/*
* lib/route/link/can.c CAN Link Info
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation version 2.1
* of the License.
*
* Copyright (c) 2012 Benedikt Spranger <b.spranger@linutronix.de>
*/
/**
* @ingroup link
* @defgroup can CAN
* Controller Area Network link module
*
* @details
* \b Link Type Name: "can"
*
* @route_doc{link_can, CAN Documentation}
*
* @{
*/
#include <netlink-private/netlink.h>
#include <netlink/netlink.h>
#include <netlink/attr.h>
#include <netlink/utils.h>
#include <netlink/object.h>
#include <netlink/route/rtnl.h>
#include <netlink-private/route/link/api.h>
#include <netlink/route/link/can.h>
#include <linux/can/netlink.h>
/** @cond SKIP */
#define CAN_HAS_BITTIMING (1<<0)
#define CAN_HAS_BITTIMING_CONST (1<<1)
#define CAN_HAS_CLOCK (1<<2)
#define CAN_HAS_STATE (1<<3)
#define CAN_HAS_CTRLMODE (1<<4)
#define CAN_HAS_RESTART_MS (1<<5)
#define CAN_HAS_RESTART (1<<6)
#define CAN_HAS_BERR_COUNTER (1<<7)
struct can_info {
uint32_t ci_state;
uint32_t ci_restart;
uint32_t ci_restart_ms;
struct can_ctrlmode ci_ctrlmode;
struct can_bittiming ci_bittiming;
struct can_bittiming_const ci_bittiming_const;
struct can_clock ci_clock;
struct can_berr_counter ci_berr_counter;
uint32_t ci_mask;
};
/** @endcond */
static struct nla_policy can_policy[IFLA_CAN_MAX + 1] = {
[IFLA_CAN_STATE] = { .type = NLA_U32 },
[IFLA_CAN_CTRLMODE] = { .minlen = sizeof(struct can_ctrlmode) },
[IFLA_CAN_RESTART_MS] = { .type = NLA_U32 },
[IFLA_CAN_RESTART] = { .type = NLA_U32 },
[IFLA_CAN_BITTIMING] = { .minlen = sizeof(struct can_bittiming) },
[IFLA_CAN_BITTIMING_CONST]
= { .minlen = sizeof(struct can_bittiming_const) },
[IFLA_CAN_CLOCK] = { .minlen = sizeof(struct can_clock) },
[IFLA_CAN_BERR_COUNTER] = { .minlen = sizeof(struct can_berr_counter) },
};
static int can_alloc(struct rtnl_link *link)
{
struct can_info *ci;
ci = calloc(1, sizeof(*ci));
if (!ci)
return -NLE_NOMEM;
link->l_info = ci;
return 0;
}
static int can_parse(struct rtnl_link *link, struct nlattr *data,
struct nlattr *xstats)
{
struct nlattr *tb[IFLA_CAN_MAX+1];
struct can_info *ci;
int err;
NL_DBG(3, "Parsing CAN link info");
if ((err = nla_parse_nested(tb, IFLA_CAN_MAX, data, can_policy)) < 0)
goto errout;
if ((err = can_alloc(link)) < 0)
goto errout;
ci = link->l_info;
if (tb[IFLA_CAN_STATE]) {
ci->ci_state = nla_get_u32(tb[IFLA_CAN_STATE]);
ci->ci_mask |= CAN_HAS_STATE;
}
if (tb[IFLA_CAN_RESTART]) {
ci->ci_restart = nla_get_u32(tb[IFLA_CAN_RESTART]);
ci->ci_mask |= CAN_HAS_RESTART;
}
if (tb[IFLA_CAN_RESTART_MS]) {
ci->ci_restart_ms = nla_get_u32(tb[IFLA_CAN_RESTART_MS]);
ci->ci_mask |= CAN_HAS_RESTART_MS;
}
if (tb[IFLA_CAN_CTRLMODE]) {
nla_memcpy(&ci->ci_ctrlmode, tb[IFLA_CAN_CTRLMODE],
sizeof(ci->ci_ctrlmode));
ci->ci_mask |= CAN_HAS_CTRLMODE;
}
if (tb[IFLA_CAN_BITTIMING]) {
nla_memcpy(&ci->ci_bittiming, tb[IFLA_CAN_BITTIMING],
sizeof(ci->ci_bittiming));
ci->ci_mask |= CAN_HAS_BITTIMING;
}
if (tb[IFLA_CAN_BITTIMING_CONST]) {
nla_memcpy(&ci->ci_bittiming_const,
tb[IFLA_CAN_BITTIMING_CONST],
sizeof(ci->ci_bittiming_const));
ci->ci_mask |= CAN_HAS_BITTIMING_CONST;
}
if (tb[IFLA_CAN_CLOCK]) {
nla_memcpy(&ci->ci_clock, tb[IFLA_CAN_CLOCK],
sizeof(ci->ci_clock));
