/*
* Copyright 2012 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "GrTextureDomain.h"
#include "GrResourceProvider.h"
#include "GrShaderCaps.h"
#include "GrSimpleTextureEffect.h"
#include "GrSurfaceProxyPriv.h"
#include "SkFloatingPoint.h"
#include "glsl/GrGLSLColorSpaceXformHelper.h"
#include "glsl/GrGLSLFragmentProcessor.h"
#include "glsl/GrGLSLFragmentShaderBuilder.h"
#include "glsl/GrGLSLProgramDataManager.h"
#include "glsl/GrGLSLShaderBuilder.h"
#include "glsl/GrGLSLUniformHandler.h"
static bool can_ignore_rect(GrTextureProxy* proxy, const SkRect& domain) {
if (GrResourceProvider::IsFunctionallyExact(proxy)) {
const SkIRect kFullRect = SkIRect::MakeWH(proxy->width(), proxy->height());
return domain.contains(kFullRect);
}
return false;
}
static bool can_ignore_rect(GrTexture* tex, const SkRect& domain) {
// This logic is relying on the instantiated size of 'tex'. In the deferred world it
// will have to change so this logic only fires for kExact texture proxies. This shouldn't
// change the actual behavior of Ganesh since shaders shouldn't be accessing pixels outside
// of the content rectangle.
const SkIRect kFullRect = SkIRect::MakeWH(tex->width(), tex->height());
return domain.contains(kFullRect);
}
GrTextureDomain::GrTextureDomain(GrTexture* tex, const SkRect& domain, Mode mode, int index)
: fMode(mode)
, fIndex(index) {
if (kIgnore_Mode == fMode) {
return;
}
if (kClamp_Mode == mode && can_ignore_rect(tex, domain)) {
fMode = kIgnore_Mode;
return;
}
const SkRect kFullRect = SkRect::MakeIWH(tex->width(), tex->height());
// We don't currently handle domains that are empty or don't intersect the texture.
// It is OK if the domain rect is a line or point, but it should not be inverted. We do not
// handle rects that do not intersect the [0..1]x[0..1] rect.
SkASSERT(domain.fLeft <= domain.fRight);
SkASSERT(domain.fTop <= domain.fBottom);
fDomain.fLeft = SkScalarPin(domain.fLeft, 0.0f, kFullRect.fRight);
fDomain.fRight = SkScalarPin(domain.fRight, fDomain.fLeft, kFullRect.fRight);
fDomain.fTop = SkScalarPin(domain.fTop, 0.0f, kFullRect.fBottom);
fDomain.fBottom = SkScalarPin(domain.fBottom, fDomain.fTop, kFullRect.fBottom);
SkASSERT(fDomain.fLeft <= fDomain.fRight);
SkASSERT(fDomain.fTop <= fDomain.fBottom);
}
GrTextureDomain::GrTextureDomain(GrTextureProxy* proxy, const SkRect& domain, Mode mode, int index)
: fMode(mode)
, fIndex(index) {
if (kIgnore_Mode == fMode) {
return;
}
if (kClamp_Mode == mode && can_ignore_rect(proxy, domain)) {
fMode = kIgnore_Mode;
return;
}
const SkRect kFullRect = SkRect::MakeIWH(proxy->width(), proxy->height());
// We don't currently handle domains that are empty or don't intersect the texture.
// It is OK if the domain rect is a line or point, but it should not be inverted. We do not
// handle rects that do not intersect the [0..1]x[0..1] rect.
