HELLO·Android
系统源代码
IT资讯
技术文章
我的收藏
注册
登录
-
我收藏的文章
创建代码块
我的代码块
我的账号
Oreo
|
8.0.0_r4
下载
查看原文件
收藏
根目录
external
fmtlib
fmt
format.h
/* Formatting library for C++ Copyright (c) 2012 - 2016, Victor Zverovich All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #ifndef FMT_FORMAT_H_ #define FMT_FORMAT_H_ #include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
// The fmt library version in the form major * 10000 + minor * 100 + patch. #define FMT_VERSION 30002 #ifdef _SECURE_SCL # define FMT_SECURE_SCL _SECURE_SCL #else # define FMT_SECURE_SCL 0 #endif #if FMT_SECURE_SCL # include
#endif #ifdef _MSC_VER # define FMT_MSC_VER _MSC_VER #else # define FMT_MSC_VER 0 #endif #if FMT_MSC_VER && FMT_MSC_VER <= 1500 typedef unsigned __int32 uint32_t; typedef unsigned __int64 uint64_t; typedef __int64 intmax_t; #else #include
#endif #if !defined(FMT_HEADER_ONLY) && defined(_WIN32) # ifdef FMT_EXPORT # define FMT_API __declspec(dllexport) # elif defined(FMT_SHARED) # define FMT_API __declspec(dllimport) # endif #endif #ifndef FMT_API # define FMT_API #endif #ifdef __GNUC__ # define FMT_GCC_VERSION (__GNUC__ * 100 + __GNUC_MINOR__) # define FMT_GCC_EXTENSION __extension__ # if FMT_GCC_VERSION >= 406 # pragma GCC diagnostic push // Disable the warning about "long long" which is sometimes reported even // when using __extension__. # pragma GCC diagnostic ignored "-Wlong-long" // Disable the warning about declaration shadowing because it affects too // many valid cases. # pragma GCC diagnostic ignored "-Wshadow" // Disable the warning about implicit conversions that may change the sign of // an integer; silencing it otherwise would require many explicit casts. # pragma GCC diagnostic ignored "-Wsign-conversion" # endif # if __cplusplus >= 201103L || defined __GXX_EXPERIMENTAL_CXX0X__ # define FMT_HAS_GXX_CXX11 1 # endif #else # define FMT_GCC_EXTENSION #endif #if defined(__INTEL_COMPILER) # define FMT_ICC_VERSION __INTEL_COMPILER #elif defined(__ICL) # define FMT_ICC_VERSION __ICL #endif #if defined(__clang__) && !defined(FMT_ICC_VERSION) # pragma clang diagnostic push # pragma clang diagnostic ignored "-Wdocumentation-unknown-command" # pragma clang diagnostic ignored "-Wpadded" #endif #ifdef __GNUC_LIBSTD__ # define FMT_GNUC_LIBSTD_VERSION (__GNUC_LIBSTD__ * 100 + __GNUC_LIBSTD_MINOR__) #endif #ifdef __has_feature # define FMT_HAS_FEATURE(x) __has_feature(x) #else # define FMT_HAS_FEATURE(x) 0 #endif #ifdef __has_builtin # define FMT_HAS_BUILTIN(x) __has_builtin(x) #else # define FMT_HAS_BUILTIN(x) 0 #endif #ifdef __has_cpp_attribute # define FMT_HAS_CPP_ATTRIBUTE(x) __has_cpp_attribute(x) #else # define FMT_HAS_CPP_ATTRIBUTE(x) 0 #endif #ifndef FMT_USE_VARIADIC_TEMPLATES // Variadic templates are available in GCC since version 4.4 // (http://gcc.gnu.org/projects/cxx0x.html) and in Visual C++ // since version 2013. # define FMT_USE_VARIADIC_TEMPLATES \ (FMT_HAS_FEATURE(cxx_variadic_templates) || \ (FMT_GCC_VERSION >= 404 && FMT_HAS_GXX_CXX11) || FMT_MSC_VER >= 1800) #endif #ifndef FMT_USE_RVALUE_REFERENCES // Don't use rvalue references when compiling with clang and an old libstdc++ // as the latter doesn't provide std::move. # if defined(FMT_GNUC_LIBSTD_VERSION) && FMT_GNUC_LIBSTD_VERSION <= 402 # define FMT_USE_RVALUE_REFERENCES 0 # else # define FMT_USE_RVALUE_REFERENCES \ (FMT_HAS_FEATURE(cxx_rvalue_references) || \ (FMT_GCC_VERSION >= 403 && FMT_HAS_GXX_CXX11) || FMT_MSC_VER >= 1600) # endif #endif #if FMT_USE_RVALUE_REFERENCES # include
// for std::move #endif // Check if exceptions are disabled. #if defined(__GNUC__) && !defined(__EXCEPTIONS) # define FMT_EXCEPTIONS 0 #endif #if FMT_MSC_VER && !_HAS_EXCEPTIONS # define FMT_EXCEPTIONS 0 #endif #ifndef FMT_EXCEPTIONS # define FMT_EXCEPTIONS 1 #endif #ifndef FMT_THROW # if FMT_EXCEPTIONS # define FMT_THROW(x) throw x # else # define FMT_THROW(x) assert(false) # endif #endif // Define FMT_USE_NOEXCEPT to make fmt use noexcept (C++11 feature). #ifndef FMT_USE_NOEXCEPT # define FMT_USE_NOEXCEPT 0 #endif #if FMT_USE_NOEXCEPT || FMT_HAS_FEATURE(cxx_noexcept) || \ (FMT_GCC_VERSION >= 408 && FMT_HAS_GXX_CXX11) || \ FMT_MSC_VER >= 1900 # define FMT_DETECTED_NOEXCEPT noexcept #else # define FMT_DETECTED_NOEXCEPT throw() #endif #ifndef FMT_NOEXCEPT # if FMT_EXCEPTIONS # define FMT_NOEXCEPT FMT_DETECTED_NOEXCEPT # else # define FMT_NOEXCEPT # endif #endif // This is needed because GCC still uses throw() in its headers when exceptions // are disabled. #if FMT_GCC_VERSION # define FMT_DTOR_NOEXCEPT FMT_DETECTED_NOEXCEPT #else # define FMT_DTOR_NOEXCEPT FMT_NOEXCEPT #endif #ifndef FMT_OVERRIDE # if (defined(FMT_USE_OVERRIDE) && FMT_USE_OVERRIDE) || FMT_HAS_FEATURE(cxx_override) || \ (FMT_GCC_VERSION >= 408 && FMT_HAS_GXX_CXX11) || \ FMT_MSC_VER >= 1900 # define FMT_OVERRIDE override # else # define FMT_OVERRIDE # endif #endif #ifndef FMT_NULL # if FMT_HAS_FEATURE(cxx_nullptr) || \ (FMT_GCC_VERSION >= 408 && FMT_HAS_GXX_CXX11) || \ FMT_MSC_VER >= 1600 # define FMT_NULL nullptr # else # define FMT_NULL NULL # endif #endif // A macro to disallow the copy constructor and operator= functions // This should be used in the private: declarations for a class #ifndef FMT_USE_DELETED_FUNCTIONS # define FMT_USE_DELETED_FUNCTIONS 0 #endif #if FMT_USE_DELETED_FUNCTIONS || FMT_HAS_FEATURE(cxx_deleted_functions) || \ (FMT_GCC_VERSION >= 404 && FMT_HAS_GXX_CXX11) || FMT_MSC_VER >= 1800 # define FMT_DELETED_OR_UNDEFINED = delete # define FMT_DISALLOW_COPY_AND_ASSIGN(TypeName) \ TypeName(const TypeName&) = delete; \ TypeName& operator=(const TypeName&) = delete #else # define FMT_DELETED_OR_UNDEFINED # define FMT_DISALLOW_COPY_AND_ASSIGN(TypeName) \ TypeName(const TypeName&); \ TypeName& operator=(const TypeName&) #endif #ifndef FMT_USE_USER_DEFINED_LITERALS // All compilers which support UDLs also support variadic templates. This // makes the fmt::literals implementation easier. However, an explicit check // for variadic templates is added here just in case. // For Intel's compiler both it and the system gcc/msc must support UDLs. # define FMT_USE_USER_DEFINED_LITERALS \ FMT_USE_VARIADIC_TEMPLATES && FMT_USE_RVALUE_REFERENCES && \ (FMT_HAS_FEATURE(cxx_user_literals) || \ (FMT_GCC_VERSION >= 407 && FMT_HAS_GXX_CXX11) || FMT_MSC_VER >= 1900) && \ (!defined(FMT_ICC_VERSION) || FMT_ICC_VERSION >= 1500) #endif #ifndef FMT_USE_EXTERN_TEMPLATES // Clang doesn't have a feature check for extern templates so we check // for variadic templates which were introduced in the same version. // For GCC according to cppreference.com they were introduced in 3.3. # define FMT_USE_EXTERN_TEMPLATES \ ((__clang__ && FMT_USE_VARIADIC_TEMPLATES) || \ (FMT_GCC_VERSION >= 303 && FMT_HAS_GXX_CXX11)) #endif #ifdef FMT_HEADER_ONLY // If header only do not use extern templates. # undef FMT_USE_EXTERN_TEMPLATES # define FMT_USE_EXTERN_TEMPLATES 0 #endif #ifndef FMT_ASSERT # define FMT_ASSERT(condition, message) assert((condition) && message) #endif #if FMT_GCC_VERSION >= 400 || FMT_HAS_BUILTIN(__builtin_clz) # define FMT_BUILTIN_CLZ(n) __builtin_clz(n) #endif #if FMT_GCC_VERSION >= 400 || FMT_HAS_BUILTIN(__builtin_clzll) # define FMT_BUILTIN_CLZLL(n) __builtin_clzll(n) #endif // Some compilers masquerade as both MSVC and GCC-likes or // otherwise support __builtin_clz and __builtin_clzll, so // only define FMT_BUILTIN_CLZ using the MSVC intrinsics // if the clz and clzll builtins are not available. #if FMT_MSC_VER && !defined(FMT_BUILTIN_CLZLL) # include
// _BitScanReverse, _BitScanReverse64 namespace fmt { namespace internal { # pragma intrinsic(_BitScanReverse) inline uint32_t clz(uint32_t x) { unsigned long r = 0; _BitScanReverse(&r, x); assert(x != 0); // Static analysis complains about using uninitialized data // "r", but the only way that can happen is if "x" is 0, // which the callers guarantee to not happen. # pragma warning(suppress: 6102) return 31 - r; } # define FMT_BUILTIN_CLZ(n) fmt::internal::clz(n) # ifdef _WIN64 # pragma intrinsic(_BitScanReverse64) # endif inline uint32_t clzll(uint64_t x) { unsigned long r = 0; # ifdef _WIN64 _BitScanReverse64(&r, x); # else // Scan the high 32 bits. if (_BitScanReverse(&r, static_cast
(x >> 32))) return 63 - (r + 32); // Scan the low 32 bits. _BitScanReverse(&r, static_cast
(x)); # endif assert(x != 0); // Static analysis complains about using uninitialized data // "r", but the only way that can happen is if "x" is 0, // which the callers guarantee to not happen. # pragma warning(suppress: 6102) return 63 - r; } # define FMT_BUILTIN_CLZLL(n) fmt::internal::clzll(n) } } #endif namespace fmt { namespace internal { struct DummyInt { int data[2]; operator int() const { return 0; } }; typedef std::numeric_limits
FPUtil; // Dummy implementations of system functions such as signbit and ecvt called // if the latter are not available. inline DummyInt signbit(...) { return DummyInt(); } inline DummyInt _ecvt_s(...) { return DummyInt(); } inline DummyInt isinf(...) { return DummyInt(); } inline DummyInt _finite(...) { return DummyInt(); } inline DummyInt isnan(...) { return DummyInt(); } inline DummyInt _isnan(...) { return DummyInt(); } // A helper function to suppress bogus "conditional expression is constant" // warnings. template
inline T const_check(T value) { return value; } } } // namespace fmt namespace std { // Standard permits specialization of std::numeric_limits. This specialization // is used to resolve ambiguity between isinf and std::isinf in glibc: // https://gcc.gnu.org/bugzilla/show_bug.cgi?id=48891 // and the same for isnan and signbit. template <> class numeric_limits
: public std::numeric_limits
{ public: // Portable version of isinf. template
static bool isinfinity(T x) { using namespace fmt::internal; // The resolution "priority" is: // isinf macro > std::isinf > ::isinf > fmt::internal::isinf if (const_check(sizeof(isinf(x)) == sizeof(bool) || sizeof(isinf(x)) == sizeof(int))) { return isinf(x) != 0; } return !_finite(static_cast
(x)); } // Portable version of isnan. template
static bool isnotanumber(T x) { using namespace fmt::internal; if (const_check(sizeof(isnan(x)) == sizeof(bool) || sizeof(isnan(x)) == sizeof(int))) { return isnan(x) != 0; } return _isnan(static_cast
(x)) != 0; } // Portable version of signbit. static bool isnegative(double x) { using namespace fmt::internal; if (const_check(sizeof(signbit(x)) == sizeof(bool) || sizeof(signbit(x)) == sizeof(int))) { return signbit(x) != 0; } if (x < 0) return true; if (!isnotanumber(x)) return false; int dec = 0, sign = 0; char buffer[2]; // The buffer size must be >= 2 or _ecvt_s will fail. _ecvt_s(buffer, sizeof(buffer), x, 0, &dec, &sign); return sign != 0; } }; } // namespace std namespace fmt { // Fix the warning about long long on older versions of GCC // that don't support the diagnostic pragma. FMT_GCC_EXTENSION typedef long long LongLong; FMT_GCC_EXTENSION typedef unsigned long long ULongLong; #if FMT_USE_RVALUE_REFERENCES using std::move; #endif template
class BasicWriter; typedef BasicWriter
Writer; typedef BasicWriter
WWriter; template
class ArgFormatter; template
class BasicPrintfArgFormatter; template
> class BasicFormatter; /** \rst A string reference. It can be constructed from a C string or ``std::basic_string``. You can use one of the following typedefs for common character types: +------------+-------------------------+ | Type | Definition | +============+=========================+ | StringRef | BasicStringRef
| +------------+-------------------------+ | WStringRef | BasicStringRef
| +------------+-------------------------+ This class is most useful as a parameter type to allow passing different types of strings to a function, for example:: template
std::string format(StringRef format_str, const Args & ... args); format("{}", 42); format(std::string("{}"), 42); \endrst */ template
class BasicStringRef { private: const Char *data_; std::size_t size_; public: /** Constructs a string reference object from a C string and a size. */ BasicStringRef(const Char *s, std::size_t size) : data_(s), size_(size) {} /** \rst Constructs a string reference object from a C string computing the size with ``std::char_traits
::length``. \endrst */ BasicStringRef(const Char *s) : data_(s), size_(std::char_traits
::length(s)) {} /** \rst Constructs a string reference from a ``std::basic_string`` object. \endrst */ template
BasicStringRef( const std::basic_string
