/*
* Copyright 2011 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkBitmap.h"
#include "SkRect.h"
#include "SkTemplates.h"
#include "Test.h"
static const char* boolStr(bool value) {
return value ? "true" : "false";
}
static const char* color_type_name(SkColorType colorType) {
switch (colorType) {
case kUnknown_SkColorType:
return "None";
case kAlpha_8_SkColorType:
return "A8";
case kRGB_565_SkColorType:
return "565";
case kARGB_4444_SkColorType:
return "4444";
case kRGBA_8888_SkColorType:
return "RGBA";
case kBGRA_8888_SkColorType:
return "BGRA";
case kIndex_8_SkColorType:
return "Index8";
case kGray_8_SkColorType:
return "Gray8";
case kRGBA_F16_SkColorType:
return "F16";
}
return "";
}
static void report_opaqueness(skiatest::Reporter* reporter, const SkBitmap& src,
const SkBitmap& dst) {
ERRORF(reporter, "src %s opaque:%d, dst %s opaque:%d",
color_type_name(src.colorType()), src.isOpaque(),
color_type_name(dst.colorType()), dst.isOpaque());
}
static bool canHaveAlpha(SkColorType ct) {
return kRGB_565_SkColorType != ct;
}
// copyTo() should preserve isOpaque when it makes sense
static void test_isOpaque(skiatest::Reporter* reporter,
const SkBitmap& srcOpaque, const SkBitmap& srcPremul,
SkColorType dstColorType) {
SkBitmap dst;
if (canHaveAlpha(srcPremul.colorType()) && canHaveAlpha(dstColorType)) {
REPORTER_ASSERT(reporter, srcPremul.copyTo(&dst, dstColorType));
REPORTER_ASSERT(reporter, dst.colorType() == dstColorType);
if (srcPremul.isOpaque() != dst.isOpaque()) {
report_opaqueness(reporter, srcPremul, dst);
}
}
REPORTER_ASSERT(reporter, srcOpaque.copyTo(&dst, dstColorType));
REPORTER_ASSERT(reporter, dst.colorType() == dstColorType);
if (srcOpaque.isOpaque() != dst.isOpaque()) {
report_opaqueness(reporter, srcOpaque, dst);
}
}
static void init_src(const SkBitmap& bitmap) {
SkAutoLockPixels lock(bitmap);
if (bitmap.getPixels()) {
if (bitmap.getColorTable()) {
sk_bzero(bitmap.getPixels(), bitmap.getSize());
} else {
bitmap.eraseColor(SK_ColorWHITE);
}
}
}
static SkColorTable* init_ctable() {
static const SkColor colors[] = {
SK_ColorBLACK, SK_ColorRED, SK_ColorGREEN, SK_ColorBLUE, SK_ColorWHITE
};
return new SkColorTable(colors, SK_ARRAY_COUNT(colors));
}
struct Pair {
SkColorType fColorType;
const char* fValid;
};
// Utility functions for copyPixelsTo()/copyPixelsFrom() tests.
// getPixel()
// setPixel()
// getSkConfigName()
// struct Coordinates
// reportCopyVerification()
// writeCoordPixels()
// Utility function to read the value of a given pixel in bm. All
// values converted to uint32_t for simplification of comparisons.
static uint32_t getPixel(int x, int y, const SkBitmap& bm) {
uint32_t val = 0;
uint16_t val16;
uint8_t val8;
SkAutoLockPixels lock(bm);
const void* rawAddr = bm.getAddr(x,y);
switch (bm.bytesPerPixel()) {
case 4:
memcpy(&val, rawAddr, sizeof(uint32_t));
break;
case 2:
memcpy(&val16, rawAddr, sizeof(uint16_t));
val = val16;
break;
case 1:
memcpy(&val8, rawAddr, sizeof(uint8_t));
val = val8;
break;
default:
break;
}
return val;
}
// Utility function to set value of any pixel in bm.
