C++程序  |  701行  |  26.51 KB

// Copyright 2013 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#ifndef BASE_MESSAGE_LOOP_MESSAGE_LOOP_H_
#define BASE_MESSAGE_LOOP_MESSAGE_LOOP_H_

#include <memory>
#include <queue>
#include <string>

#include "base/base_export.h"
#include "base/callback_forward.h"
#include "base/debug/task_annotator.h"
#include "base/gtest_prod_util.h"
#include "base/location.h"
#include "base/macros.h"
#include "base/memory/ref_counted.h"
#include "base/message_loop/incoming_task_queue.h"
#include "base/message_loop/message_loop_task_runner.h"
#include "base/message_loop/message_pump.h"
#include "base/message_loop/timer_slack.h"
#include "base/observer_list.h"
#include "base/pending_task.h"
#include "base/sequenced_task_runner_helpers.h"
#include "base/synchronization/lock.h"
#include "base/time/time.h"
#include "base/tracking_info.h"
#include "build/build_config.h"

// TODO(sky): these includes should not be necessary. Nuke them.
#if defined(OS_WIN)
#include "base/message_loop/message_pump_win.h"
#elif defined(OS_IOS)
#include "base/message_loop/message_pump_io_ios.h"
#elif defined(OS_POSIX)
#include "base/message_loop/message_pump_libevent.h"
#endif

namespace base {

class HistogramBase;
class RunLoop;
class ThreadTaskRunnerHandle;
class WaitableEvent;

// A MessageLoop is used to process events for a particular thread.  There is
// at most one MessageLoop instance per thread.
//
// Events include at a minimum Task instances submitted to PostTask and its
// variants.  Depending on the type of message pump used by the MessageLoop
// other events such as UI messages may be processed.  On Windows APC calls (as
// time permits) and signals sent to a registered set of HANDLEs may also be
// processed.
//
// NOTE: Unless otherwise specified, a MessageLoop's methods may only be called
// on the thread where the MessageLoop's Run method executes.
//
// NOTE: MessageLoop has task reentrancy protection.  This means that if a
// task is being processed, a second task cannot start until the first task is
// finished.  Reentrancy can happen when processing a task, and an inner
// message pump is created.  That inner pump then processes native messages
// which could implicitly start an inner task.  Inner message pumps are created
// with dialogs (DialogBox), common dialogs (GetOpenFileName), OLE functions
// (DoDragDrop), printer functions (StartDoc) and *many* others.
//
// Sample workaround when inner task processing is needed:
//   HRESULT hr;
//   {
//     MessageLoop::ScopedNestableTaskAllower allow(MessageLoop::current());
//     hr = DoDragDrop(...); // Implicitly runs a modal message loop.
//   }
//   // Process |hr| (the result returned by DoDragDrop()).
//
// Please be SURE your task is reentrant (nestable) and all global variables
// are stable and accessible before calling SetNestableTasksAllowed(true).
//
class BASE_EXPORT MessageLoop : public MessagePump::Delegate {
 public:
  // A MessageLoop has a particular type, which indicates the set of
  // asynchronous events it may process in addition to tasks and timers.
  //
  // TYPE_DEFAULT
  //   This type of ML only supports tasks and timers.
  //
  // TYPE_UI
  //   This type of ML also supports native UI events (e.g., Windows messages).
  //   See also MessageLoopForUI.
  //
  // TYPE_IO
  //   This type of ML also supports asynchronous IO.  See also
  //   MessageLoopForIO.
  //
  // TYPE_JAVA
  //   This type of ML is backed by a Java message handler which is responsible
  //   for running the tasks added to the ML. This is only for use on Android.
  //   TYPE_JAVA behaves in essence like TYPE_UI, except during construction
  //   where it does not use the main thread specific pump factory.
  //
  // TYPE_CUSTOM
  //   MessagePump was supplied to constructor.
  //
  enum Type {
    TYPE_DEFAULT,
    TYPE_UI,
    TYPE_CUSTOM,
    TYPE_IO,
#if defined(OS_ANDROID)
    TYPE_JAVA,
#endif  // defined(OS_ANDROID)
  };