, Allocator> &s) : data_(s.c_str()), size_(s.size()) {} /** \rst Converts a string reference to an ``std::string`` object. \endrst */ std::basic_string
to_string() const { return std::basic_string
(data_, size_); } /** Returns a pointer to the string data. */ const Char *data() const { return data_; } /** Returns the string size. */ std::size_t size() const { return size_; } // Lexicographically compare this string reference to other. int compare(BasicStringRef other) const { std::size_t size = size_ < other.size_ ? size_ : other.size_; int result = std::char_traits
::compare(data_, other.data_, size); if (result == 0) result = size_ == other.size_ ? 0 : (size_ < other.size_ ? -1 : 1); return result; } friend bool operator==(BasicStringRef lhs, BasicStringRef rhs) { return lhs.compare(rhs) == 0; } friend bool operator!=(BasicStringRef lhs, BasicStringRef rhs) { return lhs.compare(rhs) != 0; } friend bool operator<(BasicStringRef lhs, BasicStringRef rhs) { return lhs.compare(rhs) < 0; } friend bool operator<=(BasicStringRef lhs, BasicStringRef rhs) { return lhs.compare(rhs) <= 0; } friend bool operator>(BasicStringRef lhs, BasicStringRef rhs) { return lhs.compare(rhs) > 0; } friend bool operator>=(BasicStringRef lhs, BasicStringRef rhs) { return lhs.compare(rhs) >= 0; } }; typedef BasicStringRef
StringRef; typedef BasicStringRef
WStringRef; /** \rst A reference to a null terminated string. It can be constructed from a C string or ``std::basic_string``. You can use one of the following typedefs for common character types: +-------------+--------------------------+ | Type | Definition | +=============+==========================+ | CStringRef | BasicCStringRef
| +-------------+--------------------------+ | WCStringRef | BasicCStringRef
| +-------------+--------------------------+ This class is most useful as a parameter type to allow passing different types of strings to a function, for example:: template
std::string format(CStringRef format_str, const Args & ... args); format("{}", 42); format(std::string("{}"), 42); \endrst */ template
class BasicCStringRef { private: const Char *data_; public: /** Constructs a string reference object from a C string. */ BasicCStringRef(const Char *s) : data_(s) {} /** \rst Constructs a string reference from a ``std::basic_string`` object. \endrst */ template
BasicCStringRef( const std::basic_string
, Allocator> &s) : data_(s.c_str()) {} /** Returns the pointer to a C string. */ const Char *c_str() const { return data_; } }; typedef BasicCStringRef
CStringRef; typedef BasicCStringRef
WCStringRef; /** A formatting error such as invalid format string. */ class FormatError : public std::runtime_error { public: explicit FormatError(CStringRef message) : std::runtime_error(message.c_str()) {} FormatError(const FormatError &ferr) : std::runtime_error(ferr) {} ~FormatError() FMT_DTOR_NOEXCEPT; }; namespace internal { // MakeUnsigned
::Type gives an unsigned type corresponding to integer type T. template
struct MakeUnsigned { typedef T Type; }; #define FMT_SPECIALIZE_MAKE_UNSIGNED(T, U) \ template <> \ struct MakeUnsigned
{ typedef U Type; } FMT_SPECIALIZE_MAKE_UNSIGNED(char, unsigned char); FMT_SPECIALIZE_MAKE_UNSIGNED(signed char, unsigned char); FMT_SPECIALIZE_MAKE_UNSIGNED(short, unsigned short); FMT_SPECIALIZE_MAKE_UNSIGNED(int, unsigned); FMT_SPECIALIZE_MAKE_UNSIGNED(long, unsigned long); FMT_SPECIALIZE_MAKE_UNSIGNED(LongLong, ULongLong); // Casts nonnegative integer to unsigned. template
inline typename MakeUnsigned
::Type to_unsigned(Int value) { FMT_ASSERT(value >= 0, "negative value"); return static_cast
::Type>(value); } // The number of characters to store in the MemoryBuffer object itself // to avoid dynamic memory allocation. enum { INLINE_BUFFER_SIZE = 500 }; #if FMT_SECURE_SCL // Use checked iterator to avoid warnings on MSVC. template
inline stdext::checked_array_iterator
make_ptr(T *ptr, std::size_t size) { return stdext::checked_array_iterator
(ptr, size); } #else template
inline T *make_ptr(T *ptr, std::size_t) { return ptr; } #endif } // namespace internal /** \rst A buffer supporting a subset of ``std::vector``'s operations. \endrst */ template
class Buffer { private: FMT_DISALLOW_COPY_AND_ASSIGN(Buffer); protected: T *ptr_; std::size_t size_; std::size_t capacity_; Buffer(T *ptr = FMT_NULL, std::size_t capacity = 0) : ptr_(ptr), size_(0), capacity_(capacity) {} /** \rst Increases the buffer capacity to hold at least *size* elements updating ``ptr_`` and ``capacity_``. \endrst */ virtual void grow(std::size_t size) = 0; public: virtual ~Buffer() {} /** Returns the size of this buffer. */ std::size_t size() const { return size_; } /** Returns the capacity of this buffer. */ std::size_t capacity() const { return capacity_; } /** Resizes the buffer. If T is a POD type new elements may not be initialized. */ void resize(std::size_t new_size) { if (new_size > capacity_) grow(new_size); size_ = new_size; } /** \rst Reserves space to store at least *capacity* elements. \endrst */ void reserve(std::size_t capacity) { if (capacity > capacity_) grow(capacity); } void clear() FMT_NOEXCEPT { size_ = 0; } void push_back(const T &value) { if (size_ == capacity_) grow(size_ + 1); ptr_[size_++] = value; } /** Appends data to the end of the buffer. */ template
void append(const U *begin, const U *end); T &operator[](std::size_t index) { return ptr_[index]; } const T &operator[](std::size_t index) const { return ptr_[index]; } }; template
template
void Buffer
::append(const U *begin, const U *end) { std::size_t new_size = size_ + internal::to_unsigned(end - begin); if (new_size > capacity_) grow(new_size); std::uninitialized_copy(begin, end, internal::make_ptr(ptr_, capacity_) + size_); size_ = new_size; } namespace internal { // A memory buffer for trivially copyable/constructible types with the first // SIZE elements stored in the object itself. template
> class MemoryBuffer : private Allocator, public Buffer
{ private: T data_[SIZE]; // Deallocate memory allocated by the buffer. void deallocate() { if (this->ptr_ != data_) Allocator::deallocate(this->ptr_, this->capacity_); } protected: void grow(std::size_t size) FMT_OVERRIDE; public: explicit MemoryBuffer(const Allocator &alloc = Allocator()) : Allocator(alloc), Buffer
