// Copyright 2016 PDFium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
// Original code copyright 2014 Foxit Software Inc. http://www.foxitsoftware.com
#include "core/fpdfapi/page/cpdf_meshstream.h"
#include "core/fpdfapi/page/cpdf_colorspace.h"
#include "core/fpdfapi/page/pageint.h"
#include "core/fpdfapi/parser/cpdf_array.h"
namespace {
// See PDF Reference 1.7, page 315, table 4.32. (Also table 4.33 and 4.34)
bool ShouldCheckBPC(ShadingType type) {
switch (type) {
case kFreeFormGouraudTriangleMeshShading:
case kLatticeFormGouraudTriangleMeshShading:
case kCoonsPatchMeshShading:
case kTensorProductPatchMeshShading:
return true;
default:
return false;
}
}
// Same references as ShouldCheckBPC() above.
bool IsValidBitsPerComponent(uint32_t x) {
switch (x) {
case 1:
case 2:
case 4:
case 8:
case 12:
case 16:
return true;
default:
return false;
}
}
// Same references as ShouldCheckBPC() above.
bool IsValidBitsPerCoordinate(uint32_t x) {
switch (x) {
case 1:
case 2:
case 4:
case 8:
case 12:
case 16:
case 24:
case 32:
return true;
default:
return false;
}
}
// See PDF Reference 1.7, page 315, table 4.32. (Also table 4.34)
bool ShouldCheckBitsPerFlag(ShadingType type) {
switch (type) {
case kFreeFormGouraudTriangleMeshShading:
case kCoonsPatchMeshShading:
case kTensorProductPatchMeshShading:
return true;
default:
return false;
}
}
// Same references as ShouldCheckBitsPerFlag() above.
bool IsValidBitsPerFlag(uint32_t x) {
switch (x) {
case 2:
case 4:
case 8:
return true;
default:
return false;
}
}
} // namespace
CPDF_MeshVertex::CPDF_MeshVertex() = default;
CPDF_MeshVertex::CPDF_MeshVertex(const CPDF_MeshVertex&) = default;
CPDF_MeshVertex::~CPDF_MeshVertex() = default;
CPDF_MeshStream::CPDF_MeshStream(
ShadingType type,
const std::vector<std::unique_ptr<CPDF_Function>>& funcs,
CPDF_Stream* pShadingStream,
CPDF_ColorSpace* pCS)
: m_type(type),
m_funcs(funcs),
m_pShadingStream(pShadingStream),
m_pCS(pCS),
m_nCoordBits(0),
m_nComponentBits(0),
m_nFlagBits(0),
m_nComponents(0),
m_CoordMax(0),
m_ComponentMax(0),
m_xmin(0),
m_xmax(0),
m_ymin(0),
m_ymax(0) {
memset(&m_ColorMin, 0, sizeof(m_ColorMin));
memset(&m_ColorMax, 0, sizeof(m_ColorMax));
}
bool CPDF_MeshStream::Load() {
m_Stream.LoadAllData(m_pShadingStream);
m_BitStream.Init(m_Stream.GetData(), m_Stream.GetSize());
CPDF_Dictionary* pDict = m_pShadingStream->GetDict();
m_nCoordBits = pDict->GetIntegerFor("BitsPerCoordinate");
m_nComponentBits = pDict->GetIntegerFor("BitsPerComponent");
if (ShouldCheckBPC(m_type)) {
if (!IsValidBitsPerCoordinate(m_nCoordBits))
return false;
if (!IsValidBitsPerComponent(m_nComponentBits))
return false;
}
m_nFlagBits = pDict->GetIntegerFor("BitsPerFlag");
if (ShouldCheckBitsPerFlag(m_type) && !IsValidBitsPerFlag(m_nFlagBits))
return false;
uint32_t nComponents = m_pCS->CountComponents();
if (nComponents > kMaxComponents)
return false;
m_nComponents = m_funcs.empty() ? nComponents : 1;
CPDF_Array* pDecode = pDict->GetArrayFor("Decode");
if (!pDecode || pDecode->GetCount() != 4 + m_nComponents * 2)
