYER_PROVOKING_VERTEX)
{
buf << " const highp vec4 white = vec4(1.0, 1.0, 1.0, 1.0);\n\n"
" gl_Position = vec4(-1.0, -1.0, 0.0, 1.0);\n"
" gl_Layer = 0;\n"
" v_frag_FragColor = white;\n"
" EmitVertex();\n\n"
" gl_Position = vec4(-1.0, 1.0, 0.0, 1.0);\n"
" gl_Layer = 1;\n"
" v_frag_FragColor = white;\n"
" EmitVertex();\n\n"
" gl_Position = vec4( 0.0, -1.0, 0.0, 1.0);\n"
" gl_Layer = 1;\n"
" v_frag_FragColor = white;\n"
" EmitVertex();\n\n"
" EndPrimitive();\n\n"
" gl_Position = vec4(-1.0, 1.0, 0.0, 1.0);\n"
" gl_Layer = 0;\n"
" v_frag_FragColor = white;\n"
" EmitVertex();\n\n"
" gl_Position = vec4( 0.0, -1.0, 0.0, 1.0);\n"
" gl_Layer = 1;\n"
" v_frag_FragColor = white;\n"
" EmitVertex();\n\n"
" gl_Position = vec4( 0.0, 1.0, 0.0, 1.0);\n"
" gl_Layer = 1;\n"
" v_frag_FragColor = white;\n"
" EmitVertex();\n";
}
else
DE_ASSERT(DE_FALSE);
buf << "}\n";
return specializeShader(buf.str(), contextType);
}
std::string LayeredRenderCase::genSamplerFragmentSource (const glu::ContextType& contextType) const
{
std::ostringstream buf;
buf << "${GLSL_VERSION_DECL}\n";
if (m_target == TARGET_2D_MS_ARRAY)
buf << "${GLSL_OES_TEXTURE_STORAGE_MULTISAMPLE}";
buf << "layout(location = 0) out mediump vec4 fragColor;\n";
switch (m_target)
{
case TARGET_CUBE: buf << "uniform highp samplerCube u_sampler;\n"; break;
case TARGET_3D: buf << "uniform highp sampler3D u_sampler;\n"; break;
case TARGET_2D_ARRAY: buf << "uniform highp sampler2DArray u_sampler;\n"; break;
case TARGET_1D_ARRAY: buf << "uniform highp sampler1DArray u_sampler;\n"; break;
case TARGET_2D_MS_ARRAY: buf << "uniform highp sampler2DMSArray u_sampler;\n"; break;
default:
DE_ASSERT(DE_FALSE);
}
buf << "uniform highp int u_layer;\n"
"void main (void)\n"
"{\n";
switch (m_target)
{
case TARGET_CUBE:
buf << " highp vec2 facepos = 2.0 * gl_FragCoord.xy / vec2(ivec2(" << m_resolveDimensions.x() << ", " << m_resolveDimensions.y() << ")) - vec2(1.0, 1.0);\n"
" if (u_layer == 0)\n"
" fragColor = textureLod(u_sampler, vec3(1.0, -facepos.y, -facepos.x), 0.0);\n"
" else if (u_layer == 1)\n"
" fragColor = textureLod(u_sampler, vec3(-1.0, -facepos.y, facepos.x), 0.0);\n"
" else if (u_layer == 2)\n"
" fragColor = textureLod(u_sampler, vec3(facepos.x, 1.0, facepos.y), 0.0);\n"
" else if (u_layer == 3)\n"
" fragColor = textureLod(u_sampler, vec3(facepos.x, -1.0, -facepos.y), 0.0);\n"
" else if (u_layer == 4)\n"
" fragColor = textureLod(u_sampler, vec3(facepos.x, -facepos.y, 1.0), 0.0);\n"
" else if (u_layer == 5)\n"
" fragColor = textureLod(u_sampler, vec3(-facepos.x, -facepos.y, -1.0), 0.0);\n"
" else\n"
" fragColor = vec4(1.0, 0.0, 1.0, 1.0);\n";
break;
case TARGET_3D:
case TARGET_2D_ARRAY:
case TARGET_2D_MS_ARRAY:
buf << " highp ivec2 screenpos = ivec2(floor(gl_FragCoord.xy));\n"
" fragColor = texelFetch(u_sampler, ivec3(screenpos, u_layer), 0);\n";
break;
case TARGET_1D_ARRAY:
buf << " highp ivec2 screenpos = ivec2(floor(gl_FragCoord.xy));\n"
" fragColor = texelFetch(u_sampler, ivec2(screenpos.x, u_layer), 0);\n";
break;
default:
DE_ASSERT(DE_FALSE);
}
buf << "}\n";
return specializeShader(buf.str(), contextType);
}
void LayeredRenderCase::renderToTexture (void)
{
const tcu::IVec3 texSize = getTargetDimensions(m_target);
const glw::Functions& gl = m_context.getRenderContext().getFunctions();
glu::VertexArray vao (m_context.getRenderContext());
m_testCtx.getLog() << tcu::TestLog::Message << "Rendering to texture" << tcu::TestLog::EndMessage;
gl.bindFramebuffer(GL_FRAMEBUFFER, m_fbo);
gl.clearColor(0.0f, 0.0f, 0.0f, 1.0f);
gl.clear(GL_COLOR_BUFFER_BIT);
gl.viewport(0, 0, texSize.x(), texSize.y());
gl.clear(GL_COLOR_BUFFER_BIT);
gl.bindVertexArray(*vao);
gl.useProgram(m_renderShader->getProgram());
gl.drawArrays(GL_POINTS, 0, 1);
gl.useProgram(0);
gl.bindVertexArray(0);
gl.bindFramebuffer(GL_FRAMEBUFFER, 0);
GLU_EXPECT_NO_ERROR(gl.getError(), "render");
}
void LayeredRenderCase::sampleTextureLayer (tcu::Surface& dst, int layer)
{
DE_ASSERT(dst.getWidth() == m_resolveDimensions.x());
DE_ASSERT(dst.getHeight() == m_resolveDimensions.y());
static const tcu::Vec4 fullscreenQuad[4] =
{
tcu::Vec4(-1.0f, -1.0f, 0.0f, 1.0f),
tcu::Vec4(-1.0f, 1.0f, 0.0f, 1.0f),
tcu::Vec4( 1.0f, -1.0f, 0.0f, 1.0f),
tcu::Vec4( 1.0f, 1.0f, 0.0f, 1.0f),
};
const glw::Functions& gl = m_context.getRenderContext().getFunctions();
const int positionLoc = gl.getAttribLocation(m_samplerShader->getProgram(), "a_position");
glu::VertexArray vao (m_context.getRenderContext());
glu::Buffer buf (m_context.getRenderContext());
m_testCtx.getLog() << tcu::TestLog::Message << "Sampling from texture layer " << layer << tcu::TestLog::EndMessage;
gl.clearColor(0.0f, 0.0f, 0.0f, 1.0f);
gl.clear(GL_COLOR_BUFFER_BIT);
gl.viewport(0, 0, m_resolveDimensions.x(), m_resolveDimensions.y());
GLU_EXPECT_NO_ERROR(gl.getError(), "clear");
gl.bindBuffer(GL_ARRAY_BUFFER, *buf);
gl.bufferData(GL_ARRAY_BUFFER, sizeof(fullscreenQuad), fullscreenQuad, GL_STATIC_DRAW);
GLU_EXPECT_NO_ERROR(gl.getError(), "buf");
gl.bindVertexArray(*vao);
gl.vertexAttribPointer(positionLoc, 4, GL_FLOAT, GL_FALSE, 0, DE_NULL);
gl.enableVertexAttribArray(positionLoc);
GLU_EXPECT_NO_ERROR(gl.getError(), "setup attribs");
gl.activeTexture(GL_TEXTURE0);
gl.bindTexture(getTargetTextureTarget(m_target), m_texture);
GLU_EXPECT_NO_ERROR(gl.getError(), "bind texture");
gl.useProgram(m_samplerShader->getProgram());
gl.uniform1i(m_samplerLayerLoc, layer);
gl.uniform1i(m_samplerSamplerLoc, 0);
GLU_EXPECT_NO_ERROR(gl.getError(), "setup program");
gl.drawArrays(GL_TRIANGLE_STRIP, 0, 4);
GLU_EXPECT_NO_ERROR(gl.getError(), "draw");
gl.useProgram(0);
gl.bindVertexArray(0);
GLU_EXPECT_NO_ERROR(gl.getError(), "clean");
glu::readPixels(m_context.getRenderContext(), 0, 0, dst.getAccess());
}
bool LayeredRenderCase::verifyLayerContent (const tcu::Surface& layer, int layerNdx)
{
const tcu::Vec4 white = tcu::Vec4(1.0f, 1.0f, 1.0f, 1.0f);
const tcu::Vec4 red = tcu::Vec4(1.0f, 0.0f, 0.0f, 1.0f);
const tcu::Vec4 green = tcu::Vec4(0.0f, 1.0f, 0.0f, 1.0f);
const tcu::Vec4 blue = tcu::Vec4(0.0f, 0.0f, 1.0f, 1.0f);
const tcu::Vec4 yellow = tcu::Vec4(1.0f, 1.0f, 0.0f, 1.0f);
const tcu::Vec4 magenta = tcu::Vec4(1.0f, 0.0f, 1.0f, 1.0f);
const tcu::Vec4 colors[6] = { white, red, green, blue, yellow, magenta };
m_testCtx.getLog() << tcu::TestLog::Message << "Verifying layer contents" << tcu::TestLog::EndMessage;
switch (m_test)
{
case TEST_DEFAULT_LAYER:
if (layerNdx == 0)
return verifyImageSingleColoredRow(layer, 0.5f, white);
else
return verifyEmptyImage(layer);
case TEST_SINGLE_LAYER:
if (layerNdx == m_targetLayer)
return verifyImageSingleColoredRow(layer, 0.5f, white);
else
return verifyEmptyImage(layer);
case TEST_ALL_LAYERS:
case TEST_INVOCATION_PER_LAYER:
return verifyImageSingleColoredRow(layer, 0.5f, colors[layerNdx]);
case TEST_DIFFERENT_LAYERS:
case TEST_MULTIPLE_LAYERS_PER_INVOCATION:
if (layerNdx == 0)
return verifyEmptyImage(layer);
else
return verifyImageSingleColoredRow(layer, (float)layerNdx / (float)m_numLayers, white);
case TEST_LAYER_ID:
{
const tcu::Vec4 layerColor((layerNdx % 2 == 1) ? (1.0f) : (0.5f),
((layerNdx/2) % 2 == 1) ? (1.0f) : (0.5f),
(layerNdx == 0) ? (1.0f) : (0.0f),
1.0f);
return verifyImageSingleColoredRow(layer, 0.5f, layerColor);
}
case TEST_LAYER_PROVOKING_VERTEX:
if (m_provokingVertex == GL_FIRST_VERTEX_CONVENTION)
{
if (layerNdx == 0)
return verifyImageSingleColoredRow(layer, 0.5f, white);
else
return verifyEmptyImage(layer);
}
else if (m_provokingVertex == GL_LAST_VERTEX_CONVENTION)
{
if (layerNdx == 1)
return verifyImageSingleColoredRow(layer, 0.5f, white);
else
return verifyEmptyImage(layer);
}
else
{
DE_ASSERT(false);
return false;
}
default:
DE_ASSERT(DE_FALSE);
return false;
};
}
bool LayeredRenderCase::verifyImageSingleColoredRow (const tcu::Surface& layer, float rowWidthRatio, const tcu::Vec4& barColor, bool logging)
{
DE_ASSERT(rowWidthRatio > 0.0f);
const int barLength = (int)(rowWidthRatio * (float)layer.getWidth());
const int barLengthThreshold = 1;
tcu::Surface errorMask (layer.getWidth(), layer.getHeight());
bool allPixelsOk = true;
if (logging)
m_testCtx.getLog() << tcu::TestLog::Message << "Expecting all pixels with distance less or equal to (about) " << barLength << " pixels from left border to be of color " << barColor.swizzle(0,1,2) << "." << tcu::TestLog::EndMessage;
tcu::clear(errorMask.getAccess(), tcu::RGBA::green().toIVec());
for (int y = 0; y < layer.getHeight(); ++y)
for (int x = 0; x < layer.getWidth(); ++x)
{
const tcu::RGBA color = layer.getPixel(x, y);
const tcu::RGBA refColor = tcu::RGBA(barColor);
const int threshold = 8;
const bool isBlack = color.getRed() <= threshold || color.getGreen() <= threshold || color.getBlue() <= threshold;
const bool isColor = tcu::allEqual(tcu::lessThan(tcu::abs(color.toIVec().swizzle(0, 1, 2) - refColor.toIVec().swizzle(0, 1, 2)), tcu::IVec3(threshold, threshold, threshold)), tcu::BVec3(true, true, true));
bool isOk;
if (x <= barLength - barLengthThreshold)
isOk = isColor;
else if (x >= barLength + barLengthThreshold)
isOk = isBlack;
else
isOk = isColor || isBlack;
allPixelsOk &= isOk;
if (!isOk)
errorMask.setPixel(x, y, tcu::RGBA::red());
}
if (allPixelsOk)
{
if (logging)
m_testCtx.getLog() << tcu::TestLog::Message << "Image is valid." << tcu::TestLog::EndMessage
<< tcu::TestLog::ImageSet("LayerContent", "Layer content")
<< tcu::TestLog::Image("Layer", "Layer", layer)
<< tcu::TestLog::EndImageSet;
return true;
}
else
{
if (logging)
m_testCtx.getLog() << tcu::TestLog::Message << "Image verification failed. Got unexpected pixels." << tcu::TestLog::EndMessage
<< tcu::TestLog::ImageSet("LayerContent", "Layer content")
<< tcu::TestLog::Image("Layer", "Layer", layer)
<< tcu::TestLog::Image("ErrorMask", "Errors", errorMask)
<< tcu::TestLog::EndImageSet;
return false;
}
if (logging)
m_testCtx.getLog() << tcu::TestLog::Image("LayerContent", "Layer content", layer);
return allPixelsOk;
}
bool LayeredRenderCase::verifyEmptyImage (const tcu::Surface& layer, bool logging)
{
// Expect black
if (logging)
m_testCtx.getLog() << tcu::TestLog::Message << "Expecting empty image" << tcu::TestLog::EndMessage;
for (int y = 0; y < layer.getHeight(); ++y)
for (int x = 0; x < layer.getWidth(); ++x)
{
const tcu::RGBA color = layer.getPixel(x, y);
const int threshold = 8;
const bool isBlack = color.getRed() <= threshold || color.getGreen() <= threshold || color.getBlue() <= threshold;
if (!isBlack)
{
if (logging)
m_testCtx.getLog() << tcu::TestLog::Message
<< "Found (at least) one bad pixel at " << x << "," << y << ". Pixel color is not background color."