(data_, SIZE) {} ~MemoryBuffer() { deallocate(); } #if FMT_USE_RVALUE_REFERENCES private: // Move data from other to this buffer. void move(MemoryBuffer &other) { Allocator &this_alloc = *this, &other_alloc = other; this_alloc = std::move(other_alloc); this->size_ = other.size_; this->capacity_ = other.capacity_; if (other.ptr_ == other.data_) { this->ptr_ = data_; std::uninitialized_copy(other.data_, other.data_ + this->size_, make_ptr(data_, this->capacity_)); } else { this->ptr_ = other.ptr_; // Set pointer to the inline array so that delete is not called // when deallocating. other.ptr_ = other.data_; } } public: MemoryBuffer(MemoryBuffer &&other) { move(other); } MemoryBuffer &operator=(MemoryBuffer &&other) { assert(this != &other); deallocate(); move(other); return *this; } #endif // Returns a copy of the allocator associated with this buffer. Allocator get_allocator() const { return *this; } }; template
void MemoryBuffer
::grow(std::size_t size) { std::size_t new_capacity = this->capacity_ + this->capacity_ / 2; if (size > new_capacity) new_capacity = size; T *new_ptr = this->allocate(new_capacity, FMT_NULL); // The following code doesn't throw, so the raw pointer above doesn't leak. std::uninitialized_copy(this->ptr_, this->ptr_ + this->size_, make_ptr(new_ptr, new_capacity)); std::size_t old_capacity = this->capacity_; T *old_ptr = this->ptr_; this->capacity_ = new_capacity; this->ptr_ = new_ptr; // deallocate may throw (at least in principle), but it doesn't matter since // the buffer already uses the new storage and will deallocate it in case // of exception. if (old_ptr != data_) Allocator::deallocate(old_ptr, old_capacity); } // A fixed-size buffer. template
class FixedBuffer : public fmt::Buffer
{ public: FixedBuffer(Char *array, std::size_t size) : fmt::Buffer
(array, size) {} protected: FMT_API void grow(std::size_t size) FMT_OVERRIDE; }; template
class BasicCharTraits { public: #if FMT_SECURE_SCL typedef stdext::checked_array_iterator
CharPtr; #else typedef Char *CharPtr; #endif static Char cast(int value) { return static_cast
(value); } }; template
class CharTraits; template <> class CharTraits
: public BasicCharTraits
{ private: // Conversion from wchar_t to char is not allowed. static char convert(wchar_t); public: static char convert(char value) { return value; } // Formats a floating-point number. template
FMT_API static int format_float(char *buffer, std::size_t size, const char *format, unsigned width, int precision, T value); }; #if FMT_USE_EXTERN_TEMPLATES extern template int CharTraits
::format_float
(char *buffer, std::size_t size, const char* format, unsigned width, int precision, double value); extern template int CharTraits
::format_float
(char *buffer, std::size_t size, const char* format, unsigned width, int precision, long double value); #endif template <> class CharTraits
: public BasicCharTraits
{ public: static wchar_t convert(char value) { return value; } static wchar_t convert(wchar_t value) { return value; } template
FMT_API static int format_float(wchar_t *buffer, std::size_t size, const wchar_t *format, unsigned width, int precision, T value); }; #if FMT_USE_EXTERN_TEMPLATES extern template int CharTraits
::format_float
(wchar_t *buffer, std::size_t size, const wchar_t* format, unsigned width, int precision, double value); extern template int CharTraits
::format_float
(wchar_t *buffer, std::size_t size, const wchar_t* format, unsigned width, int precision, long double value); #endif // Checks if a number is negative - used to avoid warnings. template
struct SignChecker { template
static bool is_negative(T value) { return value < 0; } }; template <> struct SignChecker
{ template
static bool is_negative(T) { return false; } }; // Returns true if value is negative, false otherwise. // Same as (value < 0) but doesn't produce warnings if T is an unsigned type. template
inline bool is_negative(T value) { return SignChecker
::is_signed>::is_negative(value); } // Selects uint32_t if FitsIn32Bits is true, uint64_t otherwise. template
struct TypeSelector { typedef uint32_t Type; }; template <> struct TypeSelector
{ typedef uint64_t Type; }; template
struct IntTraits { // Smallest of uint32_t and uint64_t that is large enough to represent // all values of T. typedef typename TypeSelector
::digits <= 32>::Type MainType; }; FMT_API void report_unknown_type(char code, const char *type); // Static data is placed in this class template to allow header-only // configuration. template
struct FMT_API BasicData { static const uint32_t POWERS_OF_10_32[]; static const uint64_t POWERS_OF_10_64[]; static const char DIGITS[]; }; #if FMT_USE_EXTERN_TEMPLATES extern template struct BasicData
; #endif typedef BasicData<> Data; #ifdef FMT_BUILTIN_CLZLL // Returns the number of decimal digits in n. Leading zeros are not counted // except for n == 0 in which case count_digits returns 1. inline unsigned count_digits(uint64_t n) { // Based on http://graphics.stanford.edu/~seander/bithacks.html#IntegerLog10 // and the benchmark https://github.com/localvoid/cxx-benchmark-count-digits. int t = (64 - FMT_BUILTIN_CLZLL(n | 1)) * 1233 >> 12; return to_unsigned(t) - (n < Data::POWERS_OF_10_64[t]) + 1; } #else // Fallback version of count_digits used when __builtin_clz is not available. inline unsigned count_digits(uint64_t n) { unsigned count = 1; for (;;) { // Integer division is slow so do it for a group of four digits instead // of for every digit. The idea comes from the talk by Alexandrescu // "Three Optimization Tips for C++". See speed-test for a comparison. if (n < 10) return count; if (n < 100) return count + 1; if (n < 1000) return count + 2; if (n < 10000) return count + 3; n /= 10000u; count += 4; } } #endif #ifdef FMT_BUILTIN_CLZ // Optional version of count_digits for better performance on 32-bit platforms. inline unsigned count_digits(uint32_t n) { int t = (32 - FMT_BUILTIN_CLZ(n | 1)) * 1233 >> 12; return to_unsigned(t) - (n < Data::POWERS_OF_10_32[t]) + 1; } #endif // A functor that doesn't add a thousands separator. struct NoThousandsSep { template
void operator()(Char *) {} }; // A functor that adds a thousands separator. class ThousandsSep { private: fmt::StringRef sep_; // Index of a decimal digit with the least significant digit having index 0. unsigned digit_index_; public: explicit ThousandsSep(fmt::StringRef sep) : sep_(sep), digit_index_(0) {} template