  // Normally, it is not necessary to instantiate a MessageLoop.  Instead, it
  // is typical to make use of the current thread's MessageLoop instance.
  explicit MessageLoop(Type type = TYPE_DEFAULT);
  // Creates a TYPE_CUSTOM MessageLoop with the supplied MessagePump, which must
  // be non-NULL.
  explicit MessageLoop(std::unique_ptr<MessagePump> pump);

  ~MessageLoop() override;

  // Returns the MessageLoop object for the current thread, or null if none.
  static MessageLoop* current();

  static void EnableHistogrammer(bool enable_histogrammer);

  typedef std::unique_ptr<MessagePump>(MessagePumpFactory)();
  // Uses the given base::MessagePumpForUIFactory to override the default
  // MessagePump implementation for 'TYPE_UI'. Returns true if the factory
  // was successfully registered.
  static bool InitMessagePumpForUIFactory(MessagePumpFactory* factory);

  // Creates the default MessagePump based on |type|. Caller owns return
  // value.
  static std::unique_ptr<MessagePump> CreateMessagePumpForType(Type type);

  // A DestructionObserver is notified when the current MessageLoop is being
  // destroyed.  These observers are notified prior to MessageLoop::current()
  // being changed to return NULL.  This gives interested parties the chance to
  // do final cleanup that depends on the MessageLoop.
  //
  // NOTE: Any tasks posted to the MessageLoop during this notification will
  // not be run.  Instead, they will be deleted.
  //
  class BASE_EXPORT DestructionObserver {
   public:
    virtual void WillDestroyCurrentMessageLoop() = 0;

   protected:
    virtual ~DestructionObserver();
  };

  // Add a DestructionObserver, which will start receiving notifications
  // immediately.
  void AddDestructionObserver(DestructionObserver* destruction_observer);

  // Remove a DestructionObserver.  It is safe to call this method while a
  // DestructionObserver is receiving a notification callback.
  void RemoveDestructionObserver(DestructionObserver* destruction_observer);

  // A NestingObserver is notified when a nested message loop begins. The
  // observers are notified before the first task is processed.
  class BASE_EXPORT NestingObserver {
   public:
    virtual void OnBeginNestedMessageLoop() = 0;

   protected:
    virtual ~NestingObserver();
  };

  void AddNestingObserver(NestingObserver* observer);
  void RemoveNestingObserver(NestingObserver* observer);

  // NOTE: Deprecated; prefer task_runner() and the TaskRunner interfaces.
  // TODO(skyostil): Remove these functions (crbug.com/465354).
  //
  // The "PostTask" family of methods call the task's Run method asynchronously
  // from within a message loop at some point in the future.
  //
  // With the PostTask variant, tasks are invoked in FIFO order, inter-mixed
  // with normal UI or IO event processing.  With the PostDelayedTask variant,
  // tasks are called after at least approximately 'delay_ms' have elapsed.
  //
  // The NonNestable variants work similarly except that they promise never to
  // dispatch the task from a nested invocation of MessageLoop::Run.  Instead,
  // such tasks get deferred until the top-most MessageLoop::Run is executing.
  //
  // The MessageLoop takes ownership of the Task, and deletes it after it has
  // been Run().
  //
  // PostTask(from_here, task) is equivalent to
  // PostDelayedTask(from_here, task, 0).
  //
  // NOTE: These methods may be called on any thread.  The Task will be invoked
  // on the thread that executes MessageLoop::Run().
  void PostTask(const tracked_objects::Location& from_here,
                const Closure& task);

  void PostDelayedTask(const tracked_objects::Location& from_here,
                       const Closure& task,
                       TimeDelta delay);