ci->ci_mask |= CAN_HAS_CLOCK;
}
if (tb[IFLA_CAN_BERR_COUNTER]) {
nla_memcpy(&ci->ci_berr_counter, tb[IFLA_CAN_BERR_COUNTER],
sizeof(ci->ci_berr_counter));
ci->ci_mask |= CAN_HAS_BERR_COUNTER;
}
err = 0;
errout:
return err;
}
static void can_free(struct rtnl_link *link)
{
struct can_info *ci = link->l_info;
free(ci);
link->l_info = NULL;
}
static char *print_can_state (uint32_t state)
{
char *text;
switch (state)
{
case CAN_STATE_ERROR_ACTIVE:
text = "error active";
break;
case CAN_STATE_ERROR_WARNING:
text = "error warning";
break;
case CAN_STATE_ERROR_PASSIVE:
text = "error passive";
break;
case CAN_STATE_BUS_OFF:
text = "bus off";
break;
case CAN_STATE_STOPPED:
text = "stopped";
break;
case CAN_STATE_SLEEPING:
text = "sleeping";
break;
default:
text = "unknown state";
}
return text;
}
static void can_dump_line(struct rtnl_link *link, struct nl_dump_params *p)
{
struct can_info *ci = link->l_info;
char buf [64];
rtnl_link_can_ctrlmode2str(ci->ci_ctrlmode.flags, buf, sizeof(buf));
nl_dump(p, "bitrate %d %s <%s>",
ci->ci_bittiming.bitrate, print_can_state(ci->ci_state), buf);
}
static void can_dump_details(struct rtnl_link *link, struct nl_dump_params *p)
{
struct can_info *ci = link->l_info;
char buf [64];
rtnl_link_can_ctrlmode2str(ci->ci_ctrlmode.flags, buf, sizeof(buf));
nl_dump(p, " bitrate %d %s <%s>",
ci->ci_bittiming.bitrate, print_can_state(ci->ci_state), buf);
if (ci->ci_mask & CAN_HAS_RESTART) {
if (ci->ci_restart)
nl_dump_line(p," restarting\n");
}
if (ci->ci_mask & CAN_HAS_RESTART_MS) {
nl_dump_line(p," restart interval %d ms\n",
ci->ci_restart_ms);
}
if (ci->ci_mask & CAN_HAS_BITTIMING) {
nl_dump_line(p," sample point %f %%\n",
((float) ci->ci_bittiming.sample_point)/10);
nl_dump_line(p," time quanta %d ns\n",
ci->ci_bittiming.tq);
nl_dump_line(p," propagation segment %d tq\n",
ci->ci_bittiming.prop_seg);
nl_dump_line(p," phase buffer segment1 %d tq\n",
ci->ci_bittiming.phase_seg1);
nl_dump_line(p," phase buffer segment2 %d tq\n",
ci->ci_bittiming.phase_seg2);
nl_dump_line(p," synchronisation jump width %d tq\n",
ci->ci_bittiming.sjw);
nl_dump_line(p," bitrate prescaler %d\n",
ci->ci_bittiming.brp);
}
if (ci->ci_mask & CAN_HAS_BITTIMING_CONST) {
nl_dump_line(p," minimum tsig1 %d tq\n",
ci->ci_bittiming_const.tseg1_min);
nl_dump_line(p," maximum tsig1 %d tq\n",
ci->ci_bittiming_const.tseg1_max);
nl_dump_line(p," minimum tsig2 %d tq\n",
ci->ci_bittiming_const.tseg2_min);
nl_dump_line(p," maximum tsig2 %d tq\n",
ci->ci_bittiming_const.tseg2_max);
nl_dump_line(p," maximum sjw %d tq\n",
ci->ci_bittiming_const.sjw_max);
nl_dump_line(p," minimum brp %d\n",
ci->ci_bittiming_const.brp_min);
nl_dump_line(p," maximum brp %d\n",
ci->ci_bittiming_const.brp_max);
nl_dump_line(p," brp increment %d\n",
ci->ci_bittiming_const.brp_inc);
}
if (ci->ci_mask & CAN_HAS_CLOCK) {
nl_dump_line(p," base freq %d Hz\n", ci->ci_clock);
}
if (ci->ci_mask & CAN_HAS_BERR_COUNTER) {
nl_dump_line(p," bus error RX %d\n",
ci->ci_berr_counter.rxerr);
nl_dump_line(p," bus error TX %d\n",
ci->ci_berr_counter.txerr);
}
return;
}
static int can_clone(struct rtnl_link *dst, struct rtnl_link *src)
{
struct can_info *cdst, *csrc = src->l_info;
int ret;
dst->l_info = NULL;