void operator()(Char *&buffer) { if (++digit_index_ % 3 != 0) return; buffer -= sep_.size(); std::uninitialized_copy(sep_.data(), sep_.data() + sep_.size(), internal::make_ptr(buffer, sep_.size())); } }; // Formats a decimal unsigned integer value writing into buffer. // thousands_sep is a functor that is called after writing each char to // add a thousands separator if necessary. template
inline void format_decimal(Char *buffer, UInt value, unsigned num_digits, ThousandsSep thousands_sep) { buffer += num_digits; while (value >= 100) { // Integer division is slow so do it for a group of two digits instead // of for every digit. The idea comes from the talk by Alexandrescu // "Three Optimization Tips for C++". See speed-test for a comparison. unsigned index = static_cast
((value % 100) * 2); value /= 100; *--buffer = Data::DIGITS[index + 1]; thousands_sep(buffer); *--buffer = Data::DIGITS[index]; thousands_sep(buffer); } if (value < 10) { *--buffer = static_cast
('0' + value); return; } unsigned index = static_cast
(value * 2); *--buffer = Data::DIGITS[index + 1]; thousands_sep(buffer); *--buffer = Data::DIGITS[index]; } template
inline void format_decimal(Char *buffer, UInt value, unsigned num_digits) { format_decimal(buffer, value, num_digits, NoThousandsSep()); return; } #ifndef _WIN32 # define FMT_USE_WINDOWS_H 0 #elif !defined(FMT_USE_WINDOWS_H) # define FMT_USE_WINDOWS_H 1 #endif // Define FMT_USE_WINDOWS_H to 0 to disable use of windows.h. // All the functionality that relies on it will be disabled too. #if FMT_USE_WINDOWS_H // A converter from UTF-8 to UTF-16. // It is only provided for Windows since other systems support UTF-8 natively. class UTF8ToUTF16 { private: MemoryBuffer
buffer_; public: FMT_API explicit UTF8ToUTF16(StringRef s); operator WStringRef() const { return WStringRef(&buffer_[0], size()); } size_t size() const { return buffer_.size() - 1; } const wchar_t *c_str() const { return &buffer_[0]; } std::wstring str() const { return std::wstring(&buffer_[0], size()); } }; // A converter from UTF-16 to UTF-8. // It is only provided for Windows since other systems support UTF-8 natively. class UTF16ToUTF8 { private: MemoryBuffer
buffer_; public: UTF16ToUTF8() {} FMT_API explicit UTF16ToUTF8(WStringRef s); operator StringRef() const { return StringRef(&buffer_[0], size()); } size_t size() const { return buffer_.size() - 1; } const char *c_str() const { return &buffer_[0]; } std::string str() const { return std::string(&buffer_[0], size()); } // Performs conversion returning a system error code instead of // throwing exception on conversion error. This method may still throw // in case of memory allocation error. FMT_API int convert(WStringRef s); }; FMT_API void format_windows_error(fmt::Writer &out, int error_code, fmt::StringRef message) FMT_NOEXCEPT; #endif // A formatting argument value. struct Value { template
struct StringValue { const Char *value; std::size_t size; }; typedef void (*FormatFunc)( void *formatter, const void *arg, void *format_str_ptr); struct CustomValue { const void *value; FormatFunc format; }; union { int int_value; unsigned uint_value; LongLong long_long_value; ULongLong ulong_long_value; double double_value; long double long_double_value; const void *pointer; StringValue
string; StringValue
sstring; StringValue
ustring; StringValue
wstring; CustomValue custom; }; enum Type { NONE, NAMED_ARG, // Integer types should go first, INT, UINT, LONG_LONG, ULONG_LONG, BOOL, CHAR, LAST_INTEGER_TYPE = CHAR, // followed by floating-point types. DOUBLE, LONG_DOUBLE, LAST_NUMERIC_TYPE = LONG_DOUBLE, CSTRING, STRING, WSTRING, POINTER, CUSTOM }; }; // A formatting argument. It is a trivially copyable/constructible type to // allow storage in internal::MemoryBuffer. struct Arg : Value { Type type; }; template
struct NamedArg; template
struct NamedArgWithType; template
struct Null {}; // A helper class template to enable or disable overloads taking wide // characters and strings in MakeValue. template
struct WCharHelper { typedef Null
Supported; typedef T Unsupported; }; template
struct WCharHelper
{ typedef T Supported; typedef Null
Unsupported; }; typedef char Yes[1]; typedef char No[2]; template
T &get(); // These are non-members to workaround an overload resolution bug in bcc32. Yes &convert(fmt::ULongLong); No &convert(...); template
struct ConvertToIntImpl { enum { value = ENABLE_CONVERSION }; }; template
struct ConvertToIntImpl2 { enum { value = false }; }; template
struct ConvertToIntImpl2
{ enum { // Don't convert numeric types. value = ConvertToIntImpl
::is_specialized>::value }; }; template
struct ConvertToInt { enum { enable_conversion = sizeof(fmt::internal::convert(get
())) == sizeof(Yes) }; enum { value = ConvertToIntImpl2
::value }; }; #define FMT_DISABLE_CONVERSION_TO_INT(Type) \ template <> \ struct ConvertToInt
{ enum { value = 0 }; } // Silence warnings about convering float to int. FMT_DISABLE_CONVERSION_TO_INT(float); FMT_DISABLE_CONVERSION_TO_INT(double); FMT_DISABLE_CONVERSION_TO_INT(long double); template
struct EnableIf {}; template
struct EnableIf
{ typedef T type; }; template
struct Conditional { typedef T type; }; template
struct Conditional
{ typedef F type; }; // For bcc32 which doesn't understand ! in template arguments. template
struct Not { enum { value = 0 }; }; template <> struct Not
{ enum { value = 1 }; }; template
struct False { enum { value = 0 }; }; template
struct LConvCheck { LConvCheck(int) {} }; // Returns the thousands separator for the current locale. // We check if ``lconv`` contains ``thousands_sep`` because on Android // ``lconv`` is stubbed as an empty struct. template
inline StringRef thousands_sep( LConv *lc, LConvCheck
= 0) { return lc->thousands_sep; } inline fmt::StringRef thousands_sep(...) { return ""; } #define FMT_CONCAT(a, b) a##b #if FMT_GCC_VERSION >= 303 # define FMT_UNUSED __attribute__((unused)) #else # define FMT_UNUSED #endif #ifndef FMT_USE_STATIC_ASSERT # define FMT_USE_STATIC_ASSERT 0 #endif #if FMT_USE_STATIC_ASSERT || FMT_HAS_FEATURE(cxx_static_assert) || \ (FMT_GCC_VERSION >= 403 && FMT_HAS_GXX_CXX11) || _MSC_VER >= 1600 # define FMT_STATIC_ASSERT(cond, message) static_assert(cond, message) #else # define FMT_CONCAT_(a, b) FMT_CONCAT(a, b) # define FMT_STATIC_ASSERT(cond, message) \ typedef int FMT_CONCAT_(Assert, __LINE__)[(cond) ? 1 : -1] FMT_UNUSED #endif template