  // A variant on PostTask that deletes the given object.  This is useful
  // if the object needs to live until the next run of the MessageLoop (for
  // example, deleting a RenderProcessHost from within an IPC callback is not
  // good).
  //
  // NOTE: This method may be called on any thread.  The object will be deleted
  // on the thread that executes MessageLoop::Run().
  template <class T>
  void DeleteSoon(const tracked_objects::Location& from_here, const T* object) {
    base::subtle::DeleteHelperInternal<T, void>::DeleteViaSequencedTaskRunner(
        this, from_here, object);
  }

  // A variant on PostTask that releases the given reference counted object
  // (by calling its Release method).  This is useful if the object needs to
  // live until the next run of the MessageLoop, or if the object needs to be
  // released on a particular thread.
  //
  // A common pattern is to manually increment the object's reference count
  // (AddRef), clear the pointer, then issue a ReleaseSoon.  The reference count
  // is incremented manually to ensure clearing the pointer does not trigger a
  // delete and to account for the upcoming decrement (ReleaseSoon).  For
  // example:
  //
  // scoped_refptr<Foo> foo = ...
  // foo->AddRef();
  // Foo* raw_foo = foo.get();
  // foo = NULL;
  // message_loop->ReleaseSoon(raw_foo);
  //
  // NOTE: This method may be called on any thread.  The object will be
  // released (and thus possibly deleted) on the thread that executes
  // MessageLoop::Run().  If this is not the same as the thread that calls
  // ReleaseSoon(FROM_HERE, ), then T MUST inherit from
  // RefCountedThreadSafe<T>!
  template <class T>
  void ReleaseSoon(const tracked_objects::Location& from_here,
                   const T* object) {
    base::subtle::ReleaseHelperInternal<T, void>::ReleaseViaSequencedTaskRunner(
        this, from_here, object);
  }

  // Deprecated: use RunLoop instead.
  // Run the message loop.
  void Run();

  // Deprecated: use RunLoop instead.
  // Process all pending tasks, windows messages, etc., but don't wait/sleep.
  // Return as soon as all items that can be run are taken care of.
  void RunUntilIdle();

  // Deprecated: use RunLoop instead.
  //
  // Signals the Run method to return when it becomes idle. It will continue to
  // process pending messages and future messages as long as they are enqueued.
  // Warning: if the MessageLoop remains busy, it may never quit. Only use this
  // Quit method when looping procedures (such as web pages) have been shut
  // down.
  //
  // This method may only be called on the same thread that called Run, and Run
  // must still be on the call stack.
  //
  // Use QuitClosure variants if you need to Quit another thread's MessageLoop,
  // but note that doing so is fairly dangerous if the target thread makes
  // nested calls to MessageLoop::Run.  The problem being that you won't know
  // which nested run loop you are quitting, so be careful!
  void QuitWhenIdle();

  // Deprecated: use RunLoop instead.
  //
  // This method is a variant of Quit, that does not wait for pending messages
  // to be processed before returning from Run.
  void QuitNow();

  // Deprecated: use RunLoop instead.
  // Construct a Closure that will call QuitWhenIdle(). Useful to schedule an
  // arbitrary MessageLoop to QuitWhenIdle.
  static Closure QuitWhenIdleClosure();

  // Set the timer slack for this message loop.
  void SetTimerSlack(TimerSlack timer_slack) {
    pump_->SetTimerSlack(timer_slack);
  }

  // Returns true if this loop is |type|. This allows subclasses (especially
  // those in tests) to specialize how they are identified.
  virtual bool IsType(Type type) const;

  // Returns the type passed to the constructor.
  Type type() const { return type_; }

  // Returns the name of the thread this message loop is bound to.
  // This function is only valid when this message loop is running and
  // BindToCurrentThread has already been called.
  std::string GetThreadName() const;