ret = rtnl_link_set_type(dst, "can");
if (ret < 0)
return ret;
cdst = malloc(sizeof(*cdst));
if (!cdst)
return -NLE_NOMEM;
*cdst = *csrc;
dst->l_info = cdst;
return 0;
}
static int can_put_attrs(struct nl_msg *msg, struct rtnl_link *link)
{
struct can_info *ci = link->l_info;
struct nlattr *data;
data = nla_nest_start(msg, IFLA_INFO_DATA);
if (!data)
return -NLE_MSGSIZE;
if (ci->ci_mask & CAN_HAS_RESTART)
NLA_PUT_U32(msg, CAN_HAS_RESTART, ci->ci_restart);
if (ci->ci_mask & CAN_HAS_RESTART_MS)
NLA_PUT_U32(msg, CAN_HAS_RESTART_MS, ci->ci_restart_ms);
if (ci->ci_mask & CAN_HAS_CTRLMODE)
NLA_PUT(msg, CAN_HAS_CTRLMODE, sizeof(ci->ci_ctrlmode),
&ci->ci_ctrlmode);
if (ci->ci_mask & CAN_HAS_BITTIMING)
NLA_PUT(msg, CAN_HAS_BITTIMING, sizeof(ci->ci_bittiming),
&ci->ci_bittiming);
if (ci->ci_mask & CAN_HAS_BITTIMING_CONST)
NLA_PUT(msg, CAN_HAS_BITTIMING_CONST,
sizeof(ci->ci_bittiming_const),
&ci->ci_bittiming_const);
if (ci->ci_mask & CAN_HAS_CLOCK)
NLA_PUT(msg, CAN_HAS_CLOCK, sizeof(ci->ci_clock),
&ci->ci_clock);
nla_nest_end(msg, data);
nla_put_failure:
return 0;
}
static struct rtnl_link_info_ops can_info_ops = {
.io_name = "can",
.io_alloc = can_alloc,
.io_parse = can_parse,
.io_dump = {
[NL_DUMP_LINE] = can_dump_line,
[NL_DUMP_DETAILS] = can_dump_details,
},
.io_clone = can_clone,
.io_put_attrs = can_put_attrs,
.io_free = can_free,
};
/** @cond SKIP */
#define IS_CAN_LINK_ASSERT(link) \
if ((link)->l_info_ops != &can_info_ops) { \
APPBUG("Link is not a CAN link. set type \"can\" first."); \
return -NLE_OPNOTSUPP; \
}
/** @endcond */
/**
* @name CAN Object
* @{
*/
/**
* Check if link is a CAN link
* @arg link Link object
*
* @return True if link is a CAN link, otherwise false is returned.
*/
int rtnl_link_is_can(struct rtnl_link *link)
{
return link->l_info_ops && !strcmp(link->l_info_ops->io_name, "can");
}
/**
* Restart CAN device
* @arg link Link object
*
* @return 0 on success or a negative error code
*/
int rtnl_link_can_restart(struct rtnl_link *link)
{
struct can_info *ci = link->l_info;
IS_CAN_LINK_ASSERT(link);
ci->ci_restart = 1;
ci->ci_restart |= CAN_HAS_RESTART;
return 0;
}
/**
* Get CAN base frequency
* @arg link Link object
* @arg freq frequency in Hz
*
* @return 0 on success or a negative error code
*/
int rtnl_link_can_freq(struct rtnl_link *link, uint32_t *freq)
{
struct can_info *ci = link->l_info;
IS_CAN_LINK_ASSERT(link);
if (!freq)
return -NLE_INVAL;
if (ci->ci_mask & CAN_HAS_CLOCK)
*freq = ci->ci_clock.freq;
else
return -NLE_AGAIN;
return 0;
}
/**
* Get CAN state
* @arg link Link object
* @arg state CAN bus state
* @return 0 on success or a negative error code
*/
int rtnl_link_can_state(struct rtnl_link *link, uint32_t *state)
{
struct can_info *ci = link->l_info;
IS_CAN_LINK_ASSERT(link);
if (!state)
return -NLE_INVAL;
*state = ci->ci_state;
return 0;
}
/**
* Get CAN RX bus error count
* @arg link Link object
*
* @return RX bus error count on success or a negative error code
*/
int rtnl_link_can_berr_rx(struct rtnl_link *link)
{
struct can_info *ci = link->l_info;
IS_CAN_LINK_ASSERT(link);
if (ci->ci_mask & CAN_HAS_BERR_COUNTER)
return ci->ci_berr_counter.rxerr;
else
return -NLE_AGAIN;
}
/**
* Get CAN TX bus error count