void format_arg(Formatter &, const Char *, const T &) { FMT_STATIC_ASSERT(False
::value, "Cannot format argument. To enable the use of ostream " "operator<< include fmt/ostream.h. Otherwise provide " "an overload of format_arg."); } // Makes an Arg object from any type. template
class MakeValue : public Arg { public: typedef typename Formatter::Char Char; private: // The following two methods are private to disallow formatting of // arbitrary pointers. If you want to output a pointer cast it to // "void *" or "const void *". In particular, this forbids formatting // of "[const] volatile char *" which is printed as bool by iostreams. // Do not implement! template
MakeValue(const T *value); template
MakeValue(T *value); // The following methods are private to disallow formatting of wide // characters and strings into narrow strings as in // fmt::format("{}", L"test"); // To fix this, use a wide format string: fmt::format(L"{}", L"test"). #if !FMT_MSC_VER || defined(_NATIVE_WCHAR_T_DEFINED) MakeValue(typename WCharHelper
::Unsupported); #endif MakeValue(typename WCharHelper
::Unsupported); MakeValue(typename WCharHelper
::Unsupported); MakeValue(typename WCharHelper
::Unsupported); MakeValue(typename WCharHelper
::Unsupported); void set_string(StringRef str) { string.value = str.data(); string.size = str.size(); } void set_string(WStringRef str) { wstring.value = str.data(); wstring.size = str.size(); } // Formats an argument of a custom type, such as a user-defined class. template
static void format_custom_arg( void *formatter, const void *arg, void *format_str_ptr) { format_arg(*static_cast
(formatter), *static_cast
(format_str_ptr), *static_cast
(arg)); } public: MakeValue() {} #define FMT_MAKE_VALUE_(Type, field, TYPE, rhs) \ MakeValue(Type value) { field = rhs; } \ static uint64_t type(Type) { return Arg::TYPE; } #define FMT_MAKE_VALUE(Type, field, TYPE) \ FMT_MAKE_VALUE_(Type, field, TYPE, value) FMT_MAKE_VALUE(bool, int_value, BOOL) FMT_MAKE_VALUE(short, int_value, INT) FMT_MAKE_VALUE(unsigned short, uint_value, UINT) FMT_MAKE_VALUE(int, int_value, INT) FMT_MAKE_VALUE(unsigned, uint_value, UINT) MakeValue(long value) { // To minimize the number of types we need to deal with, long is // translated either to int or to long long depending on its size. if (const_check(sizeof(long) == sizeof(int))) int_value = static_cast
(value); else long_long_value = value; } static uint64_t type(long) { return sizeof(long) == sizeof(int) ? Arg::INT : Arg::LONG_LONG; } MakeValue(unsigned long value) { if (const_check(sizeof(unsigned long) == sizeof(unsigned))) uint_value = static_cast
(value); else ulong_long_value = value; } static uint64_t type(unsigned long) { return sizeof(unsigned long) == sizeof(unsigned) ? Arg::UINT : Arg::ULONG_LONG; } FMT_MAKE_VALUE(LongLong, long_long_value, LONG_LONG) FMT_MAKE_VALUE(ULongLong, ulong_long_value, ULONG_LONG) FMT_MAKE_VALUE(float, double_value, DOUBLE) FMT_MAKE_VALUE(double, double_value, DOUBLE) FMT_MAKE_VALUE(long double, long_double_value, LONG_DOUBLE) FMT_MAKE_VALUE(signed char, int_value, INT) FMT_MAKE_VALUE(unsigned char, uint_value, UINT) FMT_MAKE_VALUE(char, int_value, CHAR) #if !defined(_MSC_VER) || defined(_NATIVE_WCHAR_T_DEFINED) MakeValue(typename WCharHelper
::Supported value) { int_value = value; } static uint64_t type(wchar_t) { return Arg::CHAR; } #endif #define FMT_MAKE_STR_VALUE(Type, TYPE) \ MakeValue(Type value) { set_string(value); } \ static uint64_t type(Type) { return Arg::TYPE; } FMT_MAKE_VALUE(char *, string.value, CSTRING) FMT_MAKE_VALUE(const char *, string.value, CSTRING) FMT_MAKE_VALUE(signed char *, sstring.value, CSTRING) FMT_MAKE_VALUE(const signed char *, sstring.value, CSTRING) FMT_MAKE_VALUE(unsigned char *, ustring.value, CSTRING) FMT_MAKE_VALUE(const unsigned char *, ustring.value, CSTRING) FMT_MAKE_STR_VALUE(const std::string &, STRING) FMT_MAKE_STR_VALUE(StringRef, STRING) FMT_MAKE_VALUE_(CStringRef, string.value, CSTRING, value.c_str()) #define FMT_MAKE_WSTR_VALUE(Type, TYPE) \ MakeValue(typename WCharHelper
::Supported value) { \ set_string(value); \ } \ static uint64_t type(Type) { return Arg::TYPE; } FMT_MAKE_WSTR_VALUE(wchar_t *, WSTRING) FMT_MAKE_WSTR_VALUE(const wchar_t *, WSTRING) FMT_MAKE_WSTR_VALUE(const std::wstring &, WSTRING) FMT_MAKE_WSTR_VALUE(WStringRef, WSTRING) FMT_MAKE_VALUE(void *, pointer, POINTER) FMT_MAKE_VALUE(const void *, pointer, POINTER) template
MakeValue(const T &value, typename EnableIf
::value>::value, int>::type = 0) { custom.value = &value; custom.format = &format_custom_arg
; } template
MakeValue(const T &value, typename EnableIf
::value, int>::type = 0) { int_value = value; } template
static uint64_t type(const T &) { return ConvertToInt
::value ? Arg::INT : Arg::CUSTOM; } // Additional template param `Char_` is needed here because make_type always // uses char. template
MakeValue(const NamedArg
&value) { pointer = &value; } template
MakeValue(const NamedArgWithType
&value) { pointer = &value; } template
static uint64_t type(const NamedArg
&) { return Arg::NAMED_ARG; } template
static uint64_t type(const NamedArgWithType
&) { return Arg::NAMED_ARG; } }; template
class MakeArg : public Arg { public: MakeArg() { type = Arg::NONE; } template
MakeArg(const T &value) : Arg(MakeValue
(value)) { type = static_cast
(MakeValue
::type(value)); } }; template
struct NamedArg : Arg { BasicStringRef
name; template
NamedArg(BasicStringRef
argname, const T &value) : Arg(MakeArg< BasicFormatter
>(value)), name(argname) {} }; template
struct NamedArgWithType : NamedArg
{ NamedArgWithType(BasicStringRef
argname, const T &value) : NamedArg
(argname, value) {} }; class RuntimeError : public std::runtime_error { protected: RuntimeError() : std::runtime_error("") {} RuntimeError(const RuntimeError &rerr) : std::runtime_error(rerr) {} ~RuntimeError() FMT_DTOR_NOEXCEPT; }; template