  // Gets the TaskRunner associated with this message loop.
  const scoped_refptr<SingleThreadTaskRunner>& task_runner() {
    return task_runner_;
  }

  // Sets a new TaskRunner for this message loop. The message loop must already
  // have been bound to a thread prior to this call, and the task runner must
  // belong to that thread. Note that changing the task runner will also affect
  // the ThreadTaskRunnerHandle for the target thread. Must be called on the
  // thread to which the message loop is bound.
  void SetTaskRunner(scoped_refptr<SingleThreadTaskRunner> task_runner);

  // Enables or disables the recursive task processing. This happens in the case
  // of recursive message loops. Some unwanted message loops may occur when
  // using common controls or printer functions. By default, recursive task
  // processing is disabled.
  //
  // Please use |ScopedNestableTaskAllower| instead of calling these methods
  // directly.  In general, nestable message loops are to be avoided.  They are
  // dangerous and difficult to get right, so please use with extreme caution.
  //
  // The specific case where tasks get queued is:
  // - The thread is running a message loop.
  // - It receives a task #1 and executes it.
  // - The task #1 implicitly starts a message loop, like a MessageBox in the
  //   unit test. This can also be StartDoc or GetSaveFileName.
  // - The thread receives a task #2 before or while in this second message
  //   loop.
  // - With NestableTasksAllowed set to true, the task #2 will run right away.
  //   Otherwise, it will get executed right after task #1 completes at "thread
  //   message loop level".
  void SetNestableTasksAllowed(bool allowed);
  bool NestableTasksAllowed() const;

  // Enables nestable tasks on |loop| while in scope.
  class ScopedNestableTaskAllower {
   public:
    explicit ScopedNestableTaskAllower(MessageLoop* loop)
        : loop_(loop),
          old_state_(loop_->NestableTasksAllowed()) {
      loop_->SetNestableTasksAllowed(true);
    }
    ~ScopedNestableTaskAllower() {
      loop_->SetNestableTasksAllowed(old_state_);
    }

   private:
    MessageLoop* loop_;
    bool old_state_;
  };

  // Returns true if we are currently running a nested message loop.
  bool IsNested();

  // A TaskObserver is an object that receives task notifications from the
  // MessageLoop.
  //
  // NOTE: A TaskObserver implementation should be extremely fast!
  class BASE_EXPORT TaskObserver {
   public:
    TaskObserver();

    // This method is called before processing a task.
    virtual void WillProcessTask(const PendingTask& pending_task) = 0;

    // This method is called after processing a task.
    virtual void DidProcessTask(const PendingTask& pending_task) = 0;

   protected:
    virtual ~TaskObserver();
  };

  // These functions can only be called on the same thread that |this| is
  // running on.
  void AddTaskObserver(TaskObserver* task_observer);
  void RemoveTaskObserver(TaskObserver* task_observer);

  // Can only be called from the thread that owns the MessageLoop.
  bool is_running() const;

  // Returns true if the message loop has high resolution timers enabled.
  // Provided for testing.
  bool HasHighResolutionTasks();

  // Returns true if the message loop is "idle". Provided for testing.
  bool IsIdleForTesting();

  // Returns the TaskAnnotator which is used to add debug information to posted
  // tasks.
  debug::TaskAnnotator* task_annotator() { return &task_annotator_; }

  // Runs the specified PendingTask.
  void RunTask(const PendingTask& pending_task);

#if defined(OS_WIN)
  // TODO (stanisc): crbug.com/596190: Remove this after the signaling issue
  // has been investigated.
  // This should be used for diagnostic only. If message pump wake-up mechanism
  // is based on auto-reset event this call would reset the event to unset
  // state.
  bool MessagePumpWasSignaled();
#endif

  //----------------------------------------------------------------------------
 protected:
  std::unique_ptr<MessagePump> pump_;

  using MessagePumpFactoryCallback = Callback<std::unique_ptr<MessagePump>()>;