// bm.getConfig() specifies what format 'val' must be
// converted to, but at present uint32_t can handle all formats.
static void setPixel(int x, int y, uint32_t val, SkBitmap& bm) {
uint16_t val16;
uint8_t val8;
SkAutoLockPixels lock(bm);
void* rawAddr = bm.getAddr(x,y);
switch (bm.bytesPerPixel()) {
case 4:
memcpy(rawAddr, &val, sizeof(uint32_t));
break;
case 2:
val16 = val & 0xFFFF;
memcpy(rawAddr, &val16, sizeof(uint16_t));
break;
case 1:
val8 = val & 0xFF;
memcpy(rawAddr, &val8, sizeof(uint8_t));
break;
default:
// Ignore.
break;
}
}
// Helper struct to contain pixel locations, while avoiding need for STL.
struct Coordinates {
const int length;
SkIPoint* const data;
explicit Coordinates(int _length): length(_length)
, data(new SkIPoint[length]) { }
~Coordinates(){
delete [] data;
}
SkIPoint* operator[](int i) const {
// Use with care, no bounds checking.
return data + i;
}
};
// A function to verify that two bitmaps contain the same pixel values
// at all coordinates indicated by coords. Simplifies verification of
// copied bitmaps.
static void reportCopyVerification(const SkBitmap& bm1, const SkBitmap& bm2,
Coordinates& coords,
const char* msg,
skiatest::Reporter* reporter){
// Confirm all pixels in the list match.
for (int i = 0; i < coords.length; ++i) {
uint32_t p1 = getPixel(coords[i]->fX, coords[i]->fY, bm1);
uint32_t p2 = getPixel(coords[i]->fX, coords[i]->fY, bm2);
// SkDebugf("[%d] (%d %d) p1=%x p2=%x\n", i, coords[i]->fX, coords[i]->fY, p1, p2);
if (p1 != p2) {
ERRORF(reporter, "%s [colortype = %s]", msg, color_type_name(bm1.colorType()));
break;
}
}
}
// Writes unique pixel values at locations specified by coords.
static void writeCoordPixels(SkBitmap& bm, const Coordinates& coords) {
for (int i = 0; i < coords.length; ++i)
setPixel(coords[i]->fX, coords[i]->fY, i, bm);
}
static const Pair gPairs[] = {
{ kUnknown_SkColorType, "0000000" },
{ kAlpha_8_SkColorType, "0100000" },
{ kIndex_8_SkColorType, "0101111" },
{ kRGB_565_SkColorType, "0101011" },
{ kARGB_4444_SkColorType, "0101111" },
{ kN32_SkColorType, "0101111" },
{ kRGBA_F16_SkColorType, "0101011" },
};
static const int W = 20;
static const int H = 33;
static void setup_src_bitmaps(SkBitmap* srcOpaque, SkBitmap* srcPremul,
SkColorType ct) {
SkColorTable* ctable = nullptr;
if (kIndex_8_SkColorType == ct) {
ctable = init_ctable();
}
sk_sp<SkColorSpace> colorSpace = nullptr;
if (kRGBA_F16_SkColorType == ct) {
colorSpace = SkColorSpace::MakeSRGBLinear();
}
srcOpaque->allocPixels(SkImageInfo::Make(W, H, ct, kOpaque_SkAlphaType, colorSpace),
nullptr, ctable);
srcPremul->allocPixels(SkImageInfo::Make(W, H, ct, kPremul_SkAlphaType, colorSpace),
nullptr, ctable);
SkSafeUnref(ctable);
init_src(*srcOpaque);
init_src(*srcPremul);
}
DEF_TEST(BitmapCopy_extractSubset, reporter) {
for (size_t i = 0; i < SK_ARRAY_COUNT(gPairs); i++) {
SkBitmap srcOpaque, srcPremul;
setup_src_bitmaps(&srcOpaque, &srcPremul, gPairs[i].fColorType);
SkBitmap bitmap(srcOpaque);
SkBitmap subset;
SkIRect r;
// Extract a subset which has the same width as the original. This
// catches a bug where we cloned the genID incorrectly.
r.set(0, 1, W, 3);
bitmap.setIsVolatile(true);
// Relies on old behavior of extractSubset failing if colortype is unknown
if (kUnknown_SkColorType != bitmap.colorType() && bitmap.extractSubset(&subset, r)) {
REPORTER_ASSERT(reporter, subset.width() == W);
REPORTER_ASSERT(reporter, subset.height() == 2);
REPORTER_ASSERT(reporter, subset.alphaType() == bitmap.alphaType());
REPORTER_ASSERT(reporter, subset.isVolatile() == true);
// Test copying an extracted subset.
for (size_t j = 0; j < SK_ARRAY_COUNT(gPairs); j++) {
SkBitmap copy;
bool success = subset.copyTo(©, gPairs[j].fColorType);
if (!success) {
// Skip checking that success matches fValid, which is redundant
// with the code below.