class ArgMap; } // namespace internal /** An argument list. */ class ArgList { private: // To reduce compiled code size per formatting function call, types of first // MAX_PACKED_ARGS arguments are passed in the types_ field. uint64_t types_; union { // If the number of arguments is less than MAX_PACKED_ARGS, the argument // values are stored in values_, otherwise they are stored in args_. // This is done to reduce compiled code size as storing larger objects // may require more code (at least on x86-64) even if the same amount of // data is actually copied to stack. It saves ~10% on the bloat test. const internal::Value *values_; const internal::Arg *args_; }; internal::Arg::Type type(unsigned index) const { return type(types_, index); } template
friend class internal::ArgMap; public: // Maximum number of arguments with packed types. enum { MAX_PACKED_ARGS = 16 }; ArgList() : types_(0) {} ArgList(ULongLong types, const internal::Value *values) : types_(types), values_(values) {} ArgList(ULongLong types, const internal::Arg *args) : types_(types), args_(args) {} uint64_t types() const { return types_; } /** Returns the argument at specified index. */ internal::Arg operator[](unsigned index) const { using internal::Arg; Arg arg; bool use_values = type(MAX_PACKED_ARGS - 1) == Arg::NONE; if (index < MAX_PACKED_ARGS) { Arg::Type arg_type = type(index); internal::Value &val = arg; if (arg_type != Arg::NONE) val = use_values ? values_[index] : args_[index]; arg.type = arg_type; return arg; } if (use_values) { // The index is greater than the number of arguments that can be stored // in values, so return a "none" argument. arg.type = Arg::NONE; return arg; } for (unsigned i = MAX_PACKED_ARGS; i <= index; ++i) { if (args_[i].type == Arg::NONE) return args_[i]; } return args_[index]; } static internal::Arg::Type type(uint64_t types, unsigned index) { unsigned shift = index * 4; uint64_t mask = 0xf; return static_cast
( (types & (mask << shift)) >> shift); } }; #define FMT_DISPATCH(call) static_cast
(this)->call /** \rst An argument visitor based on the `curiously recurring template pattern
`_. To use `~fmt::ArgVisitor` define a subclass that implements some or all of the visit methods with the same signatures as the methods in `~fmt::ArgVisitor`, for example, `~fmt::ArgVisitor::visit_int()`. Pass the subclass as the *Impl* template parameter. Then calling `~fmt::ArgVisitor::visit` for some argument will dispatch to a visit method specific to the argument type. For example, if the argument type is ``double`` then the `~fmt::ArgVisitor::visit_double()` method of a subclass will be called. If the subclass doesn't contain a method with this signature, then a corresponding method of `~fmt::ArgVisitor` will be called. **Example**:: class MyArgVisitor : public fmt::ArgVisitor
{ public: void visit_int(int value) { fmt::print("{}", value); } void visit_double(double value) { fmt::print("{}", value ); } }; \endrst */ template
class ArgVisitor { private: typedef internal::Arg Arg; public: void report_unhandled_arg() {} Result visit_unhandled_arg() { FMT_DISPATCH(report_unhandled_arg()); return Result(); } /** Visits an ``int`` argument. **/ Result visit_int(int value) { return FMT_DISPATCH(visit_any_int(value)); } /** Visits a ``long long`` argument. **/ Result visit_long_long(LongLong value) { return FMT_DISPATCH(visit_any_int(value)); } /** Visits an ``unsigned`` argument. **/ Result visit_uint(unsigned value) { return FMT_DISPATCH(visit_any_int(value)); } /** Visits an ``unsigned long long`` argument. **/ Result visit_ulong_long(ULongLong value) { return FMT_DISPATCH(visit_any_int(value)); } /** Visits a ``bool`` argument. **/ Result visit_bool(bool value) { return FMT_DISPATCH(visit_any_int(value)); } /** Visits a ``char`` or ``wchar_t`` argument. **/ Result visit_char(int value) { return FMT_DISPATCH(visit_any_int(value)); } /** Visits an argument of any integral type. **/ template
Result visit_any_int(T) { return FMT_DISPATCH(visit_unhandled_arg()); } /** Visits a ``double`` argument. **/ Result visit_double(double value) { return FMT_DISPATCH(visit_any_double(value)); } /** Visits a ``long double`` argument. **/ Result visit_long_double(long double value) { return FMT_DISPATCH(visit_any_double(value)); } /** Visits a ``double`` or ``long double`` argument. **/ template
Result visit_any_double(T) { return FMT_DISPATCH(visit_unhandled_arg()); } /** Visits a null-terminated C string (``const char *``) argument. **/ Result visit_cstring(const char *) { return FMT_DISPATCH(visit_unhandled_arg()); } /** Visits a string argument. **/ Result visit_string(Arg::StringValue
) { return FMT_DISPATCH(visit_unhandled_arg()); } /** Visits a wide string argument. **/ Result visit_wstring(Arg::StringValue
) { return FMT_DISPATCH(visit_unhandled_arg()); } /** Visits a pointer argument. **/ Result visit_pointer(const void *) { return FMT_DISPATCH(visit_unhandled_arg()); } /** Visits an argument of a custom (user-defined) type. **/ Result visit_custom(Arg::CustomValue) { return FMT_DISPATCH(visit_unhandled_arg()); } /** \rst Visits an argument dispatching to the appropriate visit method based on the argument type. For example, if the argument type is ``double`` then the `~fmt::ArgVisitor::visit_double()` method of the *Impl* class will be called. \endrst */ Result visit(const Arg &arg) { switch (arg.type) { case Arg::NONE: case Arg::NAMED_ARG: FMT_ASSERT(false, "invalid argument type"); break; case Arg::INT: return FMT_DISPATCH(visit_int(arg.int_value)); case Arg::UINT: return FMT_DISPATCH(visit_uint(arg.uint_value)); case Arg::LONG_LONG: return FMT_DISPATCH(visit_long_long(arg.long_long_value)); case Arg::ULONG_LONG: return FMT_DISPATCH(visit_ulong_long(arg.ulong_long_value)); case Arg::BOOL: return FMT_DISPATCH(visit_bool(arg.int_value != 0)); case Arg::CHAR: return FMT_DISPATCH(visit_char(arg.int_value)); case Arg::DOUBLE: return FMT_DISPATCH(visit_double(arg.double_value)); case Arg::LONG_DOUBLE: return FMT_DISPATCH(visit_long_double(arg.long_double_value)); case Arg::CSTRING: return FMT_DISPATCH(visit_cstring(arg.string.value)); case Arg::STRING: return FMT_DISPATCH(visit_string(arg.string)); case Arg::WSTRING: return FMT_DISPATCH(visit_wstring(arg.wstring)); case Arg::POINTER: return FMT_DISPATCH(visit_pointer(arg.pointer)); case Arg::CUSTOM: return FMT_DISPATCH(visit_custom(arg.custom)); } return Result(); } }; enum Alignment { ALIGN_DEFAULT, ALIGN_LEFT, ALIGN_RIGHT, ALIGN_CENTER, ALIGN_NUMERIC }; // Flags. enum { SIGN_FLAG = 1, PLUS_FLAG = 2, MINUS_FLAG = 4, HASH_FLAG = 8, CHAR_FLAG = 0x10 // Argument has char type - used in error reporting. }; // An empty format specifier. struct EmptySpec {}; // A type specifier. template