  // Common protected constructor. Other constructors delegate the
  // initialization to this constructor.
  // A subclass can invoke this constructor to create a message_loop of a
  // specific type with a custom loop. The implementation does not call
  // BindToCurrentThread. If this constructor is invoked directly by a subclass,
  // then the subclass must subsequently bind the message loop.
  MessageLoop(Type type, MessagePumpFactoryCallback pump_factory);

  // Configure various members and bind this message loop to the current thread.
  void BindToCurrentThread();

 private:
  friend class RunLoop;
  friend class internal::IncomingTaskQueue;
  friend class ScheduleWorkTest;
  friend class Thread;
  FRIEND_TEST_ALL_PREFIXES(MessageLoopTest, DeleteUnboundLoop);

  // Creates a MessageLoop without binding to a thread.
  // If |type| is TYPE_CUSTOM non-null |pump_factory| must be also given
  // to create a message pump for this message loop.  Otherwise a default
  // message pump for the |type| is created.
  //
  // It is valid to call this to create a new message loop on one thread,
  // and then pass it to the thread where the message loop actually runs.
  // The message loop's BindToCurrentThread() method must be called on the
  // thread the message loop runs on, before calling Run().
  // Before BindToCurrentThread() is called, only Post*Task() functions can
  // be called on the message loop.
  static std::unique_ptr<MessageLoop> CreateUnbound(
      Type type,
      MessagePumpFactoryCallback pump_factory);

  // Sets the ThreadTaskRunnerHandle for the current thread to point to the
  // task runner for this message loop.
  void SetThreadTaskRunnerHandle();

  // Invokes the actual run loop using the message pump.
  void RunHandler();

  // Called to process any delayed non-nestable tasks.
  bool ProcessNextDelayedNonNestableTask();

  // Calls RunTask or queues the pending_task on the deferred task list if it
  // cannot be run right now.  Returns true if the task was run.
  bool DeferOrRunPendingTask(PendingTask pending_task);

  // Adds the pending task to delayed_work_queue_.
  void AddToDelayedWorkQueue(PendingTask pending_task);

  // Delete tasks that haven't run yet without running them.  Used in the
  // destructor to make sure all the task's destructors get called.  Returns
  // true if some work was done.
  bool DeletePendingTasks();

  // Loads tasks from the incoming queue to |work_queue_| if the latter is
  // empty.
  void ReloadWorkQueue();

  // Wakes up the message pump. Can be called on any thread. The caller is
  // responsible for synchronizing ScheduleWork() calls.
  void ScheduleWork();

  // Start recording histogram info about events and action IF it was enabled
  // and IF the statistics recorder can accept a registration of our histogram.
  void StartHistogrammer();

  // Add occurrence of event to our histogram, so that we can see what is being
  // done in a specific MessageLoop instance (i.e., specific thread).
  // If message_histogram_ is NULL, this is a no-op.
  void HistogramEvent(int event);

  // Notify observers that a nested message loop is starting.
  void NotifyBeginNestedLoop();

  // MessagePump::Delegate methods:
  bool DoWork() override;
  bool DoDelayedWork(TimeTicks* next_delayed_work_time) override;
  bool DoIdleWork() override;

  const Type type_;

  // A list of tasks that need to be processed by this instance.  Note that
  // this queue is only accessed (push/pop) by our current thread.
  TaskQueue work_queue_;

#if defined(OS_WIN)
  // How many high resolution tasks are in the pending task queue. This value
  // increases by N every time we call ReloadWorkQueue() and decreases by 1
  // every time we call RunTask() if the task needs a high resolution timer.
  int pending_high_res_tasks_;
  // Tracks if we have requested high resolution timers. Its only use is to
  // turn off the high resolution timer upon loop destruction.
  bool in_high_res_mode_;
#endif

  // Contains delayed tasks, sorted by their 'delayed_run_time' property.
  DelayedTaskQueue delayed_work_queue_;