REPORTER_ASSERT(reporter, kIndex_8_SkColorType == gPairs[i].fColorType ||
gPairs[i].fColorType != gPairs[j].fColorType);
continue;
}
// When performing a copy of an extracted subset, the gen id should
// change.
REPORTER_ASSERT(reporter, copy.getGenerationID() != subset.getGenerationID());
REPORTER_ASSERT(reporter, copy.width() == W);
REPORTER_ASSERT(reporter, copy.height() == 2);
if (gPairs[i].fColorType == gPairs[j].fColorType) {
SkAutoLockPixels alp0(subset);
SkAutoLockPixels alp1(copy);
// they should both have, or both not-have, a colortable
bool hasCT = subset.getColorTable() != nullptr;
REPORTER_ASSERT(reporter, (copy.getColorTable() != nullptr) == hasCT);
}
}
}
bitmap = srcPremul;
bitmap.setIsVolatile(false);
if (bitmap.extractSubset(&subset, r)) {
REPORTER_ASSERT(reporter, subset.alphaType() == bitmap.alphaType());
REPORTER_ASSERT(reporter, subset.isVolatile() == false);
}
}
}
DEF_TEST(BitmapCopy, reporter) {
static const bool isExtracted[] = {
false, true
};
for (size_t i = 0; i < SK_ARRAY_COUNT(gPairs); i++) {
SkBitmap srcOpaque, srcPremul;
setup_src_bitmaps(&srcOpaque, &srcPremul, gPairs[i].fColorType);
for (size_t j = 0; j < SK_ARRAY_COUNT(gPairs); j++) {
SkBitmap dst;
bool success = srcPremul.copyTo(&dst, gPairs[j].fColorType);
bool expected = gPairs[i].fValid[j] != '0';
if (success != expected) {
ERRORF(reporter, "SkBitmap::copyTo from %s to %s. expected %s "
"returned %s", color_type_name(gPairs[i].fColorType),
color_type_name(gPairs[j].fColorType),
boolStr(expected), boolStr(success));
}
bool canSucceed = srcPremul.canCopyTo(gPairs[j].fColorType);
if (success != canSucceed) {
ERRORF(reporter, "SkBitmap::copyTo from %s to %s. returned %s "
"canCopyTo %s", color_type_name(gPairs[i].fColorType),
color_type_name(gPairs[j].fColorType),
boolStr(success), boolStr(canSucceed));
}
if (success) {
REPORTER_ASSERT(reporter, srcPremul.width() == dst.width());
REPORTER_ASSERT(reporter, srcPremul.height() == dst.height());
REPORTER_ASSERT(reporter, dst.colorType() == gPairs[j].fColorType);
test_isOpaque(reporter, srcOpaque, srcPremul, dst.colorType());
if (srcPremul.colorType() == dst.colorType()) {
SkAutoLockPixels srcLock(srcPremul);
SkAutoLockPixels dstLock(dst);
REPORTER_ASSERT(reporter, srcPremul.readyToDraw());
REPORTER_ASSERT(reporter, dst.readyToDraw());
const char* srcP = (const char*)srcPremul.getAddr(0, 0);
const char* dstP = (const char*)dst.getAddr(0, 0);
REPORTER_ASSERT(reporter, srcP != dstP);
REPORTER_ASSERT(reporter, !memcmp(srcP, dstP,
srcPremul.getSize()));
REPORTER_ASSERT(reporter, srcPremul.getGenerationID() == dst.getGenerationID());
} else {
REPORTER_ASSERT(reporter, srcPremul.getGenerationID() != dst.getGenerationID());
}
} else {
// dst should be unchanged from its initial state
REPORTER_ASSERT(reporter, dst.colorType() == kUnknown_SkColorType);
REPORTER_ASSERT(reporter, dst.width() == 0);
REPORTER_ASSERT(reporter, dst.height() == 0);
}
} // for (size_t j = ...