<< tcu::TestLog::EndMessage
<< tcu::TestLog::ImageSet("LayerContent", "Layer content")
<< tcu::TestLog::Image("Layer", "Layer", layer)
<< tcu::TestLog::EndImageSet;
return false;
}
}
if (logging)
m_testCtx.getLog() << tcu::TestLog::Message << "Image is valid" << tcu::TestLog::EndMessage;
return true;
}
bool LayeredRenderCase::verifyProvokingVertexLayers (const tcu::Surface& layer0, const tcu::Surface& layer1)
{
const bool layer0Empty = verifyEmptyImage(layer0, false);
const bool layer1Empty = verifyEmptyImage(layer1, false);
bool error = false;
// Both images could contain something if the quad triangles get assigned to different layers
m_testCtx.getLog() << tcu::TestLog::Message << "Expecting non-empty layers, or non-empty layer." << tcu::TestLog::EndMessage;
if (layer0Empty == true && layer1Empty == true)
{
m_testCtx.getLog() << tcu::TestLog::Message << "Got empty images." << tcu::TestLog::EndMessage;
error = true;
}
// log images always
m_testCtx.getLog()
<< tcu::TestLog::ImageSet("LayerContent", "Layer content")
<< tcu::TestLog::Image("Layer", "Layer0", layer0)
<< tcu::TestLog::Image("Layer", "Layer1", layer1)
<< tcu::TestLog::EndImageSet;
if (error)
m_testCtx.getLog() << tcu::TestLog::Message << "Image verification failed." << tcu::TestLog::EndMessage;
else
m_testCtx.getLog() << tcu::TestLog::Message << "Image is valid." << tcu::TestLog::EndMessage;
return !error;
}
int LayeredRenderCase::getTargetLayers (LayeredRenderTargetType target)
{
switch (target)
{
case TARGET_CUBE: return 6;
case TARGET_3D: return 4;
case TARGET_1D_ARRAY: return 4;
case TARGET_2D_ARRAY: return 4;
case TARGET_2D_MS_ARRAY: return 2;
default:
DE_ASSERT(DE_FALSE);
return 0;
}
}
glw::GLenum LayeredRenderCase::getTargetTextureTarget (LayeredRenderTargetType target)
{
switch (target)
{
case TARGET_CUBE: return GL_TEXTURE_CUBE_MAP;
case TARGET_3D: return GL_TEXTURE_3D;
case TARGET_1D_ARRAY: return GL_TEXTURE_1D_ARRAY;
case TARGET_2D_ARRAY: return GL_TEXTURE_2D_ARRAY;
case TARGET_2D_MS_ARRAY: return GL_TEXTURE_2D_MULTISAMPLE_ARRAY;
default:
DE_ASSERT(DE_FALSE);
return 0;
}
}
tcu::IVec3 LayeredRenderCase::getTargetDimensions (LayeredRenderTargetType target)
{
switch (target)
{
case TARGET_CUBE: return tcu::IVec3(64, 64, 0);
case TARGET_3D: return tcu::IVec3(64, 64, 4);
case TARGET_1D_ARRAY: return tcu::IVec3(64, 4, 0);
case TARGET_2D_ARRAY: return tcu::IVec3(64, 64, 4);
case TARGET_2D_MS_ARRAY: return tcu::IVec3(64, 64, 2);
default:
DE_ASSERT(DE_FALSE);
return tcu::IVec3(0, 0, 0);
}
}
tcu::IVec2 LayeredRenderCase::getResolveDimensions (LayeredRenderTargetType target)
{
switch (target)
{
case TARGET_CUBE: return tcu::IVec2(64, 64);
case TARGET_3D: return tcu::IVec2(64, 64);
case TARGET_1D_ARRAY: return tcu::IVec2(64, 1);
case TARGET_2D_ARRAY: return tcu::IVec2(64, 64);
case TARGET_2D_MS_ARRAY: return tcu::IVec2(64, 64);
default:
DE_ASSERT(DE_FALSE);
return tcu::IVec2(0, 0);
}
}
class VaryingOutputCountCase : public GeometryShaderRenderTest
{
public:
enum ShaderInstancingMode
{
MODE_WITHOUT_INSTANCING = 0,
MODE_WITH_INSTANCING,
MODE_LAST
};
VaryingOutputCountCase (Context& context, const char* name, const char* desc, VaryingOutputCountShader::VaryingSource test, ShaderInstancingMode mode);
private:
void init (void);
void deinit (void);
void preRender (sglr::Context& ctx, GLuint programID);
sglr::ShaderProgram& getProgram (void);
void genVertexAttribData (void);
void genVertexDataWithoutInstancing (void);
void genVertexDataWithInstancing (void);
VaryingOutputCountShader* m_program;
const VaryingOutputCountShader::VaryingSource m_test;
const ShaderInstancingMode m_mode;
int m_maxEmitCount;
};
VaryingOutputCountCase::VaryingOutputCountCase (Context& context, const char* name, const char* desc, VaryingOutputCountShader::VaryingSource test, ShaderInstancingMode mode)
: GeometryShaderRenderTest (context, name, desc, GL_POINTS, GL_TRIANGLE_STRIP, VaryingOutputCountShader::getAttributeName(test))
, m_program (DE_NULL)
, m_test (test)
, m_mode (mode)
, m_maxEmitCount (0)
{
DE_ASSERT(mode < MODE_LAST);
}
void VaryingOutputCountCase::init (void)
{
// Check requirements
if (!glu::contextSupports(m_context.getRenderContext().getType(), glu::ApiType::es(3, 2)) && !m_context.getContextInfo().isExtensionSupported("GL_EXT_geometry_shader"))
TCU_THROW(NotSupportedError, "Tests require GL_EXT_geometry_shader extension or higher context version.");
if (m_test == VaryingOutputCountShader::READ_TEXTURE)
{
glw::GLint maxTextures = 0;
m_context.getRenderContext().getFunctions().getIntegerv(GL_MAX_GEOMETRY_TEXTURE_IMAGE_UNITS, &maxTextures);
m_testCtx.getLog() << tcu::TestLog::Message << "GL_MAX_GEOMETRY_TEXTURE_IMAGE_UNITS = " << maxTextures << tcu::TestLog::EndMessage;
if (maxTextures < 1)
throw tcu::NotSupportedError("Geometry shader texture units required");
}
// Get max emit count
{
const int componentsPerVertex = 4 + 4; // vec4 pos, vec4 color
glw::GLint maxVertices = 0;
glw::GLint maxComponents = 0;
m_context.getRenderContext().getFunctions().getIntegerv(GL_MAX_GEOMETRY_OUTPUT_VERTICES, &maxVertices);
m_context.getRenderContext().getFunctions().getIntegerv(GL_MAX_GEOMETRY_TOTAL_OUTPUT_COMPONENTS, &maxComponents);
m_testCtx.getLog() << tcu::TestLog::Message << "GL_MAX_GEOMETRY_OUTPUT_VERTICES = " << maxVertices << tcu::TestLog::EndMessage;
m_testCtx.getLog() << tcu::TestLog::Message << "GL_MAX_GEOMETRY_TOTAL_OUTPUT_COMPONENTS = " << maxComponents << tcu::TestLog::EndMessage;
m_testCtx.getLog() << tcu::TestLog::Message << "Components per vertex = " << componentsPerVertex << tcu::TestLog::EndMessage;
if (maxVertices < 256)
throw tcu::TestError("MAX_GEOMETRY_OUTPUT_VERTICES was less than minimum required (256)");
if (maxComponents < 1024)
throw tcu::TestError("MAX_GEOMETRY_TOTAL_OUTPUT_COMPONENTS was less than minimum required (1024)");
m_maxEmitCount = de::min(maxVertices, maxComponents / componentsPerVertex);
}
// Log what the test tries to do
m_testCtx.getLog()
<< tcu::TestLog::Message
<< "Rendering 4 n-gons with n = "
<< ((VaryingOutputCountShader::EMIT_COUNT_VERTEX_0 == -1) ? (m_maxEmitCount) : (VaryingOutputCountShader::EMIT_COUNT_VERTEX_0)) << ", "
<< ((VaryingOutputCountShader::EMIT_COUNT_VERTEX_1 == -1) ? (m_maxEmitCount) : (VaryingOutputCountShader::EMIT_COUNT_VERTEX_1)) << ", "
<< ((VaryingOutputCountShader::EMIT_COUNT_VERTEX_2 == -1) ? (m_maxEmitCount) : (VaryingOutputCountShader::EMIT_COUNT_VERTEX_2)) << ", and "
<< ((VaryingOutputCountShader::EMIT_COUNT_VERTEX_3 == -1) ? (m_maxEmitCount) : (VaryingOutputCountShader::EMIT_COUNT_VERTEX_3)) << ".\n"
<< "N is supplied to the geomery shader with "
<< ((m_test == VaryingOutputCountShader::READ_ATTRIBUTE) ? ("attribute") : (m_test == VaryingOutputCountShader::READ_UNIFORM) ? ("uniform") : ("texture"))
<< tcu::TestLog::EndMessage;
// Gen shader
{
const bool instanced = (m_mode == MODE_WITH_INSTANCING);
DE_ASSERT(!m_program);
m_program = new VaryingOutputCountShader(m_context.getRenderContext().getType(), m_test, m_maxEmitCount, instanced);
}
// Case init
GeometryShaderRenderTest::init();
}
void VaryingOutputCountCase::deinit (void)
{
if (m_program)
{
delete m_program;
m_program = DE_NULL;
}
GeometryShaderRenderTest::deinit();
}
void VaryingOutputCountCase::preRender (sglr::Context& ctx, GLuint programID)
{
if (m_test == VaryingOutputCountShader::READ_UNIFORM)
{
const int location = ctx.getUniformLocation(programID, "u_emitCount");
const deInt32 emitCount[4] = { 6, 0, m_maxEmitCount, 10 };
if (location == -1)
throw tcu::TestError("uniform location of u_emitCount was -1.");
ctx.uniform4iv(location, 1, emitCount);
}
else if (m_test == VaryingOutputCountShader::READ_TEXTURE)
{
const deUint8 data[4*4] =
{
255, 0, 0, 0,
0, 255, 0, 0,
0, 0, 255, 0,
0, 0, 0, 255,
};
const int location = ctx.getUniformLocation(programID, "u_sampler");
GLuint texID = 0;
if (location == -1)
throw tcu::TestError("uniform location of u_sampler was -1.");
ctx.uniform1i(location, 0);
// \note we don't need to explicitly delete the texture, the sglr context will delete it
ctx.genTextures(1, &texID);
ctx.bindTexture(GL_TEXTURE_2D, texID);
ctx.texImage2D(GL_TEXTURE_2D, 0, GL_RGBA8, 4, 1, 0, GL_RGBA, GL_UNSIGNED_BYTE, data);
ctx.texParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
ctx.texParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
}
}
sglr::ShaderProgram& VaryingOutputCountCase::getProgram (void)
{
return *m_program;
}
void VaryingOutputCountCase::genVertexAttribData (void)
{
if (m_mode == MODE_WITHOUT_INSTANCING)
genVertexDataWithoutInstancing();
else if (m_mode == MODE_WITH_INSTANCING)
genVertexDataWithInstancing();
else
DE_ASSERT(false);
}
void VaryingOutputCountCase::genVertexDataWithoutInstancing (void)
{
m_numDrawVertices = 4;
m_vertexPosData.resize(4);
m_vertexAttrData.resize(4);
m_vertexPosData[0] = tcu::Vec4( 0.5f, 0.0f, 0.0f, 1.0f);
m_vertexPosData[1] = tcu::Vec4( 0.0f, 0.5f, 0.0f, 1.0f);
m_vertexPosData[2] = tcu::Vec4(-0.7f, -0.1f, 0.0f, 1.0f);
m_vertexPosData[3] = tcu::Vec4(-0.1f, -0.7f, 0.0f, 1.0f);
if (m_test == VaryingOutputCountShader::READ_ATTRIBUTE)
{
m_vertexAttrData[0] = tcu::Vec4(((VaryingOutputCountShader::EMIT_COUNT_VERTEX_0 == -1) ? ((float)m_maxEmitCount) : ((float)VaryingOutputCountShader::EMIT_COUNT_VERTEX_0)), 0.0f, 0.0f, 0.0f);
m_vertexAttrData[1] = tcu::Vec4(((VaryingOutputCountShader::EMIT_COUNT_VERTEX_1 == -1) ? ((float)m_maxEmitCount) : ((float)VaryingOutputCountShader::EMIT_COUNT_VERTEX_1)), 0.0f, 0.0f, 0.0f);
m_vertexAttrData[2] = tcu::Vec4(((VaryingOutputCountShader::EMIT_COUNT_VERTEX_2 == -1) ? ((float)m_maxEmitCount) : ((float)VaryingOutputCountShader::EMIT_COUNT_VERTEX_2)), 0.0f, 0.0f, 0.0f);
m_vertexAttrData[3] = tcu::Vec4(((VaryingOutputCountShader::EMIT_COUNT_VERTEX_3 == -1) ? ((float)m_maxEmitCount) : ((float)VaryingOutputCountShader::EMIT_COUNT_VERTEX_3)), 0.0f, 0.0f, 0.0f);
}
else
{
m_vertexAttrData[0] = tcu::Vec4(0.0f, 0.0f, 0.0f, 0.0f);
m_vertexAttrData[1] = tcu::Vec4(1.0f, 0.0f, 0.0f, 0.0f);
m_vertexAttrData[2] = tcu::Vec4(2.0f, 0.0f, 0.0f, 0.0f);
m_vertexAttrData[3] = tcu::Vec4(3.0f, 0.0f, 0.0f, 0.0f);
}
}
void VaryingOutputCountCase::genVertexDataWithInstancing (void)
{
m_numDrawVertices = 1;
m_vertexPosData.resize(1);
m_vertexAttrData.resize(1);
m_vertexPosData[0] = tcu::Vec4(0.0f, 0.0f, 0.0f, 1.0f);
if (m_test == VaryingOutputCountShader::READ_ATTRIBUTE)
{
const int emitCounts[] =
{
(VaryingOutputCountShader::EMIT_COUNT_VERTEX_0 == -1) ? (m_maxEmitCount) : (VaryingOutputCountShader::EMIT_COUNT_VERTEX_0),
(VaryingOutputCountShader::EMIT_COUNT_VERTEX_1 == -1) ? (m_maxEmitCount) : (VaryingOutputCountShader::EMIT_COUNT_VERTEX_1),
(VaryingOutputCountShader::EMIT_COUNT_VERTEX_2 == -1) ? (m_maxEmitCount) : (VaryingOutputCountShader::EMIT_COUNT_VERTEX_2),
(VaryingOutputCountShader::EMIT_COUNT_VERTEX_3 == -1) ? (m_maxEmitCount) : (VaryingOutputCountShader::EMIT_COUNT_VERTEX_3),
};
m_vertexAttrData[0] = tcu::Vec4((float)emitCounts[0], (float)emitCounts[1], (float)emitCounts[2], (float)emitCounts[3]);
}
else
{
// not used
m_vertexAttrData[0] = tcu::Vec4(0.0f, 0.0f, 0.0f, 0.0f);
}
}
class GeometryProgramQueryCase : public TestCase
{
public:
struct ProgramCase
{
const char* description;
const char* header;
int value;
};
GeometryProgramQueryCase (Context& context, const char* name, const char* description, glw::GLenum target);
void init (void);
IterateResult iterate (void);
private:
void expectProgramValue (deUint32 program, int value);
void expectQueryError (deUint32 program);
const glw::GLenum m_target;
protected:
std::vector<ProgramCase> m_cases;
};
GeometryProgramQueryCase::GeometryProgramQueryCase (Context& context, const char* name, const char* description, glw::GLenum target)
: TestCase (context, name, description)
, m_target (target)
{
}
void GeometryProgramQueryCase::init (void)
{
if (!(m_context.getContextInfo().isExtensionSupported("GL_EXT_geometry_shader") || glu::contextSupports(m_context.getRenderContext().getType(), glu::ApiType::es(3, 2))))
TCU_THROW(NotSupportedError, "Tests require GL_EXT_geometry_shader extension or higher context version.");
}
GeometryProgramQueryCase::IterateResult GeometryProgramQueryCase::iterate (void)
{
const bool isES32 = glu::contextSupports(m_context.getRenderContext().getType(), glu::ApiType::es(3, 2));
static std::string s_vertexSource = std::string(glu::getGLSLVersionDeclaration(glu::getContextTypeGLSLVersion(m_context.getRenderContext().getType()))) + "\n"
"void main ()\n"
"{\n"
" gl_Position = vec4(0.0, 0.0, 0.0, 0.0);\n"
"}\n";
static std::string s_fragmentSource = std::string(glu::getGLSLVersionDeclaration(glu::getContextTypeGLSLVersion(m_context.getRenderContext().getType()))) + "\n"
"layout(location = 0) out mediump vec4 fragColor;\n"
"void main ()\n"
"{\n"
" fragColor = vec4(0.0, 0.0, 0.0, 0.0);\n"
"}\n";
static std::string s_geometryBody = "void main ()\n"
"{\n"
" gl_Position = vec4(0.0, 0.0, 0.0, 0.0);\n"
" EmitVertex();\n"
"}\n";
m_testCtx.setTestResult(QP_TEST_RESULT_PASS, "Pass");
// default cases
for (int ndx = 0; ndx < (int)m_cases.size(); ++ndx)
{
const tcu::ScopedLogSection section (m_testCtx.getLog(), "Case", m_cases[ndx].description);
const std::string geometrySource = m_cases[ndx].header + std::string(s_geometryBody);
const glu::ShaderProgram program (m_context.getRenderContext(),
glu::ProgramSources()
<< glu::VertexSource(s_vertexSource)
<< glu::FragmentSource(s_fragmentSource)
<< glu::GeometrySource(specializeShader(geometrySource, m_context.getRenderContext().getType())));
m_testCtx.getLog() << program;
expectProgramValue(program.getProgram(), m_cases[ndx].value);
}
// no geometry shader -case (INVALID OP)
{
const tcu::ScopedLogSection section (m_testCtx.getLog(), "NoGeometryShader", "No geometry shader");
const glu::ShaderProgram program (m_context.getRenderContext(),
glu::ProgramSources()
<< glu::VertexSource(s_vertexSource)
<< glu::FragmentSource(s_fragmentSource));
m_testCtx.getLog() << program;
expectQueryError(program.getProgram());
}
// not linked -case (INVALID OP)
{
const tcu::ScopedLogSection section (m_testCtx.getLog(), "NotLinkedProgram", "Shader program not linked");
static const std::string geometrySource = std::string(glu::getGLSLVersionDeclaration(glu::getContextTypeGLSLVersion(m_context.getRenderContext().getType()))) + "\n"
+ std::string(isES32 ? "" : "#extension GL_EXT_geometry_shader : require\n")
+ "layout (triangles) in;\n"
"layout (points, max_vertices = 3) out;\n"
+ std::string(s_geometryBody);
static const char* const s_vtxSource = s_vertexSource.c_str();
static const char* const s_fragSource = s_fragmentSource.c_str();
static const char* const s_geomSource = geometrySource.c_str();
glu::Shader vertexShader (m_context.getRenderContext(), glu::SHADERTYPE_VERTEX);
glu::Shader fragmentShader (m_context.getRenderContext(), glu::SHADERTYPE_FRAGMENT);
glu::Shader geometryShader (m_context.getRenderContext(), glu::SHADERTYPE_GEOMETRY);
glu::Program program (m_context.getRenderContext());
vertexShader.setSources(1, &s_vtxSource, DE_NULL);
fragmentShader.setSources(1, &s_fragSource, DE_NULL);
geometryShader.setSources(1, &s_geomSource, DE_NULL);
vertexShader.compile();
fragmentShader.compile();
geometryShader.compile();
if (!vertexShader.getCompileStatus() ||
!fragmentShader.getCompileStatus() ||
!geometryShader.getCompileStatus())
throw tcu::TestError("Failed to compile shader");
program.attachShader(vertexShader.getShader());
program.attachShader(fragmentShader.getShader());
program.attachShader(geometryShader.getShader());