  // A recent snapshot of Time::Now(), used to check delayed_work_queue_.
  TimeTicks recent_time_;

  // A queue of non-nestable tasks that we had to defer because when it came
  // time to execute them we were in a nested message loop.  They will execute
  // once we're out of nested message loops.
  TaskQueue deferred_non_nestable_work_queue_;

  ObserverList<DestructionObserver> destruction_observers_;

  ObserverList<NestingObserver> nesting_observers_;

  // A recursion block that prevents accidentally running additional tasks when
  // insider a (accidentally induced?) nested message pump.
  bool nestable_tasks_allowed_;

  // pump_factory_.Run() is called to create a message pump for this loop
  // if type_ is TYPE_CUSTOM and pump_ is null.
  MessagePumpFactoryCallback pump_factory_;

  // A profiling histogram showing the counts of various messages and events.
  HistogramBase* message_histogram_;

  RunLoop* run_loop_;

  ObserverList<TaskObserver> task_observers_;

  debug::TaskAnnotator task_annotator_;

  scoped_refptr<internal::IncomingTaskQueue> incoming_task_queue_;

  // A task runner which we haven't bound to a thread yet.
  scoped_refptr<internal::MessageLoopTaskRunner> unbound_task_runner_;

  // The task runner associated with this message loop.
  scoped_refptr<SingleThreadTaskRunner> task_runner_;
  std::unique_ptr<ThreadTaskRunnerHandle> thread_task_runner_handle_;

  // Id of the thread this message loop is bound to.
  PlatformThreadId thread_id_;

  template <class T, class R> friend class base::subtle::DeleteHelperInternal;
  template <class T, class R> friend class base::subtle::ReleaseHelperInternal;

  void DeleteSoonInternal(const tracked_objects::Location& from_here,
                          void(*deleter)(const void*),
                          const void* object);
  void ReleaseSoonInternal(const tracked_objects::Location& from_here,
                           void(*releaser)(const void*),
                           const void* object);

  DISALLOW_COPY_AND_ASSIGN(MessageLoop);
};

#if !defined(OS_NACL)

//-----------------------------------------------------------------------------
// MessageLoopForUI extends MessageLoop with methods that are particular to a
// MessageLoop instantiated with TYPE_UI.
//
// This class is typically used like so:
//   MessageLoopForUI::current()->...call some method...
//
class BASE_EXPORT MessageLoopForUI : public MessageLoop {
 public:
  MessageLoopForUI() : MessageLoop(TYPE_UI) {
  }

  explicit MessageLoopForUI(std::unique_ptr<MessagePump> pump);

  // Returns the MessageLoopForUI of the current thread.
  static MessageLoopForUI* current() {
    MessageLoop* loop = MessageLoop::current();
    DCHECK(loop);
    DCHECK(loop->IsType(MessageLoop::TYPE_UI));
    return static_cast<MessageLoopForUI*>(loop);
  }

  static bool IsCurrent() {
    MessageLoop* loop = MessageLoop::current();
    return loop && loop->IsType(MessageLoop::TYPE_UI);
  }

#if defined(OS_IOS)
  // On iOS, the main message loop cannot be Run().  Instead call Attach(),
  // which connects this MessageLoop to the UI thread's CFRunLoop and allows
  // PostTask() to work.
  void Attach();
#endif

#if defined(OS_ANDROID)
  // On Android, the UI message loop is handled by Java side. So Run() should
  // never be called. Instead use Start(), which will forward all the native UI
  // events to the Java message loop.
  void Start();
#endif

#if defined(USE_OZONE) || (defined(USE_X11) && !defined(USE_GLIB))
  // Please see MessagePumpLibevent for definition.
  bool WatchFileDescriptor(
      int fd,
      bool persistent,
      MessagePumpLibevent::Mode mode,
      MessagePumpLibevent::FileDescriptorWatcher* controller,
      MessagePumpLibevent::Watcher* delegate);
#endif
};