// Tests for getSafeSize(), getSafeSize64(), copyPixelsTo(),
// copyPixelsFrom().
//
for (size_t copyCase = 0; copyCase < SK_ARRAY_COUNT(isExtracted);
++copyCase) {
// Test copying to/from external buffer.
// Note: the tests below have hard-coded values ---
// Please take care if modifying.
// Tests for getSafeSize64().
// Test with a very large configuration without pixel buffer
// attached.
SkBitmap tstSafeSize;
tstSafeSize.setInfo(SkImageInfo::Make(100000000U, 100000000U,
gPairs[i].fColorType, kPremul_SkAlphaType));
int64_t safeSize = tstSafeSize.computeSafeSize64();
if (safeSize < 0) {
ERRORF(reporter, "getSafeSize64() negative: %s",
color_type_name(tstSafeSize.colorType()));
}
bool sizeFail = false;
// Compare against hand-computed values.
switch (gPairs[i].fColorType) {
case kUnknown_SkColorType:
break;
case kAlpha_8_SkColorType:
case kIndex_8_SkColorType:
if (safeSize != 0x2386F26FC10000LL) {
sizeFail = true;
}
break;
case kRGB_565_SkColorType:
case kARGB_4444_SkColorType:
if (safeSize != 0x470DE4DF820000LL) {
sizeFail = true;
}
break;
case kN32_SkColorType:
if (safeSize != 0x8E1BC9BF040000LL) {
sizeFail = true;
}
break;
default:
break;
}
if (sizeFail) {
ERRORF(reporter, "computeSafeSize64() wrong size: %s",
color_type_name(tstSafeSize.colorType()));
}
int subW = 2;
int subH = 2;
// Create bitmap to act as source for copies and subsets.
SkBitmap src, subset;
SkColorTable* ct = nullptr;
if (kIndex_8_SkColorType == src.colorType()) {
ct = init_ctable();
}
int localSubW;
if (isExtracted[copyCase]) { // A larger image to extract from.
localSubW = 2 * subW + 1;
} else { // Tests expect a 2x2 bitmap, so make smaller.
localSubW = subW;
}
// could fail if we pass kIndex_8 for the colortype
if (src.tryAllocPixels(SkImageInfo::Make(localSubW, subH, gPairs[i].fColorType,
kPremul_SkAlphaType))) {
// failure is fine, as we will notice later on
}
SkSafeUnref(ct);
// Either copy src or extract into 'subset', which is used
// for subsequent calls to copyPixelsTo/From.
bool srcReady = false;
// Test relies on older behavior that extractSubset will fail on
// kUnknown_SkColorType
if (kUnknown_SkColorType != src.colorType() &&
isExtracted[copyCase]) {
// The extractedSubset() test case allows us to test copy-
// ing when src and dst mave possibly different strides.
SkIRect r;
r.set(1, 0, 1 + subW, subH); // 2x2 extracted bitmap
srcReady = src.extractSubset(&subset, r);
} else {
srcReady = src.copyTo(&subset);
}
// Not all configurations will generate a valid 'subset'.
if (srcReady) {
// Allocate our target buffer 'buf' for all copies.
// To simplify verifying correctness of copies attach
// buf to a SkBitmap, but copies are done using the
// raw buffer pointer.
const size_t bufSize = subH *
SkColorTypeMinRowBytes(src.colorType(), subW) * 2;
SkAutoTMalloc<uint8_t> autoBuf (bufSize);
uint8_t* buf = autoBuf.get();
SkBitmap bufBm; // Attach buf to this bitmap.
bool successExpected;
// Set up values for each pixel being copied.
Coordinates coords(subW * subH);
for (int x = 0; x < subW; ++x)
for (int y = 0; y < subH; ++y)
{
int index = y * subW + x;
SkASSERT(index < coords.length);
coords[index]->fX = x;
coords[index]->fY = y;
}
writeCoordPixels(subset, coords);
// Test #1 ////////////////////////////////////////////
const SkImageInfo info = SkImageInfo::Make(subW, subH,
gPairs[i].fColorType,
kPremul_SkAlphaType);
// Before/after comparisons easier if we attach buf
// to an appropriately configured SkBitmap.
memset(buf, 0xFF, bufSize);
// Config with stride greater than src but that fits in buf.
bufBm.installPixels(info, buf, info.minRowBytes() * 2);
successExpected = false;
// Then attempt to copy with a stride that is too large
// to fit in the buffer.