return false;
m_xmin = pDecode->GetNumberAt(0);
m_xmax = pDecode->GetNumberAt(1);
m_ymin = pDecode->GetNumberAt(2);
m_ymax = pDecode->GetNumberAt(3);
for (uint32_t i = 0; i < m_nComponents; ++i) {
m_ColorMin[i] = pDecode->GetNumberAt(i * 2 + 4);
m_ColorMax[i] = pDecode->GetNumberAt(i * 2 + 5);
}
if (ShouldCheckBPC(m_type)) {
m_CoordMax = m_nCoordBits == 32 ? -1 : (1 << m_nCoordBits) - 1;
m_ComponentMax = (1 << m_nComponentBits) - 1;
}
return true;
}
bool CPDF_MeshStream::CanReadFlag() const {
return m_BitStream.BitsRemaining() >= m_nFlagBits;
}
bool CPDF_MeshStream::CanReadCoords() const {
return m_BitStream.BitsRemaining() / 2 >= m_nCoordBits;
}
bool CPDF_MeshStream::CanReadColor() const {
return m_BitStream.BitsRemaining() / m_nComponentBits >= m_nComponents;
}
uint32_t CPDF_MeshStream::ReadFlag() {
ASSERT(ShouldCheckBitsPerFlag(m_type));
return m_BitStream.GetBits(m_nFlagBits) & 0x03;
}
CFX_PointF CPDF_MeshStream::ReadCoords() {
ASSERT(ShouldCheckBPC(m_type));
CFX_PointF pos;
if (m_nCoordBits == 32) {
pos.x = m_xmin +
m_BitStream.GetBits(m_nCoordBits) * (m_xmax - m_xmin) /
static_cast<double>(m_CoordMax);
pos.y = m_ymin +
m_BitStream.GetBits(m_nCoordBits) * (m_ymax - m_ymin) /
static_cast<double>(m_CoordMax);
} else {
pos.x = m_xmin +
m_BitStream.GetBits(m_nCoordBits) * (m_xmax - m_xmin) / m_CoordMax;
pos.y = m_ymin +
m_BitStream.GetBits(m_nCoordBits) * (m_ymax - m_ymin) / m_CoordMax;
}
return pos;
}
std::tuple<FX_FLOAT, FX_FLOAT, FX_FLOAT> CPDF_MeshStream::ReadColor() {
ASSERT(ShouldCheckBPC(m_type));
FX_FLOAT color_value[kMaxComponents];
for (uint32_t i = 0; i < m_nComponents; ++i) {
color_value[i] = m_ColorMin[i] +
m_BitStream.GetBits(m_nComponentBits) *
(m_ColorMax[i] - m_ColorMin[i]) / m_ComponentMax;
}
FX_FLOAT r;
FX_FLOAT g;
FX_FLOAT b;
if (m_funcs.empty()) {
m_pCS->GetRGB(color_value, r, g, b);
return std::tuple<FX_FLOAT, FX_FLOAT, FX_FLOAT>(r, g, b);
}
FX_FLOAT result[kMaxComponents];
FXSYS_memset(result, 0, sizeof(result));
int nResults;
for (const auto& func : m_funcs) {
if (func && func->CountOutputs() <= kMaxComponents)
func->Call(color_value, 1, result, nResults);
}
m_pCS->GetRGB(result, r, g, b);
return std::tuple<FX_FLOAT, FX_FLOAT, FX_FLOAT>(r, g, b);
}
bool CPDF_MeshStream::ReadVertex(const CFX_Matrix& pObject2Bitmap,
CPDF_MeshVertex* vertex,
uint32_t* flag) {
if (!CanReadFlag())
return false;
*flag = ReadFlag();
if (!CanReadCoords())
return false;
vertex->position = pObject2Bitmap.Transform(ReadCoords());
if (!CanReadColor())
return false;
std::tie(vertex->r, vertex->g, vertex->b) = ReadColor();
m_BitStream.ByteAlign();
return true;
}
bool CPDF_MeshStream::ReadVertexRow(const CFX_Matrix& pObject2Bitmap,
int count,
CPDF_MeshVertex* vertex) {
for (int i = 0; i < count; i++) {
if (m_BitStream.IsEOF() || !CanReadCoords())
return false;
vertex[i].position = pObject2Bitmap.Transform(ReadCoords());
if (!CanReadColor())
return false;
std::tie(vertex[i].r, vertex[i].g, vertex[i].b) = ReadColor();
m_BitStream.ByteAlign();
}
return true;
}