// Do not add any member variables to MessageLoopForUI!  This is important b/c
// MessageLoopForUI is often allocated via MessageLoop(TYPE_UI).  Any extra
// data that you need should be stored on the MessageLoop's pump_ instance.
static_assert(sizeof(MessageLoop) == sizeof(MessageLoopForUI),
              "MessageLoopForUI should not have extra member variables");

#endif  // !defined(OS_NACL)

//-----------------------------------------------------------------------------
// MessageLoopForIO extends MessageLoop with methods that are particular to a
// MessageLoop instantiated with TYPE_IO.
//
// This class is typically used like so:
//   MessageLoopForIO::current()->...call some method...
//
class BASE_EXPORT MessageLoopForIO : public MessageLoop {
 public:
  MessageLoopForIO();

  // Returns the MessageLoopForIO of the current thread.
  static MessageLoopForIO* current() {
    MessageLoop* loop = MessageLoop::current();
    DCHECK(loop) << "Can't call MessageLoopForIO::current() when no message "
                    "loop was created for this thread. Use "
                    " MessageLoop::current() or MessageLoopForIO::IsCurrent().";
    DCHECK_EQ(MessageLoop::TYPE_IO, loop->type());
    return static_cast<MessageLoopForIO*>(loop);
  }

  static bool IsCurrent() {
    MessageLoop* loop = MessageLoop::current();
    return loop && loop->type() == MessageLoop::TYPE_IO;
  }

#if !defined(OS_NACL_SFI)

#if defined(OS_WIN)
  typedef MessagePumpForIO::IOHandler IOHandler;
  typedef MessagePumpForIO::IOContext IOContext;
#elif defined(OS_IOS)
  typedef MessagePumpIOSForIO::Watcher Watcher;
  typedef MessagePumpIOSForIO::FileDescriptorWatcher
      FileDescriptorWatcher;

  enum Mode {
    WATCH_READ = MessagePumpIOSForIO::WATCH_READ,
    WATCH_WRITE = MessagePumpIOSForIO::WATCH_WRITE,
    WATCH_READ_WRITE = MessagePumpIOSForIO::WATCH_READ_WRITE
  };
#elif defined(OS_POSIX)
  typedef MessagePumpLibevent::Watcher Watcher;
  typedef MessagePumpLibevent::FileDescriptorWatcher
      FileDescriptorWatcher;

  enum Mode {
    WATCH_READ = MessagePumpLibevent::WATCH_READ,
    WATCH_WRITE = MessagePumpLibevent::WATCH_WRITE,
    WATCH_READ_WRITE = MessagePumpLibevent::WATCH_READ_WRITE
  };
#endif

#if defined(OS_WIN)
  // Please see MessagePumpWin for definitions of these methods.
  void RegisterIOHandler(HANDLE file, IOHandler* handler);
  bool RegisterJobObject(HANDLE job, IOHandler* handler);
  bool WaitForIOCompletion(DWORD timeout, IOHandler* filter);
#elif defined(OS_POSIX)
  // Please see MessagePumpIOSForIO/MessagePumpLibevent for definition.
  bool WatchFileDescriptor(int fd,
                           bool persistent,
                           Mode mode,
                           FileDescriptorWatcher* controller,
                           Watcher* delegate);
#endif  // defined(OS_IOS) || defined(OS_POSIX)
#endif  // !defined(OS_NACL_SFI)
};

// Do not add any member variables to MessageLoopForIO!  This is important b/c
// MessageLoopForIO is often allocated via MessageLoop(TYPE_IO).  Any extra
// data that you need should be stored on the MessageLoop's pump_ instance.
static_assert(sizeof(MessageLoop) == sizeof(MessageLoopForIO),
              "MessageLoopForIO should not have extra member variables");

}  // namespace base

#endif  // BASE_MESSAGE_LOOP_MESSAGE_LOOP_H_