m_testCtx.getLog() << tcu::TestLog::Message << "Creating a program with geometry shader, but not linking it" << tcu::TestLog::EndMessage;
expectQueryError(program.getProgram());
}
return STOP;
}
void GeometryProgramQueryCase::expectProgramValue (deUint32 program, int value)
{
const glw::Functions& gl = m_context.getRenderContext().getFunctions();
gls::StateQueryUtil::StateQueryMemoryWriteGuard<glw::GLint> state;
gl.getProgramiv(program, m_target, &state);
GLU_EXPECT_NO_ERROR(gl.getError(), "getProgramiv");
m_testCtx.getLog() << tcu::TestLog::Message << glu::getProgramParamStr(m_target) << " = " << state << tcu::TestLog::EndMessage;
if (state != value)
{
m_testCtx.getLog() << tcu::TestLog::Message << "// ERROR: Expected " << value << ", got " << state << tcu::TestLog::EndMessage;
// don't overwrite error
if (m_testCtx.getTestResult() == QP_TEST_RESULT_PASS)
m_testCtx.setTestResult(QP_TEST_RESULT_FAIL, "got invalid value");
}
}
void GeometryProgramQueryCase::expectQueryError (deUint32 program)
{
const glw::Functions& gl = m_context.getRenderContext().getFunctions();
glw::GLint dummy;
glw::GLenum errorCode;
m_testCtx.getLog() << tcu::TestLog::Message << "Querying " << glu::getProgramParamStr(m_target) << ", expecting INVALID_OPERATION" << tcu::TestLog::EndMessage;
gl.getProgramiv(program, m_target, &dummy);
errorCode = gl.getError();
if (errorCode != GL_INVALID_OPERATION)
{
m_testCtx.getLog() << tcu::TestLog::Message << "// ERROR: Expected INVALID_OPERATION, got " << glu::getErrorStr(errorCode) << tcu::TestLog::EndMessage;
// don't overwrite error
if (m_testCtx.getTestResult() == QP_TEST_RESULT_PASS)
m_testCtx.setTestResult(QP_TEST_RESULT_FAIL, "got unexpected error code");
}
}
class GeometryShaderInvocationsQueryCase : public GeometryProgramQueryCase
{
public:
GeometryShaderInvocationsQueryCase(Context& context, const char* name, const char* description);
};
GeometryShaderInvocationsQueryCase::GeometryShaderInvocationsQueryCase(Context& context, const char* name, const char* description)
: GeometryProgramQueryCase(context, name, description, GL_GEOMETRY_SHADER_INVOCATIONS)
{
// 2 normal cases
m_cases.resize(2);
m_cases[0].description = "Default value";
m_cases[0].header = "${GLSL_VERSION_DECL}\n${GLSL_EXT_GEOMETRY_SHADER}layout (triangles) in;\nlayout (points, max_vertices = 3) out;\n";
m_cases[0].value = 1;
m_cases[1].description = "Value declared";
m_cases[1].header = "${GLSL_VERSION_DECL}\n${GLSL_EXT_GEOMETRY_SHADER}layout (triangles, invocations=2) in;\nlayout (points, max_vertices = 3) out;\n";
m_cases[1].value = 2;
}
class GeometryShaderVerticesQueryCase : public GeometryProgramQueryCase
{
public:
GeometryShaderVerticesQueryCase(Context& context, const char* name, const char* description);
};
GeometryShaderVerticesQueryCase::GeometryShaderVerticesQueryCase (Context& context, const char* name, const char* description)
: GeometryProgramQueryCase(context, name, description, GL_GEOMETRY_LINKED_VERTICES_OUT_EXT)
{
m_cases.resize(1);
m_cases[0].description = "max_vertices = 1";
m_cases[0].header = "${GLSL_VERSION_DECL}\n${GLSL_EXT_GEOMETRY_SHADER}layout (triangles) in;\nlayout (points, max_vertices = 1) out;\n";
m_cases[0].value = 1;
}
class GeometryShaderInputQueryCase : public GeometryProgramQueryCase
{
public:
GeometryShaderInputQueryCase(Context& context, const char* name, const char* description);
};
GeometryShaderInputQueryCase::GeometryShaderInputQueryCase(Context& context, const char* name, const char* description)
: GeometryProgramQueryCase(context, name, description, GL_GEOMETRY_LINKED_INPUT_TYPE_EXT)
{
m_cases.resize(3);
m_cases[0].description = "Triangles";
m_cases[0].header = "${GLSL_VERSION_DECL}\n${GLSL_EXT_GEOMETRY_SHADER}layout (triangles) in;\nlayout (points, max_vertices = 3) out;\n";
m_cases[0].value = GL_TRIANGLES;
m_cases[1].description = "Lines";
m_cases[1].header = "${GLSL_VERSION_DECL}\n${GLSL_EXT_GEOMETRY_SHADER}layout (lines) in;\nlayout (points, max_vertices = 3) out;\n";
m_cases[1].value = GL_LINES;
m_cases[2].description = "Points";
m_cases[2].header = "${GLSL_VERSION_DECL}\n${GLSL_EXT_GEOMETRY_SHADER}layout (points) in;\nlayout (points, max_vertices = 3) out;\n";
m_cases[2].value = GL_POINTS;
}
class GeometryShaderOutputQueryCase : public GeometryProgramQueryCase
{
public:
GeometryShaderOutputQueryCase(Context& context, const char* name, const char* description);
};
GeometryShaderOutputQueryCase::GeometryShaderOutputQueryCase(Context& context, const char* name, const char* description)
: GeometryProgramQueryCase(context, name, description, GL_GEOMETRY_LINKED_OUTPUT_TYPE_EXT)
{
m_cases.resize(3);
m_cases[0].description = "Triangle strip";
m_cases[0].header = "${GLSL_VERSION_DECL}\n${GLSL_EXT_GEOMETRY_SHADER}layout (triangles) in;\nlayout (triangle_strip, max_vertices = 3) out;\n";
m_cases[0].value = GL_TRIANGLE_STRIP;
m_cases[1].description = "Lines";
m_cases[1].header = "${GLSL_VERSION_DECL}\n${GLSL_EXT_GEOMETRY_SHADER}layout (triangles) in;\nlayout (line_strip, max_vertices = 3) out;\n";
m_cases[1].value = GL_LINE_STRIP;
m_cases[2].description = "Points";
m_cases[2].header = "${GLSL_VERSION_DECL}\n${GLSL_EXT_GEOMETRY_SHADER}layout (triangles) in;\nlayout (points, max_vertices = 3) out;\n";
m_cases[2].value = GL_POINTS;
}
class ImplementationLimitCase : public TestCase
{
public:
ImplementationLimitCase (Context& context, const char* name, const char* description, glw::GLenum target, int minValue);
void init (void);
IterateResult iterate (void);
const glw::GLenum m_target;
const int m_minValue;
};
ImplementationLimitCase::ImplementationLimitCase (Context& context, const char* name, const char* description, glw::GLenum target, int minValue)
: TestCase (context, name, description)
, m_target (target)
, m_minValue (minValue)
{
}
void ImplementationLimitCase::init (void)
{
if (!glu::contextSupports(m_context.getRenderContext().getType(), glu::ApiType::es(3, 2)) && !m_context.getContextInfo().isExtensionSupported("GL_EXT_geometry_shader"))
TCU_THROW(NotSupportedError, "Tests require GL_EXT_geometry_shader extension or higher context version.");
}
ImplementationLimitCase::IterateResult ImplementationLimitCase::iterate (void)
{
glu::CallLogWrapper gl (m_context.getRenderContext().getFunctions(), m_testCtx.getLog());
tcu::ResultCollector result (m_testCtx.getLog(), " // ERROR: ");
gl.enableLogging(true);
verifyStateIntegerMin(result, gl, m_target, m_minValue, QUERY_INTEGER);
{
const tcu::ScopedLogSection section(m_testCtx.getLog(), "Types", "Alternative queries");
verifyStateIntegerMin(result, gl, m_target, m_minValue, QUERY_BOOLEAN);
verifyStateIntegerMin(result, gl, m_target, m_minValue, QUERY_INTEGER64);
verifyStateIntegerMin(result, gl, m_target, m_minValue, QUERY_FLOAT);
}
result.setTestContextResult(m_testCtx);
return STOP;
}
class LayerProvokingVertexQueryCase : public TestCase
{
public:
LayerProvokingVertexQueryCase (Context& context, const char* name, const char* description);
void init (void);
IterateResult iterate (void);
};
LayerProvokingVertexQueryCase::LayerProvokingVertexQueryCase (Context& context, const char* name, const char* description)
: TestCase(context, name, description)
{
}
void LayerProvokingVertexQueryCase::init (void)
{
if (!glu::contextSupports(m_context.getRenderContext().getType(), glu::ApiType::es(3, 2)) && !m_context.getContextInfo().isExtensionSupported("GL_EXT_geometry_shader"))
TCU_THROW(NotSupportedError, "Tests require GL_EXT_geometry_shader extension or higher context version.");
}
LayerProvokingVertexQueryCase::IterateResult LayerProvokingVertexQueryCase::iterate (void)
{
glu::CallLogWrapper gl (m_context.getRenderContext().getFunctions(), m_testCtx.getLog());
tcu::ResultCollector result (m_testCtx.getLog(), " // ERROR: ");
QueriedState state;
gl.enableLogging(true);
queryState(result, gl, QUERY_INTEGER, GL_LAYER_PROVOKING_VERTEX, state);
if (!state.isUndefined())
{
m_testCtx.getLog() << tcu::TestLog::Message << "LAYER_PROVOKING_VERTEX = " << glu::getProvokingVertexStr(state.getIntAccess()) << tcu::TestLog::EndMessage;
if (state.getIntAccess() != GL_FIRST_VERTEX_CONVENTION &&
state.getIntAccess() != GL_LAST_VERTEX_CONVENTION &&
state.getIntAccess() != GL_UNDEFINED_VERTEX)
{
m_testCtx.getLog()
<< tcu::TestLog::Message
<< "getInteger(GL_LAYER_PROVOKING_VERTEX) returned illegal value. Got "
<< state.getIntAccess() << "\n"
<< "Expected any of {FIRST_VERTEX_CONVENTION, LAST_VERTEX_CONVENTION, UNDEFINED_VERTEX}."
<< tcu::TestLog::EndMessage;
result.fail("got unexpected provoking vertex value");
}
{
const tcu::ScopedLogSection section(m_testCtx.getLog(), "Types", "Alternative queries");
verifyStateInteger(result, gl, GL_LAYER_PROVOKING_VERTEX, state.getIntAccess(), QUERY_BOOLEAN);
verifyStateInteger(result, gl, GL_LAYER_PROVOKING_VERTEX, state.getIntAccess(), QUERY_INTEGER64);
verifyStateInteger(result, gl, GL_LAYER_PROVOKING_VERTEX, state.getIntAccess(), QUERY_FLOAT);
}
}
result.setTestContextResult(m_testCtx);
return STOP;
}
class GeometryInvocationCase : public GeometryShaderRenderTest
{
public:
enum OutputCase
{
CASE_FIXED_OUTPUT_COUNTS = 0,
CASE_DIFFERENT_OUTPUT_COUNTS,
CASE_LAST
};
GeometryInvocationCase (Context& context, const char* name, const char* description, int numInvocations, OutputCase testCase);
~GeometryInvocationCase (void);
void init (void);
void deinit (void);
private:
sglr::ShaderProgram& getProgram (void);
void genVertexAttribData (void);
static InvocationCountShader::OutputCase mapToShaderCaseType (OutputCase testCase);
const OutputCase m_testCase;
int m_numInvocations;
InvocationCountShader* m_program;
};
GeometryInvocationCase::GeometryInvocationCase (Context& context, const char* name, const char* description, int numInvocations, OutputCase testCase)
: GeometryShaderRenderTest (context, name, description, GL_POINTS, GL_TRIANGLE_STRIP, "a_color")
, m_testCase (testCase)
, m_numInvocations (numInvocations)
, m_program (DE_NULL)
{
DE_ASSERT(m_testCase < CASE_LAST);
}
GeometryInvocationCase::~GeometryInvocationCase (void)
{
deinit();
}
void GeometryInvocationCase::init (void)
{
const glw::Functions& gl = m_context.getRenderContext().getFunctions();
int maxGeometryShaderInvocations = 0;
int maxComponents = 0;
// requirements
if (!glu::contextSupports(m_context.getRenderContext().getType(), glu::ApiType::es(3, 2)) && !m_context.getContextInfo().isExtensionSupported("GL_EXT_geometry_shader"))
TCU_THROW(NotSupportedError, "Tests require GL_EXT_geometry_shader extension or higher context version.");
gl.getIntegerv(GL_MAX_GEOMETRY_SHADER_INVOCATIONS, &maxGeometryShaderInvocations);
GLU_EXPECT_NO_ERROR(gl.getError(), "getIntegerv(GL_MAX_GEOMETRY_SHADER_INVOCATIONS)");
gl.getIntegerv(GL_MAX_GEOMETRY_TOTAL_OUTPUT_COMPONENTS, &maxComponents);
GLU_EXPECT_NO_ERROR(gl.getError(), "getIntegerv(GL_MAX_GEOMETRY_TOTAL_OUTPUT_COMPONENTS)");
m_testCtx.getLog() << tcu::TestLog::Message << "GL_MAX_GEOMETRY_SHADER_INVOCATIONS = " << maxGeometryShaderInvocations << tcu::TestLog::EndMessage;
// set target num invocations
if (m_numInvocations == -1)
m_numInvocations = maxGeometryShaderInvocations;
else if (maxGeometryShaderInvocations < m_numInvocations)
throw tcu::NotSupportedError("Test requires larger GL_MAX_GEOMETRY_SHADER_INVOCATIONS");
if (m_testCase == CASE_DIFFERENT_OUTPUT_COUNTS)
{
const int maxEmitCount = m_numInvocations + 2;
const int numComponents = 8; // pos + color
if (maxEmitCount * numComponents > maxComponents)
throw tcu::NotSupportedError("Test requires larger GL_MAX_GEOMETRY_TOTAL_OUTPUT_COMPONENTS");
}
// Log what the test tries to do
if (m_testCase == CASE_FIXED_OUTPUT_COUNTS)
{
m_testCtx.getLog()
<< tcu::TestLog::Message
<< "Rendering triangles in a partial circle formation with a geometry shader. Each triangle is generated by a separate invocation.\n"
<< "Drawing 2 points, each generating " << m_numInvocations << " triangles."
<< tcu::TestLog::EndMessage;
}
else if (m_testCase == CASE_DIFFERENT_OUTPUT_COUNTS)
{
m_testCtx.getLog()
<< tcu::TestLog::Message
<< "Rendering n-gons in a partial circle formation with a geometry shader. Each n-gon is generated by a separate invocation.\n"
<< "Drawing 2 points, each generating " << m_numInvocations << " n-gons."
<< tcu::TestLog::EndMessage;
}
else
DE_ASSERT(false);
// resources
m_program = new InvocationCountShader(m_context.getRenderContext().getType(), m_numInvocations, mapToShaderCaseType(m_testCase));
GeometryShaderRenderTest::init();
}
void GeometryInvocationCase::deinit (void)
{
if (m_program)
{
delete m_program;
m_program = DE_NULL;
}
GeometryShaderRenderTest::deinit();
}
sglr::ShaderProgram& GeometryInvocationCase::getProgram (void)
{
return *m_program;
}
void GeometryInvocationCase::genVertexAttribData (void)
{
m_vertexPosData.resize(2);
m_vertexPosData[0] = tcu::Vec4(0.0f,-0.3f, 0.0f, 1.0f);
m_vertexPosData[1] = tcu::Vec4(0.2f, 0.3f, 0.0f, 1.0f);
m_vertexAttrData.resize(2);
m_vertexAttrData[0] = tcu::Vec4(1.0f, 1.0f, 1.0f, 1.0f);
m_vertexAttrData[1] = tcu::Vec4(0.8f, 0.8f, 0.8f, 1.0f);
m_numDrawVertices = 2;
}
InvocationCountShader::OutputCase GeometryInvocationCase::mapToShaderCaseType (OutputCase testCase)
{
switch (testCase)
{
case CASE_FIXED_OUTPUT_COUNTS: return InvocationCountShader::CASE_FIXED_OUTPUT_COUNTS;
case CASE_DIFFERENT_OUTPUT_COUNTS: return InvocationCountShader::CASE_DIFFERENT_OUTPUT_COUNTS;
default:
DE_ASSERT(false);
return InvocationCountShader::CASE_LAST;
}
}
class DrawInstancedGeometryInstancedCase : public GeometryShaderRenderTest
{
public:
DrawInstancedGeometryInstancedCase (Context& context, const char* name, const char* description, int numInstances, int numInvocations);
~DrawInstancedGeometryInstancedCase (void);
private:
void init (void);
void deinit (void);
sglr::ShaderProgram& getProgram (void);
void genVertexAttribData (void);
const int m_numInstances;
const int m_numInvocations;
InstancedExpansionShader* m_program;
};
DrawInstancedGeometryInstancedCase::DrawInstancedGeometryInstancedCase (Context& context, const char* name, const char* description, int numInstances, int numInvocations)
: GeometryShaderRenderTest (context, name, description, GL_POINTS, GL_TRIANGLE_STRIP, "a_offset", FLAG_DRAW_INSTANCED)
, m_numInstances (numInstances)
, m_numInvocations (numInvocations)
, m_program (DE_NULL)
{
}
DrawInstancedGeometryInstancedCase::~DrawInstancedGeometryInstancedCase (void)
{
}
void DrawInstancedGeometryInstancedCase::init (void)
{
m_program = new InstancedExpansionShader(m_context.getRenderContext().getType(), m_numInvocations);
m_testCtx.getLog()
<< tcu::TestLog::Message
<< "Rendering a single point with " << m_numInstances << " instances. "
<< "Each geometry shader is invoked " << m_numInvocations << " times for each primitive. "
<< tcu::TestLog::EndMessage;
GeometryShaderRenderTest::init();
}
void DrawInstancedGeometryInstancedCase::deinit(void)
{
if (m_program)
{
delete m_program;
m_program = DE_NULL;
}
GeometryShaderRenderTest::deinit();
}
sglr::ShaderProgram& DrawInstancedGeometryInstancedCase::getProgram (void)
{
return *m_program;
}
void DrawInstancedGeometryInstancedCase::genVertexAttribData (void)
{
m_numDrawVertices = 1;
m_numDrawInstances = m_numInstances;
m_vertexAttrDivisor = 1;
m_vertexPosData.resize(1);
m_vertexAttrData.resize(8);
m_vertexPosData[0] = tcu::Vec4( 0.0f, 0.0f, 0.0f, 1.0f);
m_vertexAttrData[0] = tcu::Vec4( 0.5f, 0.0f, 0.0f, 0.0f);
m_vertexAttrData[1] = tcu::Vec4( 0.0f, 0.5f, 0.0f, 0.0f);
m_vertexAttrData[2] = tcu::Vec4(-0.7f, -0.1f, 0.0f, 0.0f);
m_vertexAttrData[3] = tcu::Vec4(-0.1f, -0.7f, 0.0f, 0.0f);