SkASSERT(domain.fLeft <= domain.fRight);
SkASSERT(domain.fTop <= domain.fBottom);
fDomain.fLeft = SkScalarPin(domain.fLeft, 0.0f, kFullRect.fRight);
fDomain.fRight = SkScalarPin(domain.fRight, fDomain.fLeft, kFullRect.fRight);
fDomain.fTop = SkScalarPin(domain.fTop, 0.0f, kFullRect.fBottom);
fDomain.fBottom = SkScalarPin(domain.fBottom, fDomain.fTop, kFullRect.fBottom);
SkASSERT(fDomain.fLeft <= fDomain.fRight);
SkASSERT(fDomain.fTop <= fDomain.fBottom);
}
//////////////////////////////////////////////////////////////////////////////
void GrTextureDomain::GLDomain::sampleTexture(GrGLSLShaderBuilder* builder,
GrGLSLUniformHandler* uniformHandler,
const GrShaderCaps* shaderCaps,
const GrTextureDomain& textureDomain,
const char* outColor,
const SkString& inCoords,
GrGLSLFragmentProcessor::SamplerHandle sampler,
const char* inModulateColor,
GrGLSLColorSpaceXformHelper* colorXformHelper) {
SkASSERT((Mode)-1 == fMode || textureDomain.mode() == fMode);
SkDEBUGCODE(fMode = textureDomain.mode();)
if (textureDomain.mode() != kIgnore_Mode && !fDomainUni.isValid()) {
const char* name;
SkString uniName("TexDom");
if (textureDomain.fIndex >= 0) {
uniName.appendS32(textureDomain.fIndex);
}
fDomainUni = uniformHandler->addUniform(kFragment_GrShaderFlag,
kVec4f_GrSLType, kDefault_GrSLPrecision,
uniName.c_str(), &name);
fDomainName = name;
}
switch (textureDomain.mode()) {
case kIgnore_Mode: {
builder->codeAppendf("%s = ", outColor);
builder->appendTextureLookupAndModulate(inModulateColor, sampler, inCoords.c_str(),
kVec2f_GrSLType, colorXformHelper);
builder->codeAppend(";");
break;
}
case kClamp_Mode: {
SkString clampedCoords;
clampedCoords.appendf("clamp(%s, %s.xy, %s.zw)",
inCoords.c_str(), fDomainName.c_str(), fDomainName.c_str());
builder->codeAppendf("%s = ", outColor);
builder->appendTextureLookupAndModulate(inModulateColor, sampler, clampedCoords.c_str(),
kVec2f_GrSLType, colorXformHelper);
builder->codeAppend(";");
break;
}
case kDecal_Mode: {
// Add a block since we're going to declare variables.
GrGLSLShaderBuilder::ShaderBlock block(builder);
const char* domain = fDomainName.c_str();
if (!shaderCaps->canUseAnyFunctionInShader()) {
// On the NexusS and GalaxyNexus, the other path (with the 'any'
// call) causes the compilation error "Calls to any function that
// may require a gradient calculation inside a conditional block
// may return undefined results". This appears to be an issue with
// the 'any' call since even the simple "result=black; if (any())
// result=white;" code fails to compile.
builder->codeAppend("vec4 outside = vec4(0.0, 0.0, 0.0, 0.0);");
builder->codeAppend("vec4 inside = ");
builder->appendTextureLookupAndModulate(inModulateColor, sampler, inCoords.c_str(),
kVec2f_GrSLType, colorXformHelper);
builder->codeAppend(";");
builder->codeAppendf("highp float x = (%s).x;", inCoords.c_str());
builder->codeAppendf("highp float y = (%s).y;", inCoords.c_str());
builder->codeAppendf("x = abs(2.0*(x - %s.x)/(%s.z - %s.x) - 1.0);",
domain, domain, domain);
builder->codeAppendf("y = abs(2.0*(y - %s.y)/(%s.w - %s.y) - 1.0);",
domain, domain, domain);
builder->codeAppend("float blend = step(1.0, max(x, y));");
builder->codeAppendf("%s = mix(inside, outside, blend);", outColor);
} else {
builder->codeAppend("bvec4 outside;\n");
builder->codeAppendf("outside.xy = lessThan(%s, %s.xy);", inCoords.c_str(),
domain);
builder->codeAppendf("outside.zw = greaterThan(%s, %s.zw);", inCoords.c_str(),
domain);
builder->codeAppendf("%s = any(outside) ? vec4(0.0, 0.0, 0.0, 0.0) : ",
outColor);
builder->appendTextureLookupAndModulate(inModulateColor, sampler, inCoords.c_str(),
kVec2f_GrSLType, colorXformHelper);
builder->codeAppend(";");
}
break;
}
case kRepeat_Mode: {
SkString clampedCoords;
clampedCoords.printf("mod(%s - %s.xy, %s.zw - %s.xy) + %s.xy",
inCoords.c_str(), fDomainName.c_str(), fDomainName.c_str(),
fDomainName.c_str(), fDomainName.c_str());
builder->codeAppendf("%s = ", outColor);
builder->appendTextureLookupAndModulate(inModulateColor, sampler, clampedCoords.c_str(),
kVec2f_GrSLType, colorXformHelper);
builder->codeAppend(";");
break;
}
}
}
void GrTextureDomain::GLDomain::setData(const GrGLSLProgramDataManager& pdman,
const GrTextureDomain& textureDomain,
GrTexture* tex) {
SkASSERT(textureDomain.mode() == fMode);
if (kIgnore_Mode != textureDomain.mode()) {
SkScalar wInv = SK_Scalar1 / tex->width();
SkScalar hInv = SK_Scalar1 / tex->height();
float values[kPrevDomainCount] = {
SkScalarToFloat(textureDomain.domain().fLeft * wInv),
SkScalarToFloat(textureDomain.domain().fTop * hInv),
SkScalarToFloat(textureDomain.domain().fRight * wInv),
SkScalarToFloat(textureDomain.domain().fBottom * hInv)
};
SkASSERT(values[0] >= 0.0f && values[0] <= 1.0f);
SkASSERT(values[1] >= 0.0f && values[1] <= 1.0f);
SkASSERT(values[2] >= 0.0f && values[2] <= 1.0f);
SkASSERT(values[3] >= 0.0f && values[3] <= 1.0f);
// vertical flip if necessary
if (kBottomLeft_GrSurfaceOrigin == tex->origin()) {
values[1] = 1.0f - values[1];
values[3] = 1.0f - values[3];
// The top and bottom were just flipped, so correct the ordering
// of elements so that values = (l, t, r, b).