* @arg link Link object
*
* @return TX bus error count on success or a negative error code
*/
int rtnl_link_can_berr_tx(struct rtnl_link *link)
{
struct can_info *ci = link->l_info;
IS_CAN_LINK_ASSERT(link);
if (ci->ci_mask & CAN_HAS_BERR_COUNTER)
return ci->ci_berr_counter.txerr;
else
return -NLE_AGAIN;
}
/**
* Get CAN bus error count
* @arg link Link object
* @arg berr Bus error count
*
* @return 0 on success or a negative error code
*/
int rtnl_link_can_berr(struct rtnl_link *link, struct can_berr_counter *berr)
{
struct can_info *ci = link->l_info;
IS_CAN_LINK_ASSERT(link);
if (!berr)
return -NLE_INVAL;
if (ci->ci_mask & CAN_HAS_BERR_COUNTER)
*berr = ci->ci_berr_counter;
else
return -NLE_AGAIN;
return 0;
}
/**
* Get CAN harware-dependent bit-timing constant
* @arg link Link object
* @arg bt_const Bit-timing constant
*
* @return 0 on success or a negative error code
*/
int rtnl_link_can_get_bt_const(struct rtnl_link *link,
struct can_bittiming_const *bt_const)
{
struct can_info *ci = link->l_info;
IS_CAN_LINK_ASSERT(link);
if (!bt_const)
return -NLE_INVAL;
if (ci->ci_mask & CAN_HAS_BITTIMING_CONST)
*bt_const = ci->ci_bittiming_const;
else
return -NLE_AGAIN;
return 0;
}
/**
* Get CAN device bit-timing
* @arg link Link object
* @arg bit_timing CAN bit-timing
*
* @return 0 on success or a negative error code
*/
int rtnl_link_can_get_bittiming(struct rtnl_link *link,
struct can_bittiming *bit_timing)
{
struct can_info *ci = link->l_info;
IS_CAN_LINK_ASSERT(link);
if (!bit_timing)
return -NLE_INVAL;
if (ci->ci_mask & CAN_HAS_BITTIMING)
*bit_timing = ci->ci_bittiming;
else
return -NLE_AGAIN;
return 0;
}
/**
* Set CAN device bit-timing
* @arg link Link object
* @arg bit_timing CAN bit-timing
*
* @return 0 on success or a negative error code
*/
int rtnl_link_can_set_bittiming(struct rtnl_link *link,
struct can_bittiming *bit_timing)
{
struct can_info *ci = link->l_info;
IS_CAN_LINK_ASSERT(link);
if (!bit_timing)
return -NLE_INVAL;
ci->ci_bittiming = *bit_timing;
ci->ci_mask |= CAN_HAS_BITTIMING;
return 0;
}
/**
* Get CAN device bit-timing
* @arg link Link object
* @arg bitrate CAN bitrate
*
* @return 0 on success or a negative error code
*/
int rtnl_link_can_get_bitrate(struct rtnl_link *link, uint32_t *bitrate)
{
struct can_info *ci = link->l_info;
IS_CAN_LINK_ASSERT(link);
if (!bitrate)
return -NLE_INVAL;
if (ci->ci_mask & CAN_HAS_BITTIMING)
*bitrate = ci->ci_bittiming.bitrate;
else
return -NLE_AGAIN;
return 0;
}
/**
* Set CAN device bit-rate
* @arg link Link object
* @arg bitrate CAN bitrate
*
* @return 0 on success or a negative error code
*/
int rtnl_link_can_set_bitrate(struct rtnl_link *link, uint32_t bitrate)
{
struct can_info *ci = link->l_info;
IS_CAN_LINK_ASSERT(link);
ci->ci_bittiming.bitrate = bitrate;
ci->ci_mask |= CAN_HAS_BITTIMING;
return 0;
}
/**
* Get CAN device sample point
* @arg link Link object
* @arg sp CAN sample point
*
* @return 0 on success or a negative error code
*/
int rtnl_link_can_get_sample_point(struct rtnl_link *link, uint32_t *sp)
{
struct can_info *ci = link->l_info;
IS_CAN_LINK_ASSERT(link);
if (!sp)
return -NLE_INVAL;
if (ci->ci_mask & CAN_HAS_BITTIMING)
*sp = ci->ci_bittiming.sample_point;