m_vertexAttrData[4] = tcu::Vec4(-0.8f, -0.7f, 0.0f, 0.0f);
m_vertexAttrData[5] = tcu::Vec4(-0.9f, 0.6f, 0.0f, 0.0f);
m_vertexAttrData[6] = tcu::Vec4(-0.8f, 0.3f, 0.0f, 0.0f);
m_vertexAttrData[7] = tcu::Vec4(-0.1f, 0.1f, 0.0f, 0.0f);
DE_ASSERT(m_numInstances <= (int)m_vertexAttrData.size());
}
class GeometryProgramLimitCase : public TestCase
{
public:
GeometryProgramLimitCase (Context& context, const char* name, const char* description, glw::GLenum apiName, const std::string& glslName, int limit);
private:
void init (void);
IterateResult iterate (void);
const glw::GLenum m_apiName;
const std::string m_glslName;
const int m_limit;
};
GeometryProgramLimitCase::GeometryProgramLimitCase (Context& context, const char* name, const char* description, glw::GLenum apiName, const std::string& glslName, int limit)
: TestCase (context, name, description)
, m_apiName (apiName)
, m_glslName (glslName)
, m_limit (limit)
{
}
void GeometryProgramLimitCase::init (void)
{
if (!glu::contextSupports(m_context.getRenderContext().getType(), glu::ApiType::es(3, 2)) && !m_context.getContextInfo().isExtensionSupported("GL_EXT_geometry_shader"))
TCU_THROW(NotSupportedError, "Tests require GL_EXT_geometry_shader extension or higher context version.");
}
GeometryProgramLimitCase::IterateResult GeometryProgramLimitCase::iterate (void)
{
tcu::ResultCollector result (m_testCtx.getLog(), " // ERROR: ");
int limit;
// query limit
{
gls::StateQueryUtil::StateQueryMemoryWriteGuard<glw::GLint> state;
glu::CallLogWrapper gl (m_context.getRenderContext().getFunctions(), m_testCtx.getLog());
gl.enableLogging(true);
gl.glGetIntegerv(m_apiName, &state);
GLU_EXPECT_NO_ERROR(gl.glGetError(), "getIntegerv()");
m_testCtx.getLog() << tcu::TestLog::Message << glu::getGettableStateStr(m_apiName) << " = " << state << tcu::TestLog::EndMessage;
if (!state.verifyValidity(result))
{
result.setTestContextResult(m_testCtx);
return STOP;
}
if (state < m_limit)
{
result.fail("Minimum value = " + de::toString(m_limit) + ", got " + de::toString(state.get()));
result.setTestContextResult(m_testCtx);
return STOP;
}
limit = state;
// verify other getters
{
const tcu::ScopedLogSection section(m_testCtx.getLog(), "Types", "Alternative queries");
verifyStateInteger(result, gl, m_apiName, limit, QUERY_BOOLEAN);
verifyStateInteger(result, gl, m_apiName, limit, QUERY_INTEGER64);
verifyStateInteger(result, gl, m_apiName, limit, QUERY_FLOAT);
}
}
// verify limit is the same in GLSL
{
static const char* const vertexSource = "${GLSL_VERSION_DECL}\n"
"void main ()\n"
"{\n"
" gl_Position = vec4(0.0, 0.0, 0.0, 0.0);\n"
"}\n";
static const char* const fragmentSource = "${GLSL_VERSION_DECL}\n"
"layout(location = 0) out mediump vec4 fragColor;\n"
"void main ()\n"
"{\n"
" fragColor = vec4(0.0, 0.0, 0.0, 0.0);\n"
"}\n";
const std::string geometrySource = "${GLSL_VERSION_DECL}\n"
"${GLSL_EXT_GEOMETRY_SHADER}"
"layout(points) in;\n"
"layout(points, max_vertices = 1) out;\n"
"void main ()\n"
"{\n"
" // Building the shader will fail if the constant value is not the expected\n"
" const mediump int cArraySize = (gl_" + m_glslName + " == " + de::toString(limit) + ") ? (1) : (-1);\n"
" float[cArraySize] fArray;\n"
" fArray[0] = 0.0f;\n"
" gl_Position = vec4(0.0, 0.0, 0.0, fArray[0]);\n"
" EmitVertex();\n"
"}\n";
const de::UniquePtr<glu::ShaderProgram> program(new glu::ShaderProgram(m_context.getRenderContext(),
glu::ProgramSources()
<< glu::VertexSource(specializeShader(vertexSource, m_context.getRenderContext().getType()))
<< glu::FragmentSource(specializeShader(fragmentSource, m_context.getRenderContext().getType()))
<< glu::GeometrySource(specializeShader(geometrySource, m_context.getRenderContext().getType()))));
m_testCtx.getLog() << tcu::TestLog::Message << "Building a test shader to verify GLSL constant " << m_glslName << " value." << tcu::TestLog::EndMessage;
m_testCtx.getLog() << *program;
if (!program->isOk())
{
// compile failed, assume static assert failed
result.fail("Shader build failed");
result.setTestContextResult(m_testCtx);
return STOP;
}
m_testCtx.getLog() << tcu::TestLog::Message << "Build ok" << tcu::TestLog::EndMessage;
}
result.setTestContextResult(m_testCtx);
return STOP;
}
class PrimitivesGeneratedQueryCase : public TestCase
{
public:
enum QueryTest
{
TEST_NO_GEOMETRY = 0,
TEST_NO_AMPLIFICATION,
TEST_AMPLIFICATION,
TEST_PARTIAL_PRIMITIVES,
TEST_INSTANCED,
TEST_LAST
};
PrimitivesGeneratedQueryCase (Context& context, const char* name, const char* description, QueryTest test);
~PrimitivesGeneratedQueryCase (void);
private:
void init (void);
void deinit (void);
IterateResult iterate (void);
glu::ShaderProgram* genProgram (void);
const QueryTest m_test;
glu::ShaderProgram* m_program;
};
PrimitivesGeneratedQueryCase::PrimitivesGeneratedQueryCase (Context& context, const char* name, const char* description, QueryTest test)
: TestCase (context, name, description)
, m_test (test)
, m_program (DE_NULL)
{
DE_ASSERT(m_test < TEST_LAST);
}
PrimitivesGeneratedQueryCase::~PrimitivesGeneratedQueryCase (void)
{
deinit();
}
void PrimitivesGeneratedQueryCase::init (void)
{
// requirements
if (!glu::contextSupports(m_context.getRenderContext().getType(), glu::ApiType::es(3, 2)) && !m_context.getContextInfo().isExtensionSupported("GL_EXT_geometry_shader"))
TCU_THROW(NotSupportedError, "Tests require GL_EXT_geometry_shader extension or higher context version.");
// log what test tries to do
if (m_test == TEST_NO_GEOMETRY)
m_testCtx.getLog() << tcu::TestLog::Message << "Querying PRIMITIVES_GENERATED while rendering without a geometry shader." << tcu::TestLog::EndMessage;
else if (m_test == TEST_NO_AMPLIFICATION)
m_testCtx.getLog() << tcu::TestLog::Message << "Querying PRIMITIVES_GENERATED while rendering with a non-amplifying geometry shader." << tcu::TestLog::EndMessage;
else if (m_test == TEST_AMPLIFICATION)
m_testCtx.getLog() << tcu::TestLog::Message << "Querying PRIMITIVES_GENERATED while rendering with a (3x) amplifying geometry shader." << tcu::TestLog::EndMessage;
else if (m_test == TEST_PARTIAL_PRIMITIVES)
m_testCtx.getLog() << tcu::TestLog::Message << "Querying PRIMITIVES_GENERATED while rendering with a geometry shader that emits also partial primitives." << tcu::TestLog::EndMessage;
else if (m_test == TEST_INSTANCED)
m_testCtx.getLog() << tcu::TestLog::Message << "Querying PRIMITIVES_GENERATED while rendering with a instanced geometry shader." << tcu::TestLog::EndMessage;
else
DE_ASSERT(false);
// resources
m_program = genProgram();
m_testCtx.getLog() << *m_program;
if (!m_program->isOk())
throw tcu::TestError("could not build program");
}
void PrimitivesGeneratedQueryCase::deinit (void)
{
delete m_program;
m_program = DE_NULL;
}
PrimitivesGeneratedQueryCase::IterateResult PrimitivesGeneratedQueryCase::iterate (void)
{
glw::GLuint primitivesGenerated = 0xDEBADBAD;
m_testCtx.getLog()
<< tcu::TestLog::Message
<< "Drawing 8 points, setting a_one for each to value (1.0, 1.0, 1.0, 1.0)"
<< tcu::TestLog::EndMessage;
{
static const tcu::Vec4 vertexData[8*2] =
{
tcu::Vec4(0.0f, 0.0f, 0.0f, 1.0f), tcu::Vec4(1.0f, 1.0f, 1.0f, 1.0f),
tcu::Vec4(0.1f, 0.0f, 0.0f, 1.0f), tcu::Vec4(1.0f, 1.0f, 1.0f, 1.0f),
tcu::Vec4(0.2f, 0.0f, 0.0f, 1.0f), tcu::Vec4(1.0f, 1.0f, 1.0f, 1.0f),
tcu::Vec4(0.3f, 0.0f, 0.0f, 1.0f), tcu::Vec4(1.0f, 1.0f, 1.0f, 1.0f),
tcu::Vec4(0.4f, 0.0f, 0.0f, 1.0f), tcu::Vec4(1.0f, 1.0f, 1.0f, 1.0f),
tcu::Vec4(0.5f, 0.0f, 0.0f, 1.0f), tcu::Vec4(1.0f, 1.0f, 1.0f, 1.0f),
tcu::Vec4(0.6f, 0.0f, 0.0f, 1.0f), tcu::Vec4(1.0f, 1.0f, 1.0f, 1.0f),
tcu::Vec4(0.7f, 0.0f, 0.0f, 1.0f), tcu::Vec4(1.0f, 1.0f, 1.0f, 1.0f),
};
const glw::Functions& gl = m_context.getRenderContext().getFunctions();
const glu::VertexArray vao (m_context.getRenderContext());
const glu::Buffer buffer (m_context.getRenderContext());
const glu::Query query (m_context.getRenderContext());
const int positionLocation = gl.getAttribLocation(m_program->getProgram(), "a_position");
const int oneLocation = gl.getAttribLocation(m_program->getProgram(), "a_one");
gl.bindVertexArray(*vao);
gl.bindBuffer(GL_ARRAY_BUFFER, *buffer);
gl.bufferData(GL_ARRAY_BUFFER, (int)sizeof(vertexData), vertexData, GL_STATIC_DRAW);
gl.vertexAttribPointer(positionLocation, 4, GL_FLOAT, GL_FALSE, 2 * (int)sizeof(tcu::Vec4), DE_NULL);
gl.enableVertexAttribArray(positionLocation);
if (oneLocation != -1)
{
gl.vertexAttribPointer(oneLocation, 4, GL_FLOAT, GL_FALSE, 2 * (int)sizeof(tcu::Vec4), (const tcu::Vec4*)DE_NULL + 1);
gl.enableVertexAttribArray(oneLocation);
}
gl.useProgram(m_program->getProgram());
GLU_EXPECT_NO_ERROR(gl.getError(), "setup render");
gl.beginQuery(GL_PRIMITIVES_GENERATED, *query);
gl.drawArrays(GL_POINTS, 0, 8);
gl.endQuery(GL_PRIMITIVES_GENERATED);
GLU_EXPECT_NO_ERROR(gl.getError(), "render and query");
gl.getQueryObjectuiv(*query, GL_QUERY_RESULT, &primitivesGenerated);
GLU_EXPECT_NO_ERROR(gl.getError(), "get query result");
}
m_testCtx.getLog()
<< tcu::TestLog::Message
<< "GL_PRIMITIVES_GENERATED = " << primitivesGenerated
<< tcu::TestLog::EndMessage;
{
const deUint32 expectedGenerated = (m_test == TEST_AMPLIFICATION) ? (3*8) : (m_test == TEST_INSTANCED) ? (8*(3+1)) : (8);
if (expectedGenerated == primitivesGenerated)
m_testCtx.setTestResult(QP_TEST_RESULT_PASS, "Pass");
else
{
m_testCtx.setTestResult(QP_TEST_RESULT_FAIL, "got wrong result for GL_PRIMITIVES_GENERATED");
m_testCtx.getLog()
<< tcu::TestLog::Message
<< "Got unexpected result for GL_PRIMITIVES_GENERATED. Expected " << expectedGenerated << ", got " << primitivesGenerated
<< tcu::TestLog::EndMessage;
}
}
return STOP;
}
glu::ShaderProgram* PrimitivesGeneratedQueryCase::genProgram (void)
{
static const char* const vertexSource = "${GLSL_VERSION_DECL}\n"
"in highp vec4 a_position;\n"
"in highp vec4 a_one;\n"
"out highp vec4 v_one;\n"
"void main (void)\n"
"{\n"
" gl_Position = a_position;\n"
" v_one = a_one;\n"
"}\n";
static const char* const fragmentSource = "${GLSL_VERSION_DECL}\n"
"layout(location = 0) out mediump vec4 fragColor;\n"
"void main (void)\n"
"{\n"
" fragColor = vec4(1.0, 1.0, 1.0, 1.0);\n"
"}\n";
std::ostringstream geometrySource;
glu::ProgramSources sources;
if (m_test != TEST_NO_GEOMETRY)
{
geometrySource << "${GLSL_VERSION_DECL}\n"
"${GLSL_EXT_GEOMETRY_SHADER}"
"layout(points" << ((m_test == TEST_INSTANCED) ? (", invocations = 3") : ("")) << ") in;\n"
"layout(triangle_strip, max_vertices = 7) out;\n"
"in highp vec4 v_one[];\n"
"void main (void)\n"
"{\n"
" // always taken\n"
" if (v_one[0].x != 0.0)\n"
" {\n"
" gl_Position = gl_in[0].gl_Position + vec4(0.0, 0.1, 0.0, 0.0);\n"
" EmitVertex();\n"
" gl_Position = gl_in[0].gl_Position + vec4(0.1, 0.0, 0.0, 0.0);\n"
" EmitVertex();\n"
" gl_Position = gl_in[0].gl_Position - vec4(0.1, 0.0, 0.0, 0.0);\n"
" EmitVertex();\n"
" EndPrimitive();\n"
" }\n";
if (m_test == TEST_AMPLIFICATION)
{
geometrySource << "\n"
" // always taken\n"
" if (v_one[0].y != 0.0)\n"
" {\n"
" gl_Position = gl_in[0].gl_Position + vec4(0.0, 0.1, 0.0, 0.0);\n"
" EmitVertex();\n"
" gl_Position = gl_in[0].gl_Position + vec4(0.1, 0.0, 0.0, 0.0);\n"
" EmitVertex();\n"
" gl_Position = gl_in[0].gl_Position - vec4(0.0, 0.1, 0.0, 0.0);\n"
" EmitVertex();\n"
" gl_Position = gl_in[0].gl_Position - vec4(0.1, 0.0, 0.0, 0.0);\n"
" EmitVertex();\n"
" }\n";
}
else if (m_test == TEST_PARTIAL_PRIMITIVES)
{
geometrySource << "\n"
" // always taken\n"
" if (v_one[0].y != 0.0)\n"
" {\n"
" gl_Position = gl_in[0].gl_Position + vec4(0.0, 0.1, 0.0, 0.0);\n"
" EmitVertex();\n"
" gl_Position = gl_in[0].gl_Position + vec4(0.1, 0.0, 0.0, 0.0);\n"
" EmitVertex();\n"
"\n"
" // never taken\n"
" if (v_one[0].z < 0.0)\n"
" {\n"
" gl_Position = gl_in[0].gl_Position - vec4(0.1, 0.0, 0.0, 0.0);\n"
" EmitVertex();\n"
" }\n"
" }\n";
}
else if (m_test == TEST_INSTANCED)
{
geometrySource << "\n"
" // taken once\n"
" if (v_one[0].y > float(gl_InvocationID) + 0.5)\n"
" {\n"
" gl_Position = gl_in[0].gl_Position + vec4(0.0, 0.1, 0.0, 0.0);\n"
" EmitVertex();\n"
" gl_Position = gl_in[0].gl_Position + vec4(0.1, 0.0, 0.0, 0.0);\n"
" EmitVertex();\n"
" gl_Position = gl_in[0].gl_Position - vec4(0.1, 0.0, 0.0, 0.0);\n"
" EmitVertex();\n"
" }\n";
}
geometrySource << "}\n";
}
sources << glu::VertexSource(specializeShader(vertexSource, m_context.getRenderContext().getType()));
sources << glu::FragmentSource(specializeShader(fragmentSource, m_context.getRenderContext().getType()));
if (!geometrySource.str().empty())
sources << glu::GeometrySource(specializeShader(geometrySource.str(), m_context.getRenderContext().getType()));
return new glu::ShaderProgram(m_context.getRenderContext(), sources);
}
class PrimitivesGeneratedQueryObjectQueryCase : public TestCase
{
public:
PrimitivesGeneratedQueryObjectQueryCase (Context& context, const char* name, const char* description);
void init (void);
IterateResult iterate (void);
};
PrimitivesGeneratedQueryObjectQueryCase::PrimitivesGeneratedQueryObjectQueryCase (Context& context, const char* name, const char* description)
: TestCase(context, name, description)
{
}
void PrimitivesGeneratedQueryObjectQueryCase::init (void)
{
if (!glu::contextSupports(m_context.getRenderContext().getType(), glu::ApiType::es(3, 2)) && !m_context.getContextInfo().isExtensionSupported("GL_EXT_geometry_shader"))
TCU_THROW(NotSupportedError, "Tests require GL_EXT_geometry_shader extension or higher context version.");
}
PrimitivesGeneratedQueryObjectQueryCase::IterateResult PrimitivesGeneratedQueryObjectQueryCase::iterate (void)
{
glu::CallLogWrapper gl (m_context.getRenderContext().getFunctions(), m_testCtx.getLog());
tcu::ResultCollector result (m_testCtx.getLog(), " // ERROR: ");
gl.enableLogging(true);
{
glw::GLuint query = 0;
verifyStateQueryInteger(result, gl, GL_PRIMITIVES_GENERATED, GL_CURRENT_QUERY, 0, QUERY_QUERY);
gl.glGenQueries(1, &query);
GLS_COLLECT_GL_ERROR(result, gl.glGetError(), "glGenQueries");
gl.glBeginQuery(GL_PRIMITIVES_GENERATED, query);
GLS_COLLECT_GL_ERROR(result, gl.glGetError(), "beginQuery");
verifyStateQueryInteger(result, gl, GL_PRIMITIVES_GENERATED, GL_CURRENT_QUERY, (int)query, QUERY_QUERY);
gl.glEndQuery(GL_PRIMITIVES_GENERATED);
GLS_COLLECT_GL_ERROR(result, gl.glGetError(), "endQuery");
}
result.setTestContextResult(m_testCtx);
return STOP;
}
class GeometryShaderFeartureTestCase : public TestCase
{
public:
GeometryShaderFeartureTestCase (Context& context, const char* name, const char* description);
void init (void);
};
GeometryShaderFeartureTestCase::GeometryShaderFeartureTestCase (Context& context, const char* name, const char* description)
: TestCase(context, name, description)
{
}
void GeometryShaderFeartureTestCase::init (void)
{
if (!glu::contextSupports(m_context.getRenderContext().getType(), glu::ApiType::es(3, 2)) && !m_context.getContextInfo().isExtensionSupported("GL_EXT_geometry_shader"))
TCU_THROW(NotSupportedError, "Tests require GL_EXT_geometry_shader extension or higher context version.");
}
class FramebufferDefaultLayersCase : public GeometryShaderFeartureTestCase
{
public:
FramebufferDefaultLayersCase (Context& context, const char* name, const char* description);
IterateResult iterate (void);
};
FramebufferDefaultLayersCase::FramebufferDefaultLayersCase (Context& context, const char* name, const char* description)
: GeometryShaderFeartureTestCase(context, name, description)
{
}
FramebufferDefaultLayersCase::IterateResult FramebufferDefaultLayersCase::iterate (void)
{
glu::CallLogWrapper gl(m_context.getRenderContext().getFunctions(), m_testCtx.getLog());
gl.enableLogging(true);