struct TypeSpec : EmptySpec { Alignment align() const { return ALIGN_DEFAULT; } unsigned width() const { return 0; } int precision() const { return -1; } bool flag(unsigned) const { return false; } char type() const { return TYPE; } char fill() const { return ' '; } }; // A width specifier. struct WidthSpec { unsigned width_; // Fill is always wchar_t and cast to char if necessary to avoid having // two specialization of WidthSpec and its subclasses. wchar_t fill_; WidthSpec(unsigned width, wchar_t fill) : width_(width), fill_(fill) {} unsigned width() const { return width_; } wchar_t fill() const { return fill_; } }; // An alignment specifier. struct AlignSpec : WidthSpec { Alignment align_; AlignSpec(unsigned width, wchar_t fill, Alignment align = ALIGN_DEFAULT) : WidthSpec(width, fill), align_(align) {} Alignment align() const { return align_; } int precision() const { return -1; } }; // An alignment and type specifier. template
struct AlignTypeSpec : AlignSpec { AlignTypeSpec(unsigned width, wchar_t fill) : AlignSpec(width, fill) {} bool flag(unsigned) const { return false; } char type() const { return TYPE; } }; // A full format specifier. struct FormatSpec : AlignSpec { unsigned flags_; int precision_; char type_; FormatSpec( unsigned width = 0, char type = 0, wchar_t fill = ' ') : AlignSpec(width, fill), flags_(0), precision_(-1), type_(type) {} bool flag(unsigned f) const { return (flags_ & f) != 0; } int precision() const { return precision_; } char type() const { return type_; } }; // An integer format specifier. template
, typename Char = char> class IntFormatSpec : public SpecT { private: T value_; public: IntFormatSpec(T val, const SpecT &spec = SpecT()) : SpecT(spec), value_(val) {} T value() const { return value_; } }; // A string format specifier. template
class StrFormatSpec : public AlignSpec { private: const Char *str_; public: template
StrFormatSpec(const Char *str, unsigned width, FillChar fill) : AlignSpec(width, fill), str_(str) { internal::CharTraits
::convert(FillChar()); } const Char *str() const { return str_; } }; /** Returns an integer format specifier to format the value in base 2. */ IntFormatSpec
> bin(int value); /** Returns an integer format specifier to format the value in base 8. */ IntFormatSpec
> oct(int value); /** Returns an integer format specifier to format the value in base 16 using lower-case letters for the digits above 9. */ IntFormatSpec
> hex(int value); /** Returns an integer formatter format specifier to format in base 16 using upper-case letters for the digits above 9. */ IntFormatSpec
> hexu(int value); /** \rst Returns an integer format specifier to pad the formatted argument with the fill character to the specified width using the default (right) numeric alignment. **Example**:: MemoryWriter out; out << pad(hex(0xcafe), 8, '0'); // out.str() == "0000cafe" \endrst */ template
IntFormatSpec
, Char> pad( int value, unsigned width, Char fill = ' '); #define FMT_DEFINE_INT_FORMATTERS(TYPE) \ inline IntFormatSpec
> bin(TYPE value) { \ return IntFormatSpec
>(value, TypeSpec<'b'>()); \ } \ \ inline IntFormatSpec
> oct(TYPE value) { \ return IntFormatSpec
>(value, TypeSpec<'o'>()); \ } \ \ inline IntFormatSpec
> hex(TYPE value) { \ return IntFormatSpec
>(value, TypeSpec<'x'>()); \ } \ \ inline IntFormatSpec
> hexu(TYPE value) { \ return IntFormatSpec
>(value, TypeSpec<'X'>()); \ } \ \ template
\ inline IntFormatSpec
> pad( \ IntFormatSpec
> f, unsigned width) { \ return IntFormatSpec
>( \ f.value(), AlignTypeSpec
(width, ' ')); \ } \ \ /* For compatibility with older compilers we provide two overloads for pad, */ \ /* one that takes a fill character and one that doesn't. In the future this */ \ /* can be replaced with one overload making the template argument Char */ \ /* default to char (C++11). */ \ template
\ inline IntFormatSpec
, Char> pad( \ IntFormatSpec
, Char> f, \ unsigned width, Char fill) { \ return IntFormatSpec
, Char>( \ f.value(), AlignTypeSpec
(width, fill)); \ } \ \ inline IntFormatSpec
> pad( \ TYPE value, unsigned width) { \ return IntFormatSpec
>( \ value, AlignTypeSpec<0>(width, ' ')); \ } \ \ template
\ inline IntFormatSpec
, Char> pad( \ TYPE value, unsigned width, Char fill) { \ return IntFormatSpec
, Char>( \ value, AlignTypeSpec<0>(width, fill)); \ } FMT_DEFINE_INT_FORMATTERS(int) FMT_DEFINE_INT_FORMATTERS(long) FMT_DEFINE_INT_FORMATTERS(unsigned) FMT_DEFINE_INT_FORMATTERS(unsigned long) FMT_DEFINE_INT_FORMATTERS(LongLong) FMT_DEFINE_INT_FORMATTERS(ULongLong) /** \rst Returns a string formatter that pads the formatted argument with the fill character to the specified width using the default (left) string alignment. **Example**:: std::string s = str(MemoryWriter() << pad("abc", 8)); // s == "abc " \endrst */ template
inline StrFormatSpec
pad( const Char *str, unsigned width, Char fill = ' ') { return StrFormatSpec
(str, width, fill); } inline StrFormatSpec
pad( const wchar_t *str, unsigned width, char fill = ' ') { return StrFormatSpec
(str, width, fill); } namespace internal { template
class ArgMap { private: typedef std::vector< std::pair
, internal::Arg> > MapType; typedef typename MapType::value_type Pair; MapType map_; public: FMT_API void init(const ArgList &args); const internal::Arg *find(const fmt::BasicStringRef
&name) const { // The list is unsorted, so just return the first matching name. for (typename MapType::const_iterator it = map_.begin(), end = map_.end(); it != end; ++it) { if (it->first == name) return &it->second; } return FMT_NULL; } }; template
class ArgFormatterBase : public ArgVisitor
{ private: BasicWriter
&writer_; FormatSpec &spec_; FMT_DISALLOW_COPY_AND_ASSIGN(ArgFormatterBase); void write_pointer(const void *p) { spec_.flags_ = HASH_FLAG; spec_.type_ = 'x'; writer_.write_int(reinterpret_cast