else
return -NLE_AGAIN;
return 0;
}
/**
* Set CAN device sample point
* @arg link Link object
* @arg sp CAN sample point
*
* @return 0 on success or a negative error code
*/
int rtnl_link_can_set_sample_point(struct rtnl_link *link, uint32_t sp)
{
struct can_info *ci = link->l_info;
IS_CAN_LINK_ASSERT(link);
ci->ci_bittiming.sample_point = sp;
ci->ci_mask |= CAN_HAS_BITTIMING;
return 0;
}
/**
* Get CAN device restart intervall
* @arg link Link object
* @arg interval Restart intervall in ms
*
* @return 0 on success or a negative error code
*/
int rtnl_link_can_get_restart_ms(struct rtnl_link *link, uint32_t *interval)
{
struct can_info *ci = link->l_info;
IS_CAN_LINK_ASSERT(link);
if (!interval)
return -NLE_INVAL;
if (ci->ci_mask & CAN_HAS_RESTART_MS)
*interval = ci->ci_restart_ms;
else
return -NLE_AGAIN;
return 0;
}
/**
* Set CAN device restart intervall
* @arg link Link object
* @arg interval Restart intervall in ms
*
* @return 0 on success or a negative error code
*/
int rtnl_link_can_set_restart_ms(struct rtnl_link *link, uint32_t interval)
{
struct can_info *ci = link->l_info;
IS_CAN_LINK_ASSERT(link);
ci->ci_restart_ms = interval;
ci->ci_mask |= CAN_HAS_RESTART_MS;
return 0;
}
/**
* Get CAN control mode
* @arg link Link object
* @arg ctrlmode CAN control mode
*
* @return 0 on success or a negative error code
*/
int rtnl_link_can_get_ctrlmode(struct rtnl_link *link, uint32_t *ctrlmode)
{
struct can_info *ci = link->l_info;
IS_CAN_LINK_ASSERT(link);
if (!ctrlmode)
return -NLE_INVAL;
if (ci->ci_mask & CAN_HAS_CTRLMODE)
*ctrlmode = ci->ci_ctrlmode.flags;
else
return -NLE_AGAIN;
return 0;
}
/**
* Set a CAN Control Mode
* @arg link Link object
* @arg ctrlmode CAN control mode
*
* @return 0 on success or a negative error code
*/
int rtnl_link_can_set_ctrlmode(struct rtnl_link *link, uint32_t ctrlmode)
{
struct can_info *ci = link->l_info;
IS_CAN_LINK_ASSERT(link);
ci->ci_ctrlmode.flags |= ctrlmode;
ci->ci_ctrlmode.mask |= ctrlmode;
ci->ci_mask |= CAN_HAS_CTRLMODE;
return 0;
}
/**
* Unset a CAN Control Mode
* @arg link Link object
* @arg ctrlmode CAN control mode
*
* @return 0 on success or a negative error code
*/
int rtnl_link_can_unset_ctrlmode(struct rtnl_link *link, uint32_t ctrlmode)
{
struct can_info *ci = link->l_info;
IS_CAN_LINK_ASSERT(link);
ci->ci_ctrlmode.flags &= ~ctrlmode;
ci->ci_ctrlmode.mask |= ctrlmode;
ci->ci_mask |= CAN_HAS_CTRLMODE;
return 0;
}
/** @} */
/**
* @name Control Mode Translation
* @{
*/
static const struct trans_tbl can_ctrlmode[] = {
__ADD(CAN_CTRLMODE_LOOPBACK, loopback)
__ADD(CAN_CTRLMODE_LISTENONLY, listen-only)
__ADD(CAN_CTRLMODE_3_SAMPLES, triple-sampling)
__ADD(CAN_CTRLMODE_ONE_SHOT, one-shot)
__ADD(CAN_CTRLMODE_BERR_REPORTING, berr-reporting)
};
char *rtnl_link_can_ctrlmode2str(int ctrlmode, char *buf, size_t len)
{
return __flags2str(ctrlmode, buf, len, can_ctrlmode,
ARRAY_SIZE(can_ctrlmode));
}
int rtnl_link_can_str2ctrlmode(const char *name)
{
return __str2flags(name, can_ctrlmode, ARRAY_SIZE(can_ctrlmode));
}
/** @} */
static void __init can_init(void)
{
rtnl_link_register_info(&can_info_ops);
}
static void __exit can_exit(void)
{
rtnl_link_unregister_info(&can_info_ops);
}
/** @} */