m_testCtx.setTestResult(QP_TEST_RESULT_PASS, "Pass");
{
const tcu::ScopedLogSection section (m_testCtx.getLog(), "Default", "Default value");
const glu::Framebuffer fbo (m_context.getRenderContext());
glw::GLint defaultLayers = -1;
gl.glBindFramebuffer(GL_DRAW_FRAMEBUFFER, *fbo);
gl.glGetFramebufferParameteriv(GL_DRAW_FRAMEBUFFER, GL_FRAMEBUFFER_DEFAULT_LAYERS, &defaultLayers);
GLU_EXPECT_NO_ERROR(gl.glGetError(), "getFramebufferParameteriv");
m_testCtx.getLog() << tcu::TestLog::Message << "GL_FRAMEBUFFER_DEFAULT_LAYERS = " << defaultLayers << tcu::TestLog::EndMessage;
if (defaultLayers != 0)
{
m_testCtx.getLog() << tcu::TestLog::Message << "Error, expected 0, got " << defaultLayers << tcu::TestLog::EndMessage;
m_testCtx.setTestResult(QP_TEST_RESULT_FAIL, "invalid layer count");
}
}
{
const tcu::ScopedLogSection section (m_testCtx.getLog(), "SetTo12", "Set default layers to 12");
const glu::Framebuffer fbo (m_context.getRenderContext());
glw::GLint defaultLayers = -1;
gl.glBindFramebuffer(GL_DRAW_FRAMEBUFFER, *fbo);
gl.glFramebufferParameteri(GL_DRAW_FRAMEBUFFER, GL_FRAMEBUFFER_DEFAULT_LAYERS, 12);
gl.glGetFramebufferParameteriv(GL_DRAW_FRAMEBUFFER, GL_FRAMEBUFFER_DEFAULT_LAYERS, &defaultLayers);
GLU_EXPECT_NO_ERROR(gl.glGetError(), "getFramebufferParameteriv");
m_testCtx.getLog() << tcu::TestLog::Message << "GL_FRAMEBUFFER_DEFAULT_LAYERS = " << defaultLayers << tcu::TestLog::EndMessage;
if (defaultLayers != 12)
{
m_testCtx.getLog() << tcu::TestLog::Message << "Error, expected 12, got " << defaultLayers << tcu::TestLog::EndMessage;
m_testCtx.setTestResult(QP_TEST_RESULT_FAIL, "invalid layer count");
}
}
return STOP;
}
class FramebufferAttachmentLayeredCase : public GeometryShaderFeartureTestCase
{
public:
FramebufferAttachmentLayeredCase (Context& context, const char* name, const char* description);
IterateResult iterate (void);
};
FramebufferAttachmentLayeredCase::FramebufferAttachmentLayeredCase (Context& context, const char* name, const char* description)
: GeometryShaderFeartureTestCase(context, name, description)
{
}
FramebufferAttachmentLayeredCase::IterateResult FramebufferAttachmentLayeredCase::iterate (void)
{
enum CaseType
{
TEXTURE_3D,
TEXTURE_2D_ARRAY,
TEXTURE_CUBE,
TEXTURE_2D_MS_ARRAY,
TEXTURE_3D_LAYER,
TEXTURE_2D_ARRAY_LAYER,
};
static const struct TextureType
{
const char* name;
const char* description;
bool layered;
CaseType type;
} textureTypes[] =
{
{ "3D", "3D texture", true, TEXTURE_3D },
{ "2DArray", "2D array", true, TEXTURE_2D_ARRAY },
{ "Cube", "Cube map", true, TEXTURE_CUBE },
{ "2DMSArray", "2D multisample array", true, TEXTURE_2D_MS_ARRAY },
{ "3DLayer", "3D texture layer ", false, TEXTURE_3D_LAYER },
{ "2DArrayLayer", "2D array layer ", false, TEXTURE_2D_ARRAY_LAYER },
};
glu::CallLogWrapper gl(m_context.getRenderContext().getFunctions(), m_testCtx.getLog());
gl.enableLogging(true);
m_testCtx.setTestResult(QP_TEST_RESULT_PASS, "Pass");
for (int ndx = 0; ndx < DE_LENGTH_OF_ARRAY(textureTypes); ++ndx)
{
const tcu::ScopedLogSection section (m_testCtx.getLog(), textureTypes[ndx].name, textureTypes[ndx].description);
const glu::Framebuffer fbo (m_context.getRenderContext());
const glu::Texture texture (m_context.getRenderContext());
glw::GLint layered = -1;
gl.glBindFramebuffer(GL_DRAW_FRAMEBUFFER, *fbo);
if (textureTypes[ndx].type == TEXTURE_3D || textureTypes[ndx].type == TEXTURE_3D_LAYER)
{
gl.glBindTexture(GL_TEXTURE_3D, *texture);
gl.glTexImage3D(GL_TEXTURE_3D, 0, GL_RGBA8, 32, 32, 32, 0, GL_RGBA, GL_UNSIGNED_BYTE, DE_NULL);
gl.glTexParameteri(GL_TEXTURE_3D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
gl.glTexParameteri(GL_TEXTURE_3D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
if (textureTypes[ndx].type == TEXTURE_3D)
gl.glFramebufferTexture(GL_DRAW_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, *texture, 0);
else
gl.glFramebufferTextureLayer(GL_DRAW_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, *texture, 0, 2);
}
else if (textureTypes[ndx].type == TEXTURE_2D_ARRAY || textureTypes[ndx].type == TEXTURE_2D_ARRAY_LAYER)
{
gl.glBindTexture(GL_TEXTURE_2D_ARRAY, *texture);
gl.glTexImage3D(GL_TEXTURE_2D_ARRAY, 0, GL_RGBA8, 32, 32, 32, 0, GL_RGBA, GL_UNSIGNED_BYTE, DE_NULL);
gl.glTexParameteri(GL_TEXTURE_2D_ARRAY, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
gl.glTexParameteri(GL_TEXTURE_2D_ARRAY, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
if (textureTypes[ndx].type == TEXTURE_2D_ARRAY)
gl.glFramebufferTexture(GL_DRAW_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, *texture, 0);
else
gl.glFramebufferTextureLayer(GL_DRAW_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, *texture, 0, 3);
}
else if (textureTypes[ndx].type == TEXTURE_CUBE)
{
gl.glBindTexture(GL_TEXTURE_CUBE_MAP, *texture);
for (int face = 0; face < 6; ++face)
gl.glTexImage2D(GL_TEXTURE_CUBE_MAP_POSITIVE_X + face, 0, GL_RGBA8, 32, 32, 0, GL_RGBA, GL_UNSIGNED_BYTE, DE_NULL);
gl.glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
gl.glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
gl.glFramebufferTexture(GL_DRAW_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, *texture, 0);
}
else if (textureTypes[ndx].type == TEXTURE_2D_MS_ARRAY)
{
// check extension
if (!glu::contextSupports(m_context.getRenderContext().getType(), glu::ApiType::es(3, 2)) && !m_context.getContextInfo().isExtensionSupported("GL_OES_texture_storage_multisample_2d_array"))
{
m_testCtx.getLog() << tcu::TestLog::Message << "Context is not equal or greather than 3.2 and GL_OES_texture_storage_multisample_2d_array not supported, skipping." << tcu::TestLog::EndMessage;
continue;
}
gl.glBindTexture(GL_TEXTURE_2D_MULTISAMPLE_ARRAY, *texture);
gl.glTexStorage3DMultisample(GL_TEXTURE_2D_MULTISAMPLE_ARRAY, 1, GL_RGBA8, 32, 32, 32, GL_FALSE);
gl.glFramebufferTexture(GL_DRAW_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, *texture, 0);
}
GLU_EXPECT_NO_ERROR(gl.glGetError(), "setup attachment");
gl.glGetFramebufferAttachmentParameteriv(GL_DRAW_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_FRAMEBUFFER_ATTACHMENT_LAYERED, &layered);
GLU_EXPECT_NO_ERROR(gl.glGetError(), "getFramebufferParameteriv");
m_testCtx.getLog() << tcu::TestLog::Message << "GL_FRAMEBUFFER_ATTACHMENT_LAYERED = " << glu::getBooleanStr(layered) << tcu::TestLog::EndMessage;
if (layered != GL_TRUE && layered != GL_FALSE)
{
m_testCtx.getLog() << tcu::TestLog::Message << "Error, expected boolean, got " << layered << tcu::TestLog::EndMessage;
m_testCtx.setTestResult(QP_TEST_RESULT_FAIL, "invalid boolean");
}
else if ((layered == GL_TRUE) != textureTypes[ndx].layered)
{
m_testCtx.getLog() << tcu::TestLog::Message << "Error, expected " << ((textureTypes[ndx].layered) ? ("GL_TRUE") : ("GL_FALSE")) << ", got " << glu::getBooleanStr(layered) << tcu::TestLog::EndMessage;
m_testCtx.setTestResult(QP_TEST_RESULT_FAIL, "invalid layer count");
}
}
return STOP;
}
class FramebufferIncompleteLayereTargetsCase : public GeometryShaderFeartureTestCase
{
public:
FramebufferIncompleteLayereTargetsCase (Context& context, const char* name, const char* description);
IterateResult iterate (void);
};
FramebufferIncompleteLayereTargetsCase::FramebufferIncompleteLayereTargetsCase (Context& context, const char* name, const char* description)
: GeometryShaderFeartureTestCase(context, name, description)
{
}
FramebufferIncompleteLayereTargetsCase::IterateResult FramebufferIncompleteLayereTargetsCase::iterate (void)
{
glu::CallLogWrapper gl(m_context.getRenderContext().getFunctions(), m_testCtx.getLog());
gl.enableLogging(true);
m_testCtx.setTestResult(QP_TEST_RESULT_PASS, "Pass");
{
const tcu::ScopedLogSection section (m_testCtx.getLog(), "LayerAndNonLayer", "Layered and non-layered");
const glu::Framebuffer fbo (m_context.getRenderContext());
const glu::Texture texture0 (m_context.getRenderContext());
const glu::Texture texture1 (m_context.getRenderContext());
glw::GLint fboStatus;
gl.glBindTexture(GL_TEXTURE_2D_ARRAY, *texture0);
gl.glTexImage3D(GL_TEXTURE_2D_ARRAY, 0, GL_RGBA8, 32, 32, 32, 0, GL_RGBA, GL_UNSIGNED_BYTE, DE_NULL);
gl.glTexParameteri(GL_TEXTURE_2D_ARRAY, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
gl.glTexParameteri(GL_TEXTURE_2D_ARRAY, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
gl.glBindTexture(GL_TEXTURE_2D_ARRAY, *texture1);
gl.glTexImage3D(GL_TEXTURE_2D_ARRAY, 0, GL_RGBA8, 32, 32, 32, 0, GL_RGBA, GL_UNSIGNED_BYTE, DE_NULL);
gl.glTexParameteri(GL_TEXTURE_2D_ARRAY, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
gl.glTexParameteri(GL_TEXTURE_2D_ARRAY, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
gl.glBindFramebuffer(GL_DRAW_FRAMEBUFFER, *fbo);
gl.glFramebufferTexture(GL_DRAW_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, *texture0, 0);
gl.glFramebufferTextureLayer(GL_DRAW_FRAMEBUFFER, GL_COLOR_ATTACHMENT1, *texture1, 0, 0);
GLU_EXPECT_NO_ERROR(gl.glGetError(), "setup fbo");
fboStatus = gl.glCheckFramebufferStatus(GL_DRAW_FRAMEBUFFER);
m_testCtx.getLog() << tcu::TestLog::Message << "Framebuffer status: " << glu::getFramebufferStatusStr(fboStatus) << tcu::TestLog::EndMessage;
if (fboStatus != GL_FRAMEBUFFER_INCOMPLETE_LAYER_TARGETS)
{
m_testCtx.getLog() << tcu::TestLog::Message << "Error, expected GL_FRAMEBUFFER_INCOMPLETE_LAYER_TARGETS, got " << glu::getFramebufferStatusStr(fboStatus) << tcu::TestLog::EndMessage;
m_testCtx.setTestResult(QP_TEST_RESULT_FAIL, "invalid layer count");
}
}
{
const tcu::ScopedLogSection section (m_testCtx.getLog(), "DifferentTarget", "Different target");
const glu::Framebuffer fbo (m_context.getRenderContext());
const glu::Texture texture0 (m_context.getRenderContext());
const glu::Texture texture1 (m_context.getRenderContext());
glw::GLint fboStatus;
gl.glBindTexture(GL_TEXTURE_2D_ARRAY, *texture0);
gl.glTexImage3D(GL_TEXTURE_2D_ARRAY, 0, GL_RGBA8, 32, 32, 32, 0, GL_RGBA, GL_UNSIGNED_BYTE, DE_NULL);
gl.glTexParameteri(GL_TEXTURE_2D_ARRAY, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
gl.glTexParameteri(GL_TEXTURE_2D_ARRAY, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
gl.glBindTexture(GL_TEXTURE_3D, *texture1);
gl.glTexImage3D(GL_TEXTURE_3D, 0, GL_RGBA8, 32, 32, 32, 0, GL_RGBA, GL_UNSIGNED_BYTE, DE_NULL);
gl.glTexParameteri(GL_TEXTURE_3D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
gl.glTexParameteri(GL_TEXTURE_3D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
gl.glBindFramebuffer(GL_DRAW_FRAMEBUFFER, *fbo);
gl.glFramebufferTexture(GL_DRAW_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, *texture0, 0);
gl.glFramebufferTexture(GL_DRAW_FRAMEBUFFER, GL_COLOR_ATTACHMENT1, *texture1, 0);
GLU_EXPECT_NO_ERROR(gl.glGetError(), "setup fbo");
fboStatus = gl.glCheckFramebufferStatus(GL_DRAW_FRAMEBUFFER);
m_testCtx.getLog() << tcu::TestLog::Message << "Framebuffer status: " << glu::getFramebufferStatusStr(fboStatus) << tcu::TestLog::EndMessage;
if (fboStatus != GL_FRAMEBUFFER_INCOMPLETE_LAYER_TARGETS)
{
m_testCtx.getLog() << tcu::TestLog::Message << "Error, expected GL_FRAMEBUFFER_INCOMPLETE_LAYER_TARGETS, got " << glu::getFramebufferStatusStr(fboStatus) << tcu::TestLog::EndMessage;
m_testCtx.setTestResult(QP_TEST_RESULT_FAIL, "invalid layer count");
}
}
return STOP;
}
class ReferencedByGeometryShaderCase : public GeometryShaderFeartureTestCase
{
public:
ReferencedByGeometryShaderCase (Context& context, const char* name, const char* description);
IterateResult iterate (void);
};
ReferencedByGeometryShaderCase::ReferencedByGeometryShaderCase (Context& context, const char* name, const char* description)
: GeometryShaderFeartureTestCase(context, name, description)
{
}
ReferencedByGeometryShaderCase::IterateResult ReferencedByGeometryShaderCase::iterate (void)
{
m_testCtx.setTestResult(QP_TEST_RESULT_PASS, "Pass");
{
static const char* const vertexSource = "${GLSL_VERSION_DECL}\n"
"uniform highp vec4 u_position;\n"
"void main (void)\n"
"{\n"
" gl_Position = u_position;\n"
"}\n";
static const char* const fragmentSource = "${GLSL_VERSION_DECL}\n"
"layout(location = 0) out mediump vec4 fragColor;\n"
"void main (void)\n"
"{\n"
" fragColor = vec4(1.0, 1.0, 1.0, 1.0);\n"
"}\n";
static const char* const geometrySource = "${GLSL_VERSION_DECL}\n"
"${GLSL_EXT_GEOMETRY_SHADER}"
"layout(points) in;\n"
"layout(points, max_vertices=1) out;\n"
"uniform highp vec4 u_offset;\n"
"void main (void)\n"
"{\n"
" gl_Position = gl_in[0].gl_Position + u_offset;\n"
" EmitVertex();\n"
"}\n";
const glu::ShaderProgram program(m_context.getRenderContext(), glu::ProgramSources()
<< glu::VertexSource(specializeShader(vertexSource, m_context.getRenderContext().getType()))
<< glu::FragmentSource(specializeShader(fragmentSource, m_context.getRenderContext().getType()))
<< glu::GeometrySource(specializeShader(geometrySource, m_context.getRenderContext().getType())));
m_testCtx.getLog() << program;
{
const tcu::ScopedLogSection section (m_testCtx.getLog(), "UnreferencedUniform", "Unreferenced uniform u_position");
glu::CallLogWrapper gl (m_context.getRenderContext().getFunctions(), m_testCtx.getLog());
const deUint32 props[1] = { GL_REFERENCED_BY_GEOMETRY_SHADER };
deUint32 resourcePos;
glw::GLsizei length = 0;
glw::GLint referenced = 0;
gl.enableLogging(true);
resourcePos = gl.glGetProgramResourceIndex(program.getProgram(), GL_UNIFORM, "u_position");
m_testCtx.getLog() << tcu::TestLog::Message << "u_position resource index: " << resourcePos << tcu::TestLog::EndMessage;
gl.glGetProgramResourceiv(program.getProgram(), GL_UNIFORM, resourcePos, 1, props, 1, &length, &referenced);
m_testCtx.getLog() << tcu::TestLog::Message << "Query GL_REFERENCED_BY_GEOMETRY_SHADER, got " << length << " value(s), value[0] = " << glu::getBooleanStr(referenced) << tcu::TestLog::EndMessage;
GLU_EXPECT_NO_ERROR(gl.glGetError(), "query resource");
if (length == 0 || referenced != GL_FALSE)
{
m_testCtx.getLog() << tcu::TestLog::Message << "Error, expected GL_FALSE." << tcu::TestLog::EndMessage;
m_testCtx.setTestResult(QP_TEST_RESULT_FAIL, "got unexpected value");
}
}
{
const tcu::ScopedLogSection section (m_testCtx.getLog(), "ReferencedUniform", "Referenced uniform u_offset");
glu::CallLogWrapper gl (m_context.getRenderContext().getFunctions(), m_testCtx.getLog());
const deUint32 props[1] = { GL_REFERENCED_BY_GEOMETRY_SHADER };
deUint32 resourcePos;
glw::GLsizei length = 0;
glw::GLint referenced = 0;
gl.enableLogging(true);
resourcePos = gl.glGetProgramResourceIndex(program.getProgram(), GL_UNIFORM, "u_offset");
m_testCtx.getLog() << tcu::TestLog::Message << "u_offset resource index: " << resourcePos << tcu::TestLog::EndMessage;
gl.glGetProgramResourceiv(program.getProgram(), GL_UNIFORM, resourcePos, 1, props, 1, &length, &referenced);
m_testCtx.getLog() << tcu::TestLog::Message << "Query GL_REFERENCED_BY_GEOMETRY_SHADER, got " << length << " value(s), value[0] = " << glu::getBooleanStr(referenced) << tcu::TestLog::EndMessage;
GLU_EXPECT_NO_ERROR(gl.glGetError(), "query resource");
if (length == 0 || referenced != GL_TRUE)
{
m_testCtx.getLog() << tcu::TestLog::Message << "Error, expected GL_TRUE." << tcu::TestLog::EndMessage;
m_testCtx.setTestResult(QP_TEST_RESULT_FAIL, "got unexpected value");
}
}
}
return STOP;
}
class CombinedGeometryUniformLimitCase : public GeometryShaderFeartureTestCase
{
public:
CombinedGeometryUniformLimitCase (Context& context, const char* name, const char* desc);
private:
IterateResult iterate (void);
};
CombinedGeometryUniformLimitCase::CombinedGeometryUniformLimitCase (Context& context, const char* name, const char* desc)