REPORTER_ASSERT(reporter,
subset.copyPixelsTo(buf, bufSize, bufBm.rowBytes() * 3)
== successExpected);
if (successExpected)
reportCopyVerification(subset, bufBm, coords,
"copyPixelsTo(buf, bufSize, 1.5*maxRowBytes)",
reporter);
// Test #2 ////////////////////////////////////////////
// This test should always succeed, but in the case
// of extracted bitmaps only because we handle the
// issue of getSafeSize(). Without getSafeSize()
// buffer overrun/read would occur.
memset(buf, 0xFF, bufSize);
bufBm.installPixels(info, buf, subset.rowBytes());
successExpected = subset.getSafeSize() <= bufSize;
REPORTER_ASSERT(reporter,
subset.copyPixelsTo(buf, bufSize) ==
successExpected);
if (successExpected)
reportCopyVerification(subset, bufBm, coords,
"copyPixelsTo(buf, bufSize)", reporter);
// Test #3 ////////////////////////////////////////////
// Copy with different stride between src and dst.
memset(buf, 0xFF, bufSize);
bufBm.installPixels(info, buf, subset.rowBytes()+1);
successExpected = true; // Should always work.
REPORTER_ASSERT(reporter,
subset.copyPixelsTo(buf, bufSize,
subset.rowBytes()+1) == successExpected);
if (successExpected)
reportCopyVerification(subset, bufBm, coords,
"copyPixelsTo(buf, bufSize, rowBytes+1)", reporter);
// Test #4 ////////////////////////////////////////////
// Test copy with stride too small.
memset(buf, 0xFF, bufSize);
bufBm.installPixels(info, buf, info.minRowBytes());
successExpected = false;
// Request copy with stride too small.
REPORTER_ASSERT(reporter,
subset.copyPixelsTo(buf, bufSize, bufBm.rowBytes()-1)
== successExpected);
if (successExpected)
reportCopyVerification(subset, bufBm, coords,
"copyPixelsTo(buf, bufSize, rowBytes()-1)", reporter);
#if 0 // copyPixelsFrom is gone
// Test #5 ////////////////////////////////////////////
// Tests the case where the source stride is too small
// for the source configuration.
memset(buf, 0xFF, bufSize);
bufBm.installPixels(info, buf, info.minRowBytes());
writeCoordPixels(bufBm, coords);
REPORTER_ASSERT(reporter,
subset.copyPixelsFrom(buf, bufSize, 1) == false);
// Test #6 ///////////////////////////////////////////
// Tests basic copy from an external buffer to the bitmap.
// If the bitmap is "extracted", this also tests the case
// where the source stride is different from the dest.
// stride.
// We've made the buffer large enough to always succeed.
bufBm.installPixels(info, buf, info.minRowBytes());
writeCoordPixels(bufBm, coords);
REPORTER_ASSERT(reporter,
subset.copyPixelsFrom(buf, bufSize, bufBm.rowBytes()) ==
true);
reportCopyVerification(bufBm, subset, coords,
"copyPixelsFrom(buf, bufSize)",
reporter);
// Test #7 ////////////////////////////////////////////
// Tests the case where the source buffer is too small
// for the transfer.
REPORTER_ASSERT(reporter,
subset.copyPixelsFrom(buf, 1, subset.rowBytes()) ==
false);
#endif
}
} // for (size_t copyCase ...
}
}
#include "SkColorPriv.h"
#include "SkUtils.h"
/**
* Construct 4x4 pixels where we can look at a color and determine where it should be in the grid.