SkTSwap(values[1], values[3]);
}
if (0 != memcmp(values, fPrevDomain, kPrevDomainCount * sizeof(float))) {
pdman.set4fv(fDomainUni, 1, values);
memcpy(fPrevDomain, values, kPrevDomainCount * sizeof(float));
}
}
}
///////////////////////////////////////////////////////////////////////////////
inline GrFragmentProcessor::OptimizationFlags GrTextureDomainEffect::OptFlags(
GrPixelConfig config, GrTextureDomain::Mode mode) {
if (mode == GrTextureDomain::kDecal_Mode || !GrPixelConfigIsOpaque(config)) {
return GrFragmentProcessor::kCompatibleWithCoverageAsAlpha_OptimizationFlag;
} else {
return GrFragmentProcessor::kCompatibleWithCoverageAsAlpha_OptimizationFlag |
GrFragmentProcessor::kPreservesOpaqueInput_OptimizationFlag;
}
}
sk_sp<GrFragmentProcessor> GrTextureDomainEffect::Make(GrResourceProvider* resourceProvider,
sk_sp<GrTextureProxy> proxy,
sk_sp<GrColorSpaceXform> colorSpaceXform,
const SkMatrix& matrix,
const SkRect& domain,
GrTextureDomain::Mode mode,
GrSamplerParams::FilterMode filterMode) {
if (GrTextureDomain::kIgnore_Mode == mode ||
(GrTextureDomain::kClamp_Mode == mode && can_ignore_rect(proxy.get(), domain))) {
return GrSimpleTextureEffect::Make(resourceProvider, std::move(proxy),
std::move(colorSpaceXform), matrix, filterMode);
} else {
return sk_sp<GrFragmentProcessor>(
new GrTextureDomainEffect(resourceProvider, std::move(proxy),
std::move(colorSpaceXform),
matrix, domain, mode, filterMode));
}
}
GrTextureDomainEffect::GrTextureDomainEffect(GrResourceProvider* resourceProvider,
sk_sp<GrTextureProxy> proxy,
sk_sp<GrColorSpaceXform> colorSpaceXform,
const SkMatrix& matrix,
const SkRect& domain,
GrTextureDomain::Mode mode,
GrSamplerParams::FilterMode filterMode)
: GrSingleTextureEffect(resourceProvider, OptFlags(proxy->config(), mode), proxy,
std::move(colorSpaceXform), matrix, filterMode)
, fTextureDomain(proxy.get(), domain, mode) {
SkASSERT(mode != GrTextureDomain::kRepeat_Mode ||
filterMode == GrSamplerParams::kNone_FilterMode);
this->initClassID<GrTextureDomainEffect>();
}
void GrTextureDomainEffect::onGetGLSLProcessorKey(const GrShaderCaps& caps,
GrProcessorKeyBuilder* b) const {
b->add32(GrTextureDomain::GLDomain::DomainKey(fTextureDomain));
b->add32(GrColorSpaceXform::XformKey(this->colorSpaceXform()));
}
GrGLSLFragmentProcessor* GrTextureDomainEffect::onCreateGLSLInstance() const {
class GLSLProcessor : public GrGLSLFragmentProcessor {
public:
void emitCode(EmitArgs& args) override {
const GrTextureDomainEffect& tde = args.fFp.cast<GrTextureDomainEffect>();
const GrTextureDomain& domain = tde.fTextureDomain;
GrGLSLFPFragmentBuilder* fragBuilder = args.fFragBuilder;
SkString coords2D = fragBuilder->ensureCoords2D(args.fTransformedCoords[0]);
fColorSpaceHelper.emitCode(args.fUniformHandler, tde.colorSpaceXform());
fGLDomain.sampleTexture(fragBuilder,
args.fUniformHandler,
args.fShaderCaps,
domain,
args.fOutputColor,
coords2D,
args.fTexSamplers[0],
args.fInputColor,
&fColorSpaceHelper);
}
protected:
void onSetData(const GrGLSLProgramDataManager& pdman, const GrProcessor& fp) override {