: GeometryShaderFeartureTestCase(context, name, desc)
{
}
CombinedGeometryUniformLimitCase::IterateResult CombinedGeometryUniformLimitCase::iterate (void)
{
glu::CallLogWrapper gl (m_context.getRenderContext().getFunctions(), m_testCtx.getLog());
tcu::ResultCollector result (m_testCtx.getLog(), " // ERROR: ");
gl.enableLogging(true);
m_testCtx.getLog() << tcu::TestLog::Message
<< "The minimum value of MAX_COMBINED_GEOMETRY_UNIFORM_COMPONENTS is MAX_GEOMETRY_UNIFORM_BLOCKS x MAX_UNIFORM_BLOCK_SIZE / 4 + MAX_GEOMETRY_UNIFORM_COMPONENTS"
<< tcu::TestLog::EndMessage;
StateQueryMemoryWriteGuard<glw::GLint> maxUniformBlocks;
gl.glGetIntegerv(GL_MAX_GEOMETRY_UNIFORM_BLOCKS, &maxUniformBlocks);
GLS_COLLECT_GL_ERROR(result, gl.glGetError(), "glGetIntegerv");
StateQueryMemoryWriteGuard<glw::GLint> maxUniformBlockSize;
gl.glGetIntegerv(GL_MAX_UNIFORM_BLOCK_SIZE, &maxUniformBlockSize);
GLS_COLLECT_GL_ERROR(result, gl.glGetError(), "glGetIntegerv");
StateQueryMemoryWriteGuard<glw::GLint> maxUniformComponents;
gl.glGetIntegerv(GL_MAX_GEOMETRY_UNIFORM_COMPONENTS, &maxUniformComponents);
GLS_COLLECT_GL_ERROR(result, gl.glGetError(), "glGetIntegerv");
if (maxUniformBlocks.verifyValidity(result) && maxUniformBlockSize.verifyValidity(result) && maxUniformComponents.verifyValidity(result))
{
const int limit = ((int)maxUniformBlocks) * ((int)maxUniformBlockSize) / 4 + (int)maxUniformComponents;
verifyStateIntegerMin(result, gl, GL_MAX_COMBINED_GEOMETRY_UNIFORM_COMPONENTS, limit, QUERY_INTEGER);
{
const tcu::ScopedLogSection section(m_testCtx.getLog(), "Types", "Alternative queries");
verifyStateIntegerMin(result, gl, GL_MAX_COMBINED_GEOMETRY_UNIFORM_COMPONENTS, limit, QUERY_BOOLEAN);
verifyStateIntegerMin(result, gl, GL_MAX_COMBINED_GEOMETRY_UNIFORM_COMPONENTS, limit, QUERY_INTEGER64);
verifyStateIntegerMin(result, gl, GL_MAX_COMBINED_GEOMETRY_UNIFORM_COMPONENTS, limit, QUERY_FLOAT);
}
}
result.setTestContextResult(m_testCtx);
return STOP;
}
class VertexFeedbackCase : public TestCase
{
public:
enum DrawMethod
{
METHOD_DRAW_ARRAYS = 0,
METHOD_DRAW_ARRAYS_INSTANCED,
METHOD_DRAW_ARRAYS_INDIRECT,
METHOD_DRAW_ELEMENTS,
METHOD_DRAW_ELEMENTS_INSTANCED,
METHOD_DRAW_ELEMENTS_INDIRECT,
METHOD_LAST
};
enum PrimitiveType
{
PRIMITIVE_LINE_LOOP = 0,
PRIMITIVE_LINE_STRIP,
PRIMITIVE_TRIANGLE_STRIP,
PRIMITIVE_TRIANGLE_FAN,
PRIMITIVE_POINTS,
PRIMITIVE_LAST
};
VertexFeedbackCase (Context& context, const char* name, const char* description, DrawMethod method, PrimitiveType output);
~VertexFeedbackCase (void);
private:
void init (void);
void deinit (void);
IterateResult iterate (void);
glu::ShaderProgram* genProgram (void);
deUint32 getOutputPrimitive (void);
deUint32 getBasePrimitive (void);
const DrawMethod m_method;
const PrimitiveType m_output;
deUint32 m_elementBuf;
deUint32 m_arrayBuf;
deUint32 m_offsetBuf;
deUint32 m_feedbackBuf;
deUint32 m_indirectBuffer;
glu::ShaderProgram* m_program;
glu::VertexArray* m_vao;
};
VertexFeedbackCase::VertexFeedbackCase (Context& context, const char* name, const char* description, DrawMethod method, PrimitiveType output)
: TestCase (context, name, description)
, m_method (method)
, m_output (output)
, m_elementBuf (0)
, m_arrayBuf (0)
, m_offsetBuf (0)
, m_feedbackBuf (0)
, m_indirectBuffer (0)
, m_program (DE_NULL)
, m_vao (DE_NULL)
{
DE_ASSERT(method < METHOD_LAST);
DE_ASSERT(output < PRIMITIVE_LAST);
}
VertexFeedbackCase::~VertexFeedbackCase (void)
{
deinit();
}
void VertexFeedbackCase::init (void)
{
// requirements
if (!glu::contextSupports(m_context.getRenderContext().getType(), glu::ApiType::es(3, 2)) && !m_context.getContextInfo().isExtensionSupported("GL_EXT_geometry_shader"))
TCU_THROW(NotSupportedError, "Tests require GL_EXT_geometry_shader extension or higher context version.");
// log what test tries to do
m_testCtx.getLog()
<< tcu::TestLog::Message
<< "Testing GL_EXT_geometry_shader transform feedback relaxations.\n"
<< "Capturing vertex shader varying, no geometry shader. Invoke with:"
<< tcu::TestLog::EndMessage;
switch (m_method)
{
case METHOD_DRAW_ARRAYS: m_testCtx.getLog() << tcu::TestLog::Message << "Draw method: drawArrays" << tcu::TestLog::EndMessage; break;
case METHOD_DRAW_ARRAYS_INSTANCED: m_testCtx.getLog() << tcu::TestLog::Message << "Draw method: drawArraysInstanced" << tcu::TestLog::EndMessage; break;
case METHOD_DRAW_ARRAYS_INDIRECT: m_testCtx.getLog() << tcu::TestLog::Message << "Draw method: drawArraysIndirect" << tcu::TestLog::EndMessage; break;
case METHOD_DRAW_ELEMENTS: m_testCtx.getLog() << tcu::TestLog::Message << "Draw method: drawElements" << tcu::TestLog::EndMessage; break;
case METHOD_DRAW_ELEMENTS_INSTANCED: m_testCtx.getLog() << tcu::TestLog::Message << "Draw method: drawElementsInstanced" << tcu::TestLog::EndMessage; break;
case METHOD_DRAW_ELEMENTS_INDIRECT: m_testCtx.getLog() << tcu::TestLog::Message << "Draw method: drawElementsIndirect" << tcu::TestLog::EndMessage; break;
default:
DE_ASSERT(false);
}
switch (m_output)
{
case PRIMITIVE_LINE_LOOP: m_testCtx.getLog() << tcu::TestLog::Message << "Draw primitive: line loop" << tcu::TestLog::EndMessage; break;
case PRIMITIVE_LINE_STRIP: m_testCtx.getLog() << tcu::TestLog::Message << "Draw primitive: line strip" << tcu::TestLog::EndMessage; break;
case PRIMITIVE_TRIANGLE_STRIP: m_testCtx.getLog() << tcu::TestLog::Message << "Draw primitive: triangle strip" << tcu::TestLog::EndMessage; break;
case PRIMITIVE_TRIANGLE_FAN: m_testCtx.getLog() << tcu::TestLog::Message << "Draw primitive: triangle fan" << tcu::TestLog::EndMessage; break;
case PRIMITIVE_POINTS: m_testCtx.getLog() << tcu::TestLog::Message << "Draw primitive: points" << tcu::TestLog::EndMessage; break;
default:
DE_ASSERT(false);
}
// resources
{
static const deUint16 elementData[] =
{
0, 1, 2, 3,
};
static const tcu::Vec4 arrayData[] =
{
tcu::Vec4(0.0f, 0.0f, 0.0f, 0.0f),
tcu::Vec4(1.0f, 0.0f, 0.0f, 0.0f),
tcu::Vec4(2.0f, 0.0f, 0.0f, 0.0f),
tcu::Vec4(3.0f, 0.0f, 0.0f, 0.0f),
};
static const tcu::Vec4 offsetData[] =
{
tcu::Vec4(0.0f, 0.0f, 0.0f, 0.0f),
tcu::Vec4(0.0f, 0.0f, 0.0f, 0.0f),
tcu::Vec4(0.0f, 0.0f, 0.0f, 0.0f),
tcu::Vec4(0.0f, 0.0f, 0.0f, 0.0f),
};
const glw::Functions& gl = m_context.getRenderContext().getFunctions();
const int feedbackSize = 8 * (int)sizeof(float[4]);
m_vao = new glu::VertexArray(m_context.getRenderContext());
gl.bindVertexArray(**m_vao);
GLU_EXPECT_NO_ERROR(gl.getError(), "set up vao");
gl.genBuffers(1, &m_elementBuf);
gl.bindBuffer(GL_ELEMENT_ARRAY_BUFFER, m_elementBuf);
gl.bufferData(GL_ELEMENT_ARRAY_BUFFER, sizeof(elementData), &elementData[0], GL_STATIC_DRAW);
GLU_EXPECT_NO_ERROR(gl.getError(), "gen buf");
gl.genBuffers(1, &m_arrayBuf);
gl.bindBuffer(GL_ARRAY_BUFFER, m_arrayBuf);
gl.bufferData(GL_ARRAY_BUFFER, sizeof(arrayData), &arrayData[0], GL_STATIC_DRAW);
GLU_EXPECT_NO_ERROR(gl.getError(), "gen buf");
gl.genBuffers(1, &m_offsetBuf);
gl.bindBuffer(GL_ARRAY_BUFFER, m_offsetBuf);
gl.bufferData(GL_ARRAY_BUFFER, sizeof(offsetData), &offsetData[0], GL_STATIC_DRAW);
GLU_EXPECT_NO_ERROR(gl.getError(), "gen buf");
gl.genBuffers(1, &m_feedbackBuf);
gl.bindBuffer(GL_TRANSFORM_FEEDBACK_BUFFER, m_feedbackBuf);
gl.bufferData(GL_TRANSFORM_FEEDBACK_BUFFER, feedbackSize, DE_NULL, GL_DYNAMIC_COPY);
GLU_EXPECT_NO_ERROR(gl.getError(), "gen buf");
m_program = genProgram();
if (!m_program->isOk())
{
m_testCtx.getLog() << *m_program;
throw tcu::TestError("could not build program");
}
}
}
void VertexFeedbackCase::deinit (void)
{
if (m_elementBuf)
{
m_context.getRenderContext().getFunctions().deleteBuffers(1, &m_elementBuf);
m_elementBuf = 0;
}
if (m_arrayBuf)
{
m_context.getRenderContext().getFunctions().deleteBuffers(1, &m_arrayBuf);
m_arrayBuf = 0;
}
if (m_offsetBuf)
{
m_context.getRenderContext().getFunctions().deleteBuffers(1, &m_offsetBuf);
m_offsetBuf = 0;
}
if (m_feedbackBuf)
{
m_context.getRenderContext().getFunctions().deleteBuffers(1, &m_feedbackBuf);
m_feedbackBuf = 0;
}
if (m_indirectBuffer)
{
m_context.getRenderContext().getFunctions().deleteBuffers(1, &m_indirectBuffer);
m_indirectBuffer = 0;
}
delete m_program;
m_program = DE_NULL;
delete m_vao;
m_vao = DE_NULL;
}
VertexFeedbackCase::IterateResult VertexFeedbackCase::iterate (void)
{
const glw::Functions& gl = m_context.getRenderContext().getFunctions();
const deUint32 outputPrimitive = getOutputPrimitive();
const deUint32 basePrimitive = getBasePrimitive();
const int posLocation = gl.getAttribLocation(m_program->getProgram(), "a_position");
const int offsetLocation = gl.getAttribLocation(m_program->getProgram(), "a_offset");
if (posLocation == -1)
throw tcu::TestError("a_position location was -1");
if (offsetLocation == -1)
throw tcu::TestError("a_offset location was -1");
gl.useProgram(m_program->getProgram());
gl.bindBuffer(GL_ARRAY_BUFFER, m_arrayBuf);
gl.vertexAttribPointer(posLocation, 4, GL_FLOAT, GL_FALSE, 0, DE_NULL);
gl.enableVertexAttribArray(posLocation);
gl.bindBuffer(GL_ARRAY_BUFFER, m_offsetBuf);
gl.vertexAttribPointer(offsetLocation, 4, GL_FLOAT, GL_FALSE, 0, DE_NULL);
gl.enableVertexAttribArray(offsetLocation);
gl.bindBufferBase(GL_TRANSFORM_FEEDBACK_BUFFER, 0, m_feedbackBuf);
GLU_EXPECT_NO_ERROR(gl.getError(), "bind buffer base");
m_testCtx.getLog() << tcu::TestLog::Message << "Calling BeginTransformFeedback(" << glu::getPrimitiveTypeStr(basePrimitive) << ")" << tcu::TestLog::EndMessage;
gl.beginTransformFeedback(basePrimitive);
GLU_EXPECT_NO_ERROR(gl.getError(), "beginTransformFeedback");
switch (m_method)
{
case METHOD_DRAW_ARRAYS:
{
m_testCtx.getLog() << tcu::TestLog::Message << "Calling DrawArrays(" << glu::getPrimitiveTypeStr(outputPrimitive) << ", ...)" << tcu::TestLog::EndMessage;
gl.drawArrays(outputPrimitive, 0, 4);
break;
}
case METHOD_DRAW_ARRAYS_INSTANCED:
{
m_testCtx.getLog() << tcu::TestLog::Message << "Calling DrawArraysInstanced(" << glu::getPrimitiveTypeStr(outputPrimitive) << ", ...)" << tcu::TestLog::EndMessage;
gl.vertexAttribDivisor(offsetLocation, 2);
gl.drawArraysInstanced(outputPrimitive, 0, 3, 2);
break;
}
case METHOD_DRAW_ELEMENTS:
{
m_testCtx.getLog() << tcu::TestLog::Message << "Calling DrawElements(" << glu::getPrimitiveTypeStr(outputPrimitive) << ", ...)" << tcu::TestLog::EndMessage;
gl.drawElements(outputPrimitive, 4, GL_UNSIGNED_SHORT, DE_NULL);
break;
}
case METHOD_DRAW_ELEMENTS_INSTANCED:
{
m_testCtx.getLog() << tcu::TestLog::Message << "Calling DrawElementsInstanced(" << glu::getPrimitiveTypeStr(outputPrimitive) << ", ...)" << tcu::TestLog::EndMessage;
gl.drawElementsInstanced(outputPrimitive, 3, GL_UNSIGNED_SHORT, DE_NULL, 2);
break;
}
case METHOD_DRAW_ARRAYS_INDIRECT:
{
struct DrawArraysIndirectCommand
{
deUint32 count;
deUint32 instanceCount;
deUint32 first;
deUint32 reservedMustBeZero;
} params;
DE_STATIC_ASSERT(sizeof(DrawArraysIndirectCommand) == sizeof(deUint32[4]));
params.count = 4;
params.instanceCount = 1;
params.first = 0;
params.reservedMustBeZero = 0;
gl.genBuffers(1, &m_indirectBuffer);
gl.bindBuffer(GL_DRAW_INDIRECT_BUFFER, m_indirectBuffer);
gl.bufferData(GL_DRAW_INDIRECT_BUFFER, sizeof(params), ¶ms, GL_STATIC_DRAW);
m_testCtx.getLog() << tcu::TestLog::Message << "Calling DrawElementsIndirect(" << glu::getPrimitiveTypeStr(outputPrimitive) << ", ...)" << tcu::TestLog::EndMessage;
gl.drawArraysIndirect(outputPrimitive, DE_NULL);
break;
}
case METHOD_DRAW_ELEMENTS_INDIRECT:
{
struct DrawElementsIndirectCommand
{
deUint32 count;
deUint32 instanceCount;
deUint32 firstIndex;
deInt32 baseVertex;
deUint32 reservedMustBeZero;
} params;
DE_STATIC_ASSERT(sizeof(DrawElementsIndirectCommand) == sizeof(deUint32[5]));
params.count = 4;
params.instanceCount = 1;
params.firstIndex = 0;
params.baseVertex = 0;
params.reservedMustBeZero = 0;
gl.genBuffers(1, &m_indirectBuffer);
gl.bindBuffer(GL_DRAW_INDIRECT_BUFFER, m_indirectBuffer);
gl.bufferData(GL_DRAW_INDIRECT_BUFFER, sizeof(params), ¶ms, GL_STATIC_DRAW);
m_testCtx.getLog() << tcu::TestLog::Message << "Calling DrawElementsIndirect(" << glu::getPrimitiveTypeStr(outputPrimitive) << ", ...)" << tcu::TestLog::EndMessage;
gl.drawElementsIndirect(outputPrimitive, GL_UNSIGNED_SHORT, DE_NULL);
break;
}
default:
DE_ASSERT(false);
}
GLU_EXPECT_NO_ERROR(gl.getError(), "draw");
gl.endTransformFeedback();
GLU_EXPECT_NO_ERROR(gl.getError(), "endTransformFeedback");
m_testCtx.getLog() << tcu::TestLog::Message << "No errors." << tcu::TestLog::EndMessage;
m_testCtx.setTestResult(QP_TEST_RESULT_PASS, "Pass");
return STOP;
}
glu::ShaderProgram* VertexFeedbackCase::genProgram (void)
{
static const char* const vertexSource = "${GLSL_VERSION_DECL}\n"
"in highp vec4 a_position;\n"
"in highp vec4 a_offset;\n"
"out highp vec4 tf_value;\n"
"void main (void)\n"
"{\n"
" gl_Position = a_position;\n"
" tf_value = a_position + a_offset;\n"
"}\n";
static const char* const fragmentSource = "${GLSL_VERSION_DECL}\n"
"layout(location = 0) out mediump vec4 fragColor;\n"
"void main (void)\n"
"{\n"
" fragColor = vec4(1.0);\n"
"}\n";
return new glu::ShaderProgram(m_context.getRenderContext(), glu::ProgramSources()
<< glu::VertexSource(specializeShader(vertexSource, m_context.getRenderContext().getType()))
<< glu::FragmentSource(specializeShader(fragmentSource, m_context.getRenderContext().getType()))
<< glu::TransformFeedbackVarying("tf_value")
<< glu::TransformFeedbackMode(GL_INTERLEAVED_ATTRIBS));
}
deUint32 VertexFeedbackCase::getOutputPrimitive (void)
{
switch(m_output)
{
case PRIMITIVE_LINE_LOOP: return GL_LINE_LOOP;
case PRIMITIVE_LINE_STRIP: return GL_LINE_STRIP;
case PRIMITIVE_TRIANGLE_STRIP: return GL_TRIANGLE_STRIP;
case PRIMITIVE_TRIANGLE_FAN: return GL_TRIANGLE_FAN;
case PRIMITIVE_POINTS: return GL_POINTS;
default:
DE_ASSERT(false);
return 0;
}
}
deUint32 VertexFeedbackCase::getBasePrimitive (void)
{
switch(m_output)
{
case PRIMITIVE_LINE_LOOP: return GL_LINES;
case PRIMITIVE_LINE_STRIP: return GL_LINES;
case PRIMITIVE_TRIANGLE_STRIP: return GL_TRIANGLES;
case PRIMITIVE_TRIANGLE_FAN: return GL_TRIANGLES;
case PRIMITIVE_POINTS: return GL_POINTS;
default:
DE_ASSERT(false);
return 0;
}
}
class VertexFeedbackOverflowCase : public TestCase
{
public:
enum Method
{
METHOD_DRAW_ARRAYS = 0,
METHOD_DRAW_ELEMENTS,
};
VertexFeedbackOverflowCase (Context& context, const char* name, const char* description, Method method);
~VertexFeedbackOverflowCase (void);
private:
void init (void);
void deinit (void);
IterateResult iterate (void);
glu::ShaderProgram* genProgram (void);
const Method m_method;
deUint32 m_elementBuf;
deUint32 m_arrayBuf;
deUint32 m_feedbackBuf;
glu::ShaderProgram* m_program;
glu::VertexArray* m_vao;
};
VertexFeedbackOverflowCase::VertexFeedbackOverflowCase (Context& context, const char* name, const char* description, Method method)
: TestCase (context, name, description)
, m_method (method)
, m_elementBuf (0)
, m_arrayBuf (0)
, m_feedbackBuf (0)
, m_program (DE_NULL)
, m_vao (DE_NULL)
{
}
VertexFeedbackOverflowCase::~VertexFeedbackOverflowCase (void)
{
deinit();
}
void VertexFeedbackOverflowCase::init (void)
{
// requirements
if (!glu::contextSupports(m_context.getRenderContext().getType(), glu::ApiType::es(3, 2)) && !m_context.getContextInfo().isExtensionSupported("GL_EXT_geometry_shader"))
TCU_THROW(NotSupportedError, "Tests require GL_EXT_geometry_shader extension or higher context version.");
// log what test tries to do
m_testCtx.getLog()
<< tcu::TestLog::Message
<< "Testing GL_EXT_geometry_shader transform feedback overflow behavior.\n"
<< "Capturing vertex shader varying, rendering 2 triangles. Allocating feedback buffer for 5 vertices."