* alpha = 0xFF, blue = 0x80, red = x, green = y
*/
static void fill_4x4_pixels(SkPMColor colors[16]) {
for (int y = 0; y < 4; ++y) {
for (int x = 0; x < 4; ++x) {
colors[y*4+x] = SkPackARGB32(0xFF, x, y, 0x80);
}
}
}
static bool check_4x4_pixel(SkPMColor color, unsigned x, unsigned y) {
SkASSERT(x < 4 && y < 4);
return 0xFF == SkGetPackedA32(color) &&
x == SkGetPackedR32(color) &&
y == SkGetPackedG32(color) &&
0x80 == SkGetPackedB32(color);
}
/**
* Fill with all zeros, which will never match any value from fill_4x4_pixels
*/
static void clear_4x4_pixels(SkPMColor colors[16]) {
sk_memset32(colors, 0, 16);
}
// Much of readPixels is exercised by copyTo testing, since readPixels is the backend for that
// method. Here we explicitly test subset copies.
//
DEF_TEST(BitmapReadPixels, reporter) {
const int W = 4;
const int H = 4;
const size_t rowBytes = W * sizeof(SkPMColor);
const SkImageInfo srcInfo = SkImageInfo::MakeN32Premul(W, H);
SkPMColor srcPixels[16];
fill_4x4_pixels(srcPixels);
SkBitmap srcBM;
srcBM.installPixels(srcInfo, srcPixels, rowBytes);
SkImageInfo dstInfo = SkImageInfo::MakeN32Premul(W, H);
SkPMColor dstPixels[16];
const struct {
bool fExpectedSuccess;
SkIPoint fRequestedSrcLoc;
SkISize fRequestedDstSize;
// If fExpectedSuccess, check these, otherwise ignore
SkIPoint fExpectedDstLoc;
SkIRect fExpectedSrcR;
} gRec[] = {
{ true, { 0, 0 }, { 4, 4 }, { 0, 0 }, { 0, 0, 4, 4 } },
{ true, { 1, 1 }, { 2, 2 }, { 0, 0 }, { 1, 1, 3, 3 } },
{ true, { 2, 2 }, { 4, 4 }, { 0, 0 }, { 2, 2, 4, 4 } },
{ true, {-1,-1 }, { 2, 2 }, { 1, 1 }, { 0, 0, 1, 1 } },
{ false, {-1,-1 }, { 1, 1 }, { 0, 0 }, { 0, 0, 0, 0 } },
};
for (size_t i = 0; i < SK_ARRAY_COUNT(gRec); ++i) {
clear_4x4_pixels(dstPixels);
dstInfo = dstInfo.makeWH(gRec[i].fRequestedDstSize.width(),
gRec[i].fRequestedDstSize.height());
bool success = srcBM.readPixels(dstInfo, dstPixels, rowBytes,
gRec[i].fRequestedSrcLoc.x(), gRec[i].fRequestedSrcLoc.y());
REPORTER_ASSERT(reporter, gRec[i].fExpectedSuccess == success);
if (success) {
const SkIRect srcR = gRec[i].fExpectedSrcR;
const int dstX = gRec[i].fExpectedDstLoc.x();
const int dstY = gRec[i].fExpectedDstLoc.y();
// Walk the dst pixels, and check if we got what we expected
for (int y = 0; y < H; ++y) {
for (int x = 0; x < W; ++x) {
SkPMColor dstC = dstPixels[y*4+x];
// get into src coordinates
int sx = x - dstX + srcR.x();
int sy = y - dstY + srcR.y();
if (srcR.contains(sx, sy)) {
REPORTER_ASSERT(reporter, check_4x4_pixel(dstC, sx, sy));
} else {
REPORTER_ASSERT(reporter, 0 == dstC);
}
}
}
}
}
}
DEF_TEST(BitmapCopy_ColorSpaceMatch, r) {
// We should support matching color spaces, even if they are parametric.
SkColorSpaceTransferFn fn;
fn.fA = 1.f; fn.fB = 0.f; fn.fC = 0.f; fn.fD = 0.f; fn.fE = 0.f; fn.fF = 0.f; fn.fG = 1.8f;
sk_sp<SkColorSpace> cs = SkColorSpace::MakeRGB(fn, SkColorSpace::kRec2020_Gamut);
SkImageInfo info = SkImageInfo::MakeN32Premul(1, 1, cs);
SkBitmap bitmap;
bitmap.allocPixels(info);
bitmap.eraseColor(0);
SkBitmap copy;
bool success = bitmap.copyTo(©, kN32_SkColorType, nullptr);
REPORTER_ASSERT(r, success);
REPORTER_ASSERT(r, cs.get() == copy.colorSpace());
}