const GrTextureDomainEffect& tde = fp.cast<GrTextureDomainEffect>();
const GrTextureDomain& domain = tde.fTextureDomain;
fGLDomain.setData(pdman, domain, tde.textureSampler(0).texture());
if (SkToBool(tde.colorSpaceXform())) {
fColorSpaceHelper.setData(pdman, tde.colorSpaceXform());
}
}
private:
GrTextureDomain::GLDomain fGLDomain;
GrGLSLColorSpaceXformHelper fColorSpaceHelper;
};
return new GLSLProcessor;
}
bool GrTextureDomainEffect::onIsEqual(const GrFragmentProcessor& sBase) const {
const GrTextureDomainEffect& s = sBase.cast<GrTextureDomainEffect>();
return this->fTextureDomain == s.fTextureDomain;
}
///////////////////////////////////////////////////////////////////////////////
GR_DEFINE_FRAGMENT_PROCESSOR_TEST(GrTextureDomainEffect);
#if GR_TEST_UTILS
sk_sp<GrFragmentProcessor> GrTextureDomainEffect::TestCreate(GrProcessorTestData* d) {
int texIdx = d->fRandom->nextBool() ? GrProcessorUnitTest::kSkiaPMTextureIdx
: GrProcessorUnitTest::kAlphaTextureIdx;
sk_sp<GrTextureProxy> proxy = d->textureProxy(texIdx);
SkRect domain;
domain.fLeft = d->fRandom->nextRangeScalar(0, proxy->width());
domain.fRight = d->fRandom->nextRangeScalar(domain.fLeft, proxy->width());
domain.fTop = d->fRandom->nextRangeScalar(0, proxy->height());
domain.fBottom = d->fRandom->nextRangeScalar(domain.fTop, proxy->height());
GrTextureDomain::Mode mode =
(GrTextureDomain::Mode) d->fRandom->nextULessThan(GrTextureDomain::kModeCount);
const SkMatrix& matrix = GrTest::TestMatrix(d->fRandom);
bool bilerp = mode != GrTextureDomain::kRepeat_Mode ? d->fRandom->nextBool() : false;
sk_sp<GrColorSpaceXform> colorSpaceXform = GrTest::TestColorXform(d->fRandom);
return GrTextureDomainEffect::Make(d->resourceProvider(),
std::move(proxy),
std::move(colorSpaceXform),
matrix,
domain,
mode,
bilerp ? GrSamplerParams::kBilerp_FilterMode
: GrSamplerParams::kNone_FilterMode);
}
#endif
///////////////////////////////////////////////////////////////////////////////
sk_sp<GrFragmentProcessor> GrDeviceSpaceTextureDecalFragmentProcessor::Make(
GrResourceProvider* resourceProvider,
sk_sp<GrTextureProxy> proxy,
const SkIRect& subset,
const SkIPoint& deviceSpaceOffset) {
return sk_sp<GrFragmentProcessor>(new GrDeviceSpaceTextureDecalFragmentProcessor(
resourceProvider, std::move(proxy), subset, deviceSpaceOffset));
}
GrDeviceSpaceTextureDecalFragmentProcessor::GrDeviceSpaceTextureDecalFragmentProcessor(
GrResourceProvider* resourceProvider,
sk_sp<GrTextureProxy> proxy,
const SkIRect& subset,
const SkIPoint& deviceSpaceOffset)
: INHERITED(kCompatibleWithCoverageAsAlpha_OptimizationFlag)
, fTextureSampler(resourceProvider, proxy, GrSamplerParams::ClampNoFilter())
, fTextureDomain(proxy.get(), GrTextureDomain::MakeTexelDomain(subset),
GrTextureDomain::kDecal_Mode) {
this->addTextureSampler(&fTextureSampler);
fDeviceSpaceOffset.fX = deviceSpaceOffset.fX - subset.fLeft;
fDeviceSpaceOffset.fY = deviceSpaceOffset.fY - subset.fTop;
this->initClassID<GrDeviceSpaceTextureDecalFragmentProcessor>();