<< tcu::TestLog::EndMessage;
// resources
{
static const deUint16 elementData[] =
{
0, 1, 2,
0, 1, 2,
};
static const tcu::Vec4 arrayData[] =
{
tcu::Vec4(1.0f, 1.0f, 1.0f, 1.0f),
tcu::Vec4(1.0f, 1.0f, 1.0f, 1.0f),
tcu::Vec4(1.0f, 1.0f, 1.0f, 1.0f),
tcu::Vec4(1.0f, 1.0f, 1.0f, 1.0f),
};
const glw::Functions& gl = m_context.getRenderContext().getFunctions();
m_vao = new glu::VertexArray(m_context.getRenderContext());
gl.bindVertexArray(**m_vao);
GLU_EXPECT_NO_ERROR(gl.getError(), "set up vao");
if (m_method == METHOD_DRAW_ELEMENTS)
{
gl.genBuffers(1, &m_elementBuf);
gl.bindBuffer(GL_ELEMENT_ARRAY_BUFFER, m_elementBuf);
gl.bufferData(GL_ELEMENT_ARRAY_BUFFER, sizeof(elementData), &elementData[0], GL_STATIC_DRAW);
GLU_EXPECT_NO_ERROR(gl.getError(), "gen buf");
}
gl.genBuffers(1, &m_arrayBuf);
gl.bindBuffer(GL_ARRAY_BUFFER, m_arrayBuf);
gl.bufferData(GL_ARRAY_BUFFER, sizeof(arrayData), &arrayData[0], GL_STATIC_DRAW);
GLU_EXPECT_NO_ERROR(gl.getError(), "gen buf");
{
const int feedbackCount = 5 * 4; // 5x vec4
const std::vector<float> initialBufferContents (feedbackCount, -1.0f);
m_testCtx.getLog() << tcu::TestLog::Message << "Filling feeback buffer with dummy value (-1.0)." << tcu::TestLog::EndMessage;
gl.genBuffers(1, &m_feedbackBuf);
gl.bindBuffer(GL_TRANSFORM_FEEDBACK_BUFFER, m_feedbackBuf);
gl.bufferData(GL_TRANSFORM_FEEDBACK_BUFFER, (int)(sizeof(float) * initialBufferContents.size()), &initialBufferContents[0], GL_DYNAMIC_COPY);
GLU_EXPECT_NO_ERROR(gl.getError(), "gen buf");
}
m_program = genProgram();
if (!m_program->isOk())
{
m_testCtx.getLog() << *m_program;
throw tcu::TestError("could not build program");
}
}
}
void VertexFeedbackOverflowCase::deinit (void)
{
if (m_elementBuf)
{
m_context.getRenderContext().getFunctions().deleteBuffers(1, &m_elementBuf);
m_elementBuf = 0;
}
if (m_arrayBuf)
{
m_context.getRenderContext().getFunctions().deleteBuffers(1, &m_arrayBuf);
m_arrayBuf = 0;
}
if (m_feedbackBuf)
{
m_context.getRenderContext().getFunctions().deleteBuffers(1, &m_feedbackBuf);
m_feedbackBuf = 0;
}
delete m_program;
m_program = DE_NULL;
delete m_vao;
m_vao = DE_NULL;
}
VertexFeedbackOverflowCase::IterateResult VertexFeedbackOverflowCase::iterate (void)
{
const glw::Functions& gl = m_context.getRenderContext().getFunctions();
const int posLocation = gl.getAttribLocation(m_program->getProgram(), "a_position");
if (posLocation == -1)
throw tcu::TestError("a_position location was -1");
gl.useProgram(m_program->getProgram());
gl.bindBuffer(GL_ARRAY_BUFFER, m_arrayBuf);
gl.vertexAttribPointer(posLocation, 4, GL_FLOAT, GL_FALSE, 0, DE_NULL);
gl.enableVertexAttribArray(posLocation);
if (m_method == METHOD_DRAW_ELEMENTS)
{
gl.bindBuffer(GL_ELEMENT_ARRAY_BUFFER, m_elementBuf);
GLU_EXPECT_NO_ERROR(gl.getError(), "bind buffers");
}
gl.bindBufferBase(GL_TRANSFORM_FEEDBACK_BUFFER, 0, m_feedbackBuf);
GLU_EXPECT_NO_ERROR(gl.getError(), "bind buffer base");
m_testCtx.getLog() << tcu::TestLog::Message << "Capturing 2 triangles." << tcu::TestLog::EndMessage;
gl.beginTransformFeedback(GL_TRIANGLES);
if (m_method == METHOD_DRAW_ELEMENTS)
gl.drawElements(GL_TRIANGLES, 6, GL_UNSIGNED_SHORT, DE_NULL);
else if (m_method == METHOD_DRAW_ARRAYS)
gl.drawArrays(GL_TRIANGLE_STRIP, 0, 4);
else
DE_ASSERT(false);
gl.endTransformFeedback();
GLU_EXPECT_NO_ERROR(gl.getError(), "capture");
m_testCtx.getLog() << tcu::TestLog::Message << "Verifying final triangle was not partially written to the feedback buffer." << tcu::TestLog::EndMessage;
{
const void* ptr = gl.mapBufferRange(GL_TRANSFORM_FEEDBACK_BUFFER, 0, sizeof(float[4]) * 5, GL_MAP_READ_BIT);
std::vector<float> feedback;
bool error = false;
GLU_EXPECT_NO_ERROR(gl.getError(), "mapBufferRange");
if (!ptr)
throw tcu::TestError("mapBufferRange returned null");
feedback.resize(5*4);
deMemcpy(&feedback[0], ptr, sizeof(float[4]) * 5);
if (gl.unmapBuffer(GL_TRANSFORM_FEEDBACK_BUFFER) != GL_TRUE)
throw tcu::TestError("unmapBuffer returned false");
// Verify vertices 0 - 2
for (int vertex = 0; vertex < 3; ++vertex)
{
for (int component = 0; component < 4; ++component)
{
if (feedback[vertex*4 + component] != 1.0f)
{
m_testCtx.getLog()
<< tcu::TestLog::Message
<< "Feedback buffer vertex " << vertex << ", component " << component << ": unexpected value, expected 1.0, got " << feedback[vertex*4 + component]
<< tcu::TestLog::EndMessage;
error = true;
}
}
}
// Verify vertices 3 - 4
for (int vertex = 3; vertex < 5; ++vertex)
{
for (int component = 0; component < 4; ++component)
{
if (feedback[vertex*4 + component] != -1.0f)
{
m_testCtx.getLog()
<< tcu::TestLog::Message
<< "Feedback buffer vertex " << vertex << ", component " << component << ": unexpected value, expected -1.0, got " << feedback[vertex*4 + component]
<< tcu::TestLog::EndMessage;
error = true;
}
}
}
if (error)
m_testCtx.setTestResult(QP_TEST_RESULT_FAIL, "Feedback result validation failed");
else
m_testCtx.setTestResult(QP_TEST_RESULT_PASS, "Pass");
}
return STOP;
}
glu::ShaderProgram* VertexFeedbackOverflowCase::genProgram (void)
{
static const char* const vertexSource = "${GLSL_VERSION_DECL}\n"
"in highp vec4 a_position;\n"
"void main (void)\n"
"{\n"
" gl_Position = a_position;\n"
"}\n";
static const char* const fragmentSource = "${GLSL_VERSION_DECL}\n"
"layout(location = 0) out mediump vec4 fragColor;\n"
"void main (void)\n"
"{\n"
" fragColor = vec4(1.0);\n"
"}\n";
return new glu::ShaderProgram(m_context.getRenderContext(), glu::ProgramSources()
<< glu::VertexSource(specializeShader(vertexSource, m_context.getRenderContext().getType()))
<< glu::FragmentSource(specializeShader(fragmentSource, m_context.getRenderContext().getType()))
<< glu::TransformFeedbackVarying("gl_Position")
<< glu::TransformFeedbackMode(GL_INTERLEAVED_ATTRIBS));
}
} // anonymous
GeometryShaderTests::GeometryShaderTests (Context& context)
: TestCaseGroup(context, "geometry_shading", "Geometry shader tests")
{
}
GeometryShaderTests::~GeometryShaderTests (void)
{
}
void GeometryShaderTests::init (void)
{
struct PrimitiveTestSpec
{
deUint32 primitiveType;
const char* name;
deUint32 outputType;
};
struct EmitTestSpec
{
deUint32 outputType;
int emitCountA; //!< primitive A emit count
int endCountA; //!< primitive A end count
int emitCountB; //!<
int endCountB; //!<
const char* name;
};
static const struct LayeredTarget
{
LayeredRenderCase::LayeredRenderTargetType target;
const char* name;
const char* desc;
} layerTargets[] =
{
{ LayeredRenderCase::TARGET_CUBE, "cubemap", "cubemap" },
{ LayeredRenderCase::TARGET_3D, "3d", "3D texture" },
{ LayeredRenderCase::TARGET_2D_ARRAY, "2d_array", "2D array texture" },
{ LayeredRenderCase::TARGET_2D_MS_ARRAY, "2d_multisample_array", "2D multisample array texture" },
};
tcu::TestCaseGroup* const queryGroup = new tcu::TestCaseGroup(m_testCtx, "query", "Query tests.");
tcu::TestCaseGroup* const basicGroup = new tcu::TestCaseGroup(m_testCtx, "basic", "Basic tests.");
tcu::TestCaseGroup* const inputPrimitiveGroup = new tcu::TestCaseGroup(m_testCtx, "input", "Different input primitives.");
tcu::TestCaseGroup* const conversionPrimitiveGroup = new tcu::TestCaseGroup(m_testCtx, "conversion", "Different input and output primitives.");
tcu::TestCaseGroup* const emitGroup = new tcu::TestCaseGroup(m_testCtx, "emit", "Different emit counts.");
tcu::TestCaseGroup* const varyingGroup = new tcu::TestCaseGroup(m_testCtx, "varying", "Test varyings.");
tcu::TestCaseGroup* const layeredGroup = new tcu::TestCaseGroup(m_testCtx, "layered", "Layered rendering.");
tcu::TestCaseGroup* const instancedGroup = new tcu::TestCaseGroup(m_testCtx, "instanced", "Instanced rendering.");
tcu::TestCaseGroup* const negativeGroup = new tcu::TestCaseGroup(m_testCtx, "negative", "Negative tests.");
tcu::TestCaseGroup* const feedbackGroup = new tcu::TestCaseGroup(m_testCtx, "vertex_transform_feedback", "Transform feedback.");
this->addChild(queryGroup);
this->addChild(basicGroup);
this->addChild(inputPrimitiveGroup);
this->addChild(conversionPrimitiveGroup);
this->addChild(emitGroup);
this->addChild(varyingGroup);
this->addChild(layeredGroup);
this->addChild(instancedGroup);
this->addChild(negativeGroup);
this->addChild(feedbackGroup);
// query test
{
// limits with a corresponding glsl constant
queryGroup->addChild(new GeometryProgramLimitCase(m_context, "max_geometry_input_components", "", GL_MAX_GEOMETRY_INPUT_COMPONENTS, "MaxGeometryInputComponents", 64));
queryGroup->addChild(new GeometryProgramLimitCase(m_context, "max_geometry_output_components", "", GL_MAX_GEOMETRY_OUTPUT_COMPONENTS, "MaxGeometryOutputComponents", 64));
queryGroup->addChild(new GeometryProgramLimitCase(m_context, "max_geometry_image_uniforms", "", GL_MAX_GEOMETRY_IMAGE_UNIFORMS, "MaxGeometryImageUniforms", 0));
queryGroup->addChild(new GeometryProgramLimitCase(m_context, "max_geometry_texture_image_units", "", GL_MAX_GEOMETRY_TEXTURE_IMAGE_UNITS, "MaxGeometryTextureImageUnits", 16));
queryGroup->addChild(new GeometryProgramLimitCase(m_context, "max_geometry_output_vertices", "", GL_MAX_GEOMETRY_OUTPUT_VERTICES, "MaxGeometryOutputVertices", 256));
queryGroup->addChild(new GeometryProgramLimitCase(m_context, "max_geometry_total_output_components", "", GL_MAX_GEOMETRY_TOTAL_OUTPUT_COMPONENTS, "MaxGeometryTotalOutputComponents", 1024));
queryGroup->addChild(new GeometryProgramLimitCase(m_context, "max_geometry_uniform_components", "", GL_MAX_GEOMETRY_UNIFORM_COMPONENTS, "MaxGeometryUniformComponents", 1024));
queryGroup->addChild(new GeometryProgramLimitCase(m_context, "max_geometry_atomic_counters", "", GL_MAX_GEOMETRY_ATOMIC_COUNTERS, "MaxGeometryAtomicCounters", 0));
queryGroup->addChild(new GeometryProgramLimitCase(m_context, "max_geometry_atomic_counter_buffers", "", GL_MAX_GEOMETRY_ATOMIC_COUNTER_BUFFERS, "MaxGeometryAtomicCounterBuffers", 0));
// program queries
queryGroup->addChild(new GeometryShaderVerticesQueryCase (m_context, "geometry_linked_vertices_out", "GL_GEOMETRY_LINKED_VERTICES_OUT"));
queryGroup->addChild(new GeometryShaderInputQueryCase (m_context, "geometry_linked_input_type", "GL_GEOMETRY_LINKED_INPUT_TYPE"));
queryGroup->addChild(new GeometryShaderOutputQueryCase (m_context, "geometry_linked_output_type", "GL_GEOMETRY_LINKED_OUTPUT_TYPE"));
queryGroup->addChild(new GeometryShaderInvocationsQueryCase (m_context, "geometry_shader_invocations", "GL_GEOMETRY_SHADER_INVOCATIONS"));
// limits
queryGroup->addChild(new ImplementationLimitCase(m_context, "max_geometry_shader_invocations", "", GL_MAX_GEOMETRY_SHADER_INVOCATIONS, 32));
queryGroup->addChild(new ImplementationLimitCase(m_context, "max_geometry_uniform_blocks", "", GL_MAX_GEOMETRY_UNIFORM_BLOCKS, 12));
queryGroup->addChild(new ImplementationLimitCase(m_context, "max_geometry_shader_storage_blocks", "", GL_MAX_GEOMETRY_SHADER_STORAGE_BLOCKS, 0));
// layer_provoking_vertex_ext
queryGroup->addChild(new LayerProvokingVertexQueryCase(m_context, "layer_provoking_vertex", "GL_LAYER_PROVOKING_VERTEX"));
// primitives_generated
queryGroup->addChild(new PrimitivesGeneratedQueryCase(m_context, "primitives_generated_no_geometry", "PRIMITIVES_GENERATED query with no geometry shader", PrimitivesGeneratedQueryCase::TEST_NO_GEOMETRY));
queryGroup->addChild(new PrimitivesGeneratedQueryCase(m_context, "primitives_generated_no_amplification", "PRIMITIVES_GENERATED query with non amplifying geometry shader", PrimitivesGeneratedQueryCase::TEST_NO_AMPLIFICATION));
queryGroup->addChild(new PrimitivesGeneratedQueryCase(m_context, "primitives_generated_amplification", "PRIMITIVES_GENERATED query with amplifying geometry shader", PrimitivesGeneratedQueryCase::TEST_AMPLIFICATION));
queryGroup->addChild(new PrimitivesGeneratedQueryCase(m_context, "primitives_generated_partial_primitives", "PRIMITIVES_GENERATED query with geometry shader emitting partial primitives", PrimitivesGeneratedQueryCase::TEST_PARTIAL_PRIMITIVES));
queryGroup->addChild(new PrimitivesGeneratedQueryCase(m_context, "primitives_generated_instanced", "PRIMITIVES_GENERATED query with instanced geometry shader", PrimitivesGeneratedQueryCase::TEST_INSTANCED));
queryGroup->addChild(new PrimitivesGeneratedQueryObjectQueryCase(m_context, "primitives_generated", "Query bound PRIMITIVES_GENERATED query"));
// fbo
queryGroup->addChild(new ImplementationLimitCase (m_context, "max_framebuffer_layers", "", GL_MAX_FRAMEBUFFER_LAYERS, 256));
queryGroup->addChild(new FramebufferDefaultLayersCase (m_context, "framebuffer_default_layers", ""));
queryGroup->addChild(new FramebufferAttachmentLayeredCase (m_context, "framebuffer_attachment_layered", ""));
queryGroup->addChild(new FramebufferIncompleteLayereTargetsCase (m_context, "framebuffer_incomplete_layer_targets", ""));
// resource query
queryGroup->addChild(new ReferencedByGeometryShaderCase (m_context, "referenced_by_geometry_shader", ""));
// combined limits
queryGroup->addChild(new CombinedGeometryUniformLimitCase (m_context, "max_combined_geometry_uniform_components", "MAX_COMBINED_GEOMETRY_UNIFORM_COMPONENTS"));
}
// basic tests
{
basicGroup->addChild(new OutputCountCase (m_context, "output_10", "Output 10 vertices", OutputCountPatternSpec(10)));
basicGroup->addChild(new OutputCountCase (m_context, "output_128", "Output 128 vertices", OutputCountPatternSpec(128)));
basicGroup->addChild(new OutputCountCase (m_context, "output_256", "Output 256 vertices", OutputCountPatternSpec(256)));
basicGroup->addChild(new OutputCountCase (m_context, "output_max", "Output max vertices", OutputCountPatternSpec(-1)));
basicGroup->addChild(new OutputCountCase (m_context, "output_10_and_100", "Output 10 and 100 vertices in two invocations", OutputCountPatternSpec(10, 100)));
basicGroup->addChild(new OutputCountCase (m_context, "output_100_and_10", "Output 100 and 10 vertices in two invocations", OutputCountPatternSpec(100, 10)));
basicGroup->addChild(new OutputCountCase (m_context, "output_0_and_128", "Output 0 and 128 vertices in two invocations", OutputCountPatternSpec(0, 128)));
basicGroup->addChild(new OutputCountCase (m_context, "output_128_and_0", "Output 128 and 0 vertices in two invocations", OutputCountPatternSpec(128, 0)));
basicGroup->addChild(new VaryingOutputCountCase (m_context, "output_vary_by_attribute", "Output varying number of vertices", VaryingOutputCountShader::READ_ATTRIBUTE, VaryingOutputCountCase::MODE_WITHOUT_INSTANCING));
basicGroup->addChild(new VaryingOutputCountCase (m_context, "output_vary_by_uniform", "Output varying number of vertices", VaryingOutputCountShader::READ_UNIFORM, VaryingOutputCountCase::MODE_WITHOUT_INSTANCING));
basicGroup->addChild(new VaryingOutputCountCase (m_context, "output_vary_by_texture", "Output varying number of vertices", VaryingOutputCountShader::READ_TEXTURE, VaryingOutputCountCase::MODE_WITHOUT_INSTANCING));
basicGroup->addChild(new BuiltinVariableRenderTest (m_context, "point_size", "test gl_PointSize", BuiltinVariableShader::TEST_POINT_SIZE));
basicGroup->addChild(new BuiltinVariableRenderTest (m_context, "primitive_id_in", "test gl_PrimitiveIDIn", BuiltinVariableShader::TEST_PRIMITIVE_ID_IN));
basicGroup->addChild(new BuiltinVariableRenderTest (m_context, "primitive_id_in_restarted","test gl_PrimitiveIDIn with primitive restart", BuiltinVariableShader::TEST_PRIMITIVE_ID_IN, GeometryShaderRenderTest::FLAG_USE_RESTART_INDEX | GeometryShaderRenderTest::FLAG_USE_INDICES));
