/*
* Copyright (C) 2017 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef LIBTEXTCLASSIFIER_LANG_ID_LANG_ID_H_
#define LIBTEXTCLASSIFIER_LANG_ID_LANG_ID_H_
// Clients who want to perform language identification should use this header.
//
// Note for lang id implementors: keep this header as linght as possible. E.g.,
// any macro defined here (or in a transitively #included file) is a potential
// name conflict with our clients.
#include <memory>
#include <string>
#include <vector>
#include "util/base/macros.h"
namespace libtextclassifier {
namespace nlp_core {
namespace lang_id {
// Forward-declaration of the class that performs all underlying work.
class LangIdImpl;
// Class for detecting the language of a document.
//
// NOTE: this class is thread-unsafe.
class LangId {
public:
// Constructs a LangId object, loading an EmbeddingNetworkProto model from the
// indicated file.
//
// Note: we don't crash if we detect a problem at construction time (e.g.,
// file doesn't exist, or its content is corrupted). Instead, we mark the
// newly-constructed object as invalid; clients can invoke FindLanguage() on
// an invalid object: nothing crashes, but accuracy will be bad.
explicit LangId(const std::string &filename);
// Same as above but uses a file descriptor.
explicit LangId(int fd);
// Same as above but uses already mapped memory region
explicit LangId(const char *ptr, size_t length);
virtual ~LangId();
// Sets probability threshold for predictions. If our likeliest prediction is
// below this threshold, we report the default language (see
// SetDefaultLanguage()). Othewise, we report the likelist language.
//
// By default (if this method is not called) we use the probability threshold
// stored in the model, as the task parameter "reliability_thresh". If that
// task parameter is not specified, we use 0.5. A client can use this method
// to get a different precision / recall trade-off. The higher the threshold,
// the higher the precision and lower the recall rate.
void SetProbabilityThreshold(float threshold);
// Sets default language to report if errors prevent running the real
// inference code or if prediction confidence is too small.
void SetDefaultLanguage(const std::string &lang);
// Returns language code for the most likely language that text is written in.
// Note: if this LangId object is not valid (see
// is_valid()), this method returns the default language specified via
// SetDefaultLanguage() or (if that method was never invoked), the empty
// std::string.
std::string FindLanguage(const std::string &text) const;
// Returns a vector of language codes along with the probability for each
// language. The result contains at least one element. The sum of
// probabilities may be less than 1.0.
std::vector<std::pair<std::string, float>> FindLanguages(
const std::string &text) const;
// Returns true if this object has been correctly initialized and is ready to
// perform predictions. For more info, see doc for LangId
// constructor above.
bool is_valid() const;
// Returns version number for the model.
int version() const;
private:
// Returns a vector of probabilities of languages of the text.
std::vector<float> ScoreLanguages(const std::string &text) const;
// Pimpl ("pointer to implementation") pattern, to hide all internals from our
// clients.
std::unique_ptr<LangIdImpl> pimpl_;
TC_DISALLOW_COPY_AND_ASSIGN(LangId);
};
} // namespace lang_id
} // namespace nlp_core
} // namespace libtextclassifier
#endif // LIBTEXTCLASSIFIER_LANG_ID_LANG_ID_H_