}
GrGLSLFragmentProcessor* GrDeviceSpaceTextureDecalFragmentProcessor::onCreateGLSLInstance() const {
class GLSLProcessor : public GrGLSLFragmentProcessor {
public:
void emitCode(EmitArgs& args) override {
const GrDeviceSpaceTextureDecalFragmentProcessor& dstdfp =
args.fFp.cast<GrDeviceSpaceTextureDecalFragmentProcessor>();
const char* scaleAndTranslateName;
fScaleAndTranslateUni = args.fUniformHandler->addUniform(kFragment_GrShaderFlag,
kVec4f_GrSLType,
kDefault_GrSLPrecision,
"scaleAndTranslate",
&scaleAndTranslateName);
args.fFragBuilder->codeAppendf("vec2 coords = sk_FragCoord.xy * %s.xy + %s.zw;",
scaleAndTranslateName, scaleAndTranslateName);
fGLDomain.sampleTexture(args.fFragBuilder,
args.fUniformHandler,
args.fShaderCaps,
dstdfp.fTextureDomain,
args.fOutputColor,
SkString("coords"),
args.fTexSamplers[0],
args.fInputColor);
}
protected:
void onSetData(const GrGLSLProgramDataManager& pdman, const GrProcessor& fp) override {
const GrDeviceSpaceTextureDecalFragmentProcessor& dstdfp =
fp.cast<GrDeviceSpaceTextureDecalFragmentProcessor>();
GrTexture* texture = dstdfp.textureSampler(0).texture();
fGLDomain.setData(pdman, dstdfp.fTextureDomain, texture);
float iw = 1.f / texture->width();
float ih = 1.f / texture->height();
float scaleAndTransData[4] = {
iw, ih,
-dstdfp.fDeviceSpaceOffset.fX * iw, -dstdfp.fDeviceSpaceOffset.fY * ih
};
if (texture->origin() == kBottomLeft_GrSurfaceOrigin) {
scaleAndTransData[1] = -scaleAndTransData[1];
scaleAndTransData[3] = 1 - scaleAndTransData[3];
}
pdman.set4fv(fScaleAndTranslateUni, 1, scaleAndTransData);
}
private:
GrTextureDomain::GLDomain fGLDomain;
UniformHandle fScaleAndTranslateUni;
};
return new GLSLProcessor;
}
bool GrDeviceSpaceTextureDecalFragmentProcessor::onIsEqual(const GrFragmentProcessor& fp) const {
const GrDeviceSpaceTextureDecalFragmentProcessor& dstdfp =
fp.cast<GrDeviceSpaceTextureDecalFragmentProcessor>();
return dstdfp.fTextureSampler.texture() == fTextureSampler.texture() &&
dstdfp.fDeviceSpaceOffset == fDeviceSpaceOffset &&
dstdfp.fTextureDomain == fTextureDomain;
}
///////////////////////////////////////////////////////////////////////////////
GR_DEFINE_FRAGMENT_PROCESSOR_TEST(GrDeviceSpaceTextureDecalFragmentProcessor);
#if GR_TEST_UTILS
sk_sp<GrFragmentProcessor> GrDeviceSpaceTextureDecalFragmentProcessor::TestCreate(
GrProcessorTestData* d) {
int texIdx = d->fRandom->nextBool() ? GrProcessorUnitTest::kSkiaPMTextureIdx
: GrProcessorUnitTest::kAlphaTextureIdx;
sk_sp<GrTextureProxy> proxy = d->textureProxy(texIdx);
SkIRect subset;
subset.fLeft = d->fRandom->nextULessThan(proxy->width() - 1);
subset.fRight = d->fRandom->nextRangeU(subset.fLeft, proxy->width());
subset.fTop = d->fRandom->nextULessThan(proxy->height() - 1);
subset.fBottom = d->fRandom->nextRangeU(subset.fTop, proxy->height());
SkIPoint pt;
pt.fX = d->fRandom->nextULessThan(2048);
pt.fY = d->fRandom->nextULessThan(2048);
return GrDeviceSpaceTextureDecalFragmentProcessor::Make(d->resourceProvider(),
std::move(proxy), subset, pt);
}
#endif