basicGroup->addChild(new BuiltinVariableRenderTest (m_context, "primitive_id", "test gl_PrimitiveID", BuiltinVariableShader::TEST_PRIMITIVE_ID));
}
// input primitives
{
static const PrimitiveTestSpec inputPrimitives[] =
{
{ GL_POINTS, "points", GL_POINTS },
{ GL_LINES, "lines", GL_LINE_STRIP },
{ GL_LINE_LOOP, "line_loop", GL_LINE_STRIP },
{ GL_LINE_STRIP, "line_strip", GL_LINE_STRIP },
{ GL_TRIANGLES, "triangles", GL_TRIANGLE_STRIP },
{ GL_TRIANGLE_STRIP, "triangle_strip", GL_TRIANGLE_STRIP },
{ GL_TRIANGLE_FAN, "triangle_fan", GL_TRIANGLE_STRIP },
{ GL_LINES_ADJACENCY, "lines_adjacency", GL_LINE_STRIP },
{ GL_LINE_STRIP_ADJACENCY, "line_strip_adjacency", GL_LINE_STRIP },
{ GL_TRIANGLES_ADJACENCY, "triangles_adjacency", GL_TRIANGLE_STRIP }
};
tcu::TestCaseGroup* const basicPrimitiveGroup = new tcu::TestCaseGroup(m_testCtx, "basic_primitive", "Different input and output primitives.");
tcu::TestCaseGroup* const triStripAdjacencyGroup = new tcu::TestCaseGroup(m_testCtx, "triangle_strip_adjacency", "Different triangle_strip_adjacency vertex counts.");
// more basic types
for (int ndx = 0; ndx < DE_LENGTH_OF_ARRAY(inputPrimitives); ++ndx)
basicPrimitiveGroup->addChild(new GeometryExpanderRenderTest(m_context, inputPrimitives[ndx].name, inputPrimitives[ndx].name, inputPrimitives[ndx].primitiveType, inputPrimitives[ndx].outputType));
// triangle strip adjacency with different vtx counts
for (int vtxCount = 0; vtxCount <= 12; ++vtxCount)
{
const std::string name = "vertex_count_" + de::toString(vtxCount);
const std::string desc = "Vertex count is " + de::toString(vtxCount);
triStripAdjacencyGroup->addChild(new TriangleStripAdjacencyVertexCountTest(m_context, name.c_str(), desc.c_str(), vtxCount));
}
inputPrimitiveGroup->addChild(basicPrimitiveGroup);
inputPrimitiveGroup->addChild(triStripAdjacencyGroup);
}
// different type conversions
{
static const PrimitiveTestSpec conversionPrimitives[] =
{
{ GL_TRIANGLES, "triangles_to_points", GL_POINTS },
{ GL_LINES, "lines_to_points", GL_POINTS },
{ GL_POINTS, "points_to_lines", GL_LINE_STRIP },
{ GL_TRIANGLES, "triangles_to_lines", GL_LINE_STRIP },
{ GL_POINTS, "points_to_triangles", GL_TRIANGLE_STRIP },
{ GL_LINES, "lines_to_triangles", GL_TRIANGLE_STRIP }
};
for (int ndx = 0; ndx < DE_LENGTH_OF_ARRAY(conversionPrimitives); ++ndx)
conversionPrimitiveGroup->addChild(new GeometryExpanderRenderTest(m_context, conversionPrimitives[ndx].name, conversionPrimitives[ndx].name, conversionPrimitives[ndx].primitiveType, conversionPrimitives[ndx].outputType));
}
// emit different amounts
{
static const EmitTestSpec emitTests[] =
{
{ GL_POINTS, 0, 0, 0, 0, "points" },
{ GL_POINTS, 0, 1, 0, 0, "points" },
{ GL_POINTS, 1, 1, 0, 0, "points" },
{ GL_POINTS, 0, 2, 0, 0, "points" },
{ GL_POINTS, 1, 2, 0, 0, "points" },
{ GL_LINE_STRIP, 0, 0, 0, 0, "line_strip" },
{ GL_LINE_STRIP, 0, 1, 0, 0, "line_strip" },
{ GL_LINE_STRIP, 1, 1, 0, 0, "line_strip" },
{ GL_LINE_STRIP, 2, 1, 0, 0, "line_strip" },
{ GL_LINE_STRIP, 0, 2, 0, 0, "line_strip" },
{ GL_LINE_STRIP, 1, 2, 0, 0, "line_strip" },
{ GL_LINE_STRIP, 2, 2, 0, 0, "line_strip" },
{ GL_LINE_STRIP, 2, 2, 2, 0, "line_strip" },
{ GL_TRIANGLE_STRIP, 0, 0, 0, 0, "triangle_strip" },
{ GL_TRIANGLE_STRIP, 0, 1, 0, 0, "triangle_strip" },
{ GL_TRIANGLE_STRIP, 1, 1, 0, 0, "triangle_strip" },
{ GL_TRIANGLE_STRIP, 2, 1, 0, 0, "triangle_strip" },
{ GL_TRIANGLE_STRIP, 3, 1, 0, 0, "triangle_strip" },
{ GL_TRIANGLE_STRIP, 0, 2, 0, 0, "triangle_strip" },
{ GL_TRIANGLE_STRIP, 1, 2, 0, 0, "triangle_strip" },
{ GL_TRIANGLE_STRIP, 2, 2, 0, 0, "triangle_strip" },
{ GL_TRIANGLE_STRIP, 3, 2, 0, 0, "triangle_strip" },
{ GL_TRIANGLE_STRIP, 3, 2, 3, 0, "triangle_strip" },
};
for (int ndx = 0; ndx < DE_LENGTH_OF_ARRAY(emitTests); ++ndx)
{
std::string name = std::string(emitTests[ndx].name) + "_emit_" + de::toString(emitTests[ndx].emitCountA) + "_end_" + de::toString(emitTests[ndx].endCountA);
std::string desc = std::string(emitTests[ndx].name) + " output, emit " + de::toString(emitTests[ndx].emitCountA) + " vertices, call EndPrimitive " + de::toString(emitTests[ndx].endCountA) + " times";
if (emitTests[ndx].emitCountB)
{
name += "_emit_" + de::toString(emitTests[ndx].emitCountB) + "_end_" + de::toString(emitTests[ndx].endCountB);
desc += ", emit " + de::toString(emitTests[ndx].emitCountB) + " vertices, call EndPrimitive " + de::toString(emitTests[ndx].endCountB) + " times";
}
emitGroup->addChild(new EmitTest(m_context, name.c_str(), desc.c_str(), emitTests[ndx].emitCountA, emitTests[ndx].endCountA, emitTests[ndx].emitCountB, emitTests[ndx].endCountB, emitTests[ndx].outputType));
}
}
// varying
{
struct VaryingTestSpec
{
int vertexOutputs;
int geometryOutputs;
const char* name;
const char* desc;
};
static const VaryingTestSpec varyingTests[] =
{
{ -1, 1, "vertex_no_op_geometry_out_1", "vertex_no_op_geometry_out_1" },
{ 0, 1, "vertex_out_0_geometry_out_1", "vertex_out_0_geometry_out_1" },
{ 0, 2, "vertex_out_0_geometry_out_2", "vertex_out_0_geometry_out_2" },
{ 1, 0, "vertex_out_1_geometry_out_0", "vertex_out_1_geometry_out_0" },
{ 1, 2, "vertex_out_1_geometry_out_2", "vertex_out_1_geometry_out_2" },
};
for (int ndx = 0; ndx < DE_LENGTH_OF_ARRAY(varyingTests); ++ndx)
varyingGroup->addChild(new VaryingTest(m_context, varyingTests[ndx].name, varyingTests[ndx].desc, varyingTests[ndx].vertexOutputs, varyingTests[ndx].geometryOutputs));
}
// layered
{
static const struct TestType
{
LayeredRenderCase::TestType test;
const char* testPrefix;
const char* descPrefix;
} tests[] =
{
{ LayeredRenderCase::TEST_DEFAULT_LAYER, "render_with_default_layer_", "Render to all layers of " },
{ LayeredRenderCase::TEST_SINGLE_LAYER, "render_to_one_", "Render to one layer of " },
{ LayeredRenderCase::TEST_ALL_LAYERS, "render_to_all_", "Render to all layers of " },
{ LayeredRenderCase::TEST_DIFFERENT_LAYERS, "render_different_to_", "Render different data to different layers" },
{ LayeredRenderCase::TEST_LAYER_ID, "fragment_layer_", "Read gl_Layer in fragment shader" },
{ LayeredRenderCase::TEST_LAYER_PROVOKING_VERTEX, "layer_provoking_vertex_", "Verify LAYER_PROVOKING_VERTEX" },
};
for (int testNdx = 0; testNdx < DE_LENGTH_OF_ARRAY(tests); ++testNdx)
for (int targetNdx = 0; targetNdx < DE_LENGTH_OF_ARRAY(layerTargets); ++targetNdx)
{
const std::string name = std::string(tests[testNdx].testPrefix) + layerTargets[targetNdx].name;
const std::string desc = std::string(tests[testNdx].descPrefix) + layerTargets[targetNdx].desc;
layeredGroup->addChild(new LayeredRenderCase(m_context, name.c_str(), desc.c_str(), layerTargets[targetNdx].target, tests[testNdx].test));
}
}
// instanced
{
static const struct InvocationCase
{
const char* name;
int numInvocations;
} invocationCases[] =
{
{ "1", 1 },
{ "2", 2 },
{ "8", 8 },
{ "32", 32 },
{ "max", -1 },
};
static const int numDrawInstances[] = { 2, 4, 8 };
static const int numDrawInvocations[] = { 2, 8 };
// same amount of content to all invocations
for (int ndx = 0; ndx < DE_LENGTH_OF_ARRAY(invocationCases); ++ndx)
instancedGroup->addChild(new GeometryInvocationCase(m_context,
(std::string("geometry_") + invocationCases[ndx].name + "_invocations").c_str(),
(std::string("Geometry shader with ") + invocationCases[ndx].name + " invocation(s)").c_str(),
invocationCases[ndx].numInvocations,
GeometryInvocationCase::CASE_FIXED_OUTPUT_COUNTS));
// different amount of content to each invocation
for (int ndx = 0; ndx < DE_LENGTH_OF_ARRAY(invocationCases); ++ndx)
if (invocationCases[ndx].numInvocations != 1)
instancedGroup->addChild(new GeometryInvocationCase(m_context,
(std::string("geometry_output_different_") + invocationCases[ndx].name + "_invocations").c_str(),
"Geometry shader invocation(s) with different emit counts",
invocationCases[ndx].numInvocations,
GeometryInvocationCase::CASE_DIFFERENT_OUTPUT_COUNTS));
// invocation per layer
for (int targetNdx = 0; targetNdx < DE_LENGTH_OF_ARRAY(layerTargets); ++targetNdx)
{
const std::string name = std::string("invocation_per_layer_") + layerTargets[targetNdx].name;
const std::string desc = std::string("Render to multiple layers with multiple invocations, one invocation per layer, target ") + layerTargets[targetNdx].desc;
instancedGroup->addChild(new LayeredRenderCase(m_context, name.c_str(), desc.c_str(), layerTargets[targetNdx].target, LayeredRenderCase::TEST_INVOCATION_PER_LAYER));
}
// multiple layers per invocation
for (int targetNdx = 0; targetNdx < DE_LENGTH_OF_ARRAY(layerTargets); ++targetNdx)
{
const std::string name = std::string("multiple_layers_per_invocation_") + layerTargets[targetNdx].name;
const std::string desc = std::string("Render to multiple layers with multiple invocations, multiple layers per invocation, target ") + layerTargets[targetNdx].desc;
instancedGroup->addChild(new LayeredRenderCase(m_context, name.c_str(), desc.c_str(), layerTargets[targetNdx].target, LayeredRenderCase::TEST_MULTIPLE_LAYERS_PER_INVOCATION));
}
// different invocation output counts depending on {uniform, attrib, texture}
instancedGroup->addChild(new VaryingOutputCountCase(m_context, "invocation_output_vary_by_attribute", "Output varying number of vertices", VaryingOutputCountShader::READ_ATTRIBUTE, VaryingOutputCountCase::MODE_WITH_INSTANCING));
instancedGroup->addChild(new VaryingOutputCountCase(m_context, "invocation_output_vary_by_uniform", "Output varying number of vertices", VaryingOutputCountShader::READ_UNIFORM, VaryingOutputCountCase::MODE_WITH_INSTANCING));
instancedGroup->addChild(new VaryingOutputCountCase(m_context, "invocation_output_vary_by_texture", "Output varying number of vertices", VaryingOutputCountShader::READ_TEXTURE, VaryingOutputCountCase::MODE_WITH_INSTANCING));
// with drawInstanced
for (int instanceNdx = 0; instanceNdx < DE_LENGTH_OF_ARRAY(numDrawInstances); ++instanceNdx)
for (int invocationNdx = 0; invocationNdx < DE_LENGTH_OF_ARRAY(numDrawInvocations); ++invocationNdx)
{
const std::string name = std::string("draw_") + de::toString(numDrawInstances[instanceNdx]) + "_instances_geometry_" + de::toString(numDrawInvocations[invocationNdx]) + "_invocations";
const std::string desc = std::string("Draw ") + de::toString(numDrawInstances[instanceNdx]) + " instances, with " + de::toString(numDrawInvocations[invocationNdx]) + " geometry shader invocations.";
instancedGroup->addChild(new DrawInstancedGeometryInstancedCase(m_context, name.c_str(), desc.c_str(), numDrawInstances[instanceNdx], numDrawInvocations[invocationNdx]));
}
}
// negative (wrong types)
{
struct PrimitiveToInputTypeConversion
{
GLenum inputType;
GLenum primitiveType;
};
static const PrimitiveToInputTypeConversion legalConversions[] =
{
{ GL_POINTS, GL_POINTS },
{ GL_LINES, GL_LINES },
{ GL_LINES, GL_LINE_LOOP },
{ GL_LINES, GL_LINE_STRIP },
{ GL_LINES_ADJACENCY, GL_LINES_ADJACENCY },
{ GL_LINES_ADJACENCY, GL_LINE_STRIP_ADJACENCY },
{ GL_TRIANGLES, GL_TRIANGLES },
{ GL_TRIANGLES, GL_TRIANGLE_STRIP },
{ GL_TRIANGLES, GL_TRIANGLE_FAN },
{ GL_TRIANGLES_ADJACENCY, GL_TRIANGLES_ADJACENCY },
{ GL_TRIANGLES_ADJACENCY, GL_TRIANGLE_STRIP_ADJACENCY },
};
static const GLenum inputTypes[] =
{
GL_POINTS,
GL_LINES,
GL_LINES_ADJACENCY,
GL_TRIANGLES,
GL_TRIANGLES_ADJACENCY
};
static const GLenum primitiveTypes[] =
{
GL_POINTS,
GL_LINES,
GL_LINE_LOOP,
GL_LINE_STRIP,
GL_LINES_ADJACENCY,
GL_LINE_STRIP_ADJACENCY,
GL_TRIANGLES,
GL_TRIANGLE_STRIP,
GL_TRIANGLE_FAN,
GL_TRIANGLES_ADJACENCY,
GL_TRIANGLE_STRIP_ADJACENCY
};
for (int inputTypeNdx = 0; inputTypeNdx < DE_LENGTH_OF_ARRAY(inputTypes); ++inputTypeNdx)
for (int primitiveTypeNdx = 0; primitiveTypeNdx < DE_LENGTH_OF_ARRAY(primitiveTypes); ++primitiveTypeNdx)
{
const GLenum inputType = inputTypes[inputTypeNdx];
const GLenum primitiveType = primitiveTypes[primitiveTypeNdx];
const std::string name = std::string("type_") + inputTypeToGLString(sglr::rr_util::mapGLGeometryShaderInputType(inputType)) + "_primitive_" + primitiveTypeToString(primitiveType);
const std::string desc = std::string("Shader input type ") + inputTypeToGLString(sglr::rr_util::mapGLGeometryShaderInputType(inputType)) + ", draw primitive type " + primitiveTypeToString(primitiveType);
bool isLegal = false;
for (int legalNdx = 0; legalNdx < DE_LENGTH_OF_ARRAY(legalConversions); ++legalNdx)
if (legalConversions[legalNdx].inputType == inputType && legalConversions[legalNdx].primitiveType == primitiveType)
isLegal = true;
// only illegal
if (!isLegal)
negativeGroup->addChild(new NegativeDrawCase(m_context, name.c_str(), desc.c_str(), inputType, primitiveType));
}
}
// vertex transform feedback
{
feedbackGroup->addChild(new VertexFeedbackCase(m_context, "capture_vertex_line_loop", "Capture line loop lines", VertexFeedbackCase::METHOD_DRAW_ARRAYS, VertexFeedbackCase::PRIMITIVE_LINE_LOOP));
feedbackGroup->addChild(new VertexFeedbackCase(m_context, "capture_vertex_line_strip", "Capture line strip lines", VertexFeedbackCase::METHOD_DRAW_ARRAYS, VertexFeedbackCase::PRIMITIVE_LINE_STRIP));
feedbackGroup->addChild(new VertexFeedbackCase(m_context, "capture_vertex_triangle_strip", "Capture triangle strip triangles", VertexFeedbackCase::METHOD_DRAW_ARRAYS, VertexFeedbackCase::PRIMITIVE_TRIANGLE_STRIP));
feedbackGroup->addChild(new VertexFeedbackCase(m_context, "capture_vertex_triangle_fan", "Capture triangle fan triangles", VertexFeedbackCase::METHOD_DRAW_ARRAYS, VertexFeedbackCase::PRIMITIVE_TRIANGLE_FAN));
feedbackGroup->addChild(new VertexFeedbackCase(m_context, "capture_vertex_draw_arrays", "Capture primitives generated with drawArrays", VertexFeedbackCase::METHOD_DRAW_ARRAYS, VertexFeedbackCase::PRIMITIVE_POINTS));
feedbackGroup->addChild(new VertexFeedbackCase(m_context, "capture_vertex_draw_arrays_instanced", "Capture primitives generated with drawArraysInstanced", VertexFeedbackCase::METHOD_DRAW_ARRAYS_INSTANCED, VertexFeedbackCase::PRIMITIVE_POINTS));
feedbackGroup->addChild(new VertexFeedbackCase(m_context, "capture_vertex_draw_arrays_indirect", "Capture primitives generated with drawArraysIndirect", VertexFeedbackCase::METHOD_DRAW_ARRAYS_INDIRECT, VertexFeedbackCase::PRIMITIVE_POINTS));
feedbackGroup->addChild(new VertexFeedbackCase(m_context, "capture_vertex_draw_elements", "Capture primitives generated with drawElements", VertexFeedbackCase::METHOD_DRAW_ELEMENTS, VertexFeedbackCase::PRIMITIVE_POINTS));
feedbackGroup->addChild(new VertexFeedbackCase(m_context, "capture_vertex_draw_elements_instanced", "Capture primitives generated with drawElementsInstanced", VertexFeedbackCase::METHOD_DRAW_ELEMENTS_INSTANCED, VertexFeedbackCase::PRIMITIVE_POINTS));
feedbackGroup->addChild(new VertexFeedbackCase(m_context, "capture_vertex_draw_elements_indirect", "Capture primitives generated with drawElementsIndirect", VertexFeedbackCase::METHOD_DRAW_ELEMENTS_INDIRECT, VertexFeedbackCase::PRIMITIVE_POINTS));
feedbackGroup->addChild(new VertexFeedbackOverflowCase(m_context, "capture_vertex_draw_arrays_overflow_single_buffer", "Capture triangles to too small a buffer", VertexFeedbackOverflowCase::METHOD_DRAW_ARRAYS));
feedbackGroup->addChild(new VertexFeedbackOverflowCase(m_context, "capture_vertex_draw_elements_overflow_single_buffer", "Capture triangles to too small a buffer", VertexFeedbackOverflowCase::METHOD_DRAW_ELEMENTS));
}
}
} // Functional
} // gles31
} // deqp