/*
* Copyright 2011 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkRandom.h"
#include "SkRefCnt.h"
#include "SkTSearch.h"
#include "SkTSort.h"
#include "SkUtils.h"
#include "Test.h"
class RefClass : public SkRefCnt {
public:
RefClass(int n) : fN(n) {}
int get() const { return fN; }
private:
int fN;
typedef SkRefCnt INHERITED;
};
static void test_autounref(skiatest::Reporter* reporter) {
RefClass obj(0);
REPORTER_ASSERT(reporter, obj.unique());
sk_sp<RefClass> tmp(&obj);
REPORTER_ASSERT(reporter, &obj == tmp.get());
REPORTER_ASSERT(reporter, obj.unique());
REPORTER_ASSERT(reporter, &obj == tmp.release());
REPORTER_ASSERT(reporter, obj.unique());
REPORTER_ASSERT(reporter, nullptr == tmp.release());
REPORTER_ASSERT(reporter, nullptr == tmp.get());
obj.ref();
REPORTER_ASSERT(reporter, !obj.unique());
{
sk_sp<RefClass> tmp2(&obj);
}
REPORTER_ASSERT(reporter, obj.unique());
}
static void test_autostarray(skiatest::Reporter* reporter) {
RefClass obj0(0);
RefClass obj1(1);
REPORTER_ASSERT(reporter, obj0.unique());
REPORTER_ASSERT(reporter, obj1.unique());
{
SkAutoSTArray<2, sk_sp<RefClass> > tmp;
REPORTER_ASSERT(reporter, 0 == tmp.count());
tmp.reset(0); // test out reset(0) when already at 0
tmp.reset(4); // this should force a new allocation
REPORTER_ASSERT(reporter, 4 == tmp.count());
tmp[0].reset(SkRef(&obj0));
tmp[1].reset(SkRef(&obj1));
REPORTER_ASSERT(reporter, !obj0.unique());
REPORTER_ASSERT(reporter, !obj1.unique());
// test out reset with data in the array (and a new allocation)
tmp.reset(0);
REPORTER_ASSERT(reporter, 0 == tmp.count());
REPORTER_ASSERT(reporter, obj0.unique());
REPORTER_ASSERT(reporter, obj1.unique());
tmp.reset(2); // this should use the preexisting allocation
REPORTER_ASSERT(reporter, 2 == tmp.count());
tmp[0].reset(SkRef(&obj0));
tmp[1].reset(SkRef(&obj1));
}
// test out destructor with data in the array (and using existing allocation)
REPORTER_ASSERT(reporter, obj0.unique());
REPORTER_ASSERT(reporter, obj1.unique());
{
// test out allocating ctor (this should allocate new memory)
SkAutoSTArray<2, sk_sp<RefClass> > tmp(4);
REPORTER_ASSERT(reporter, 4 == tmp.count());
tmp[0].reset(SkRef(&obj0));
tmp[1].reset(SkRef(&obj1));
REPORTER_ASSERT(reporter, !obj0.unique());
REPORTER_ASSERT(reporter, !obj1.unique());
// Test out resut with data in the array and malloced storage
tmp.reset(0);
REPORTER_ASSERT(reporter, obj0.unique());
REPORTER_ASSERT(reporter, obj1.unique());
tmp.reset(2); // this should use the preexisting storage
tmp[0].reset(SkRef(&obj0));
tmp[1].reset(SkRef(&obj1));
REPORTER_ASSERT(reporter, !obj0.unique());
REPORTER_ASSERT(reporter, !obj1.unique());
tmp.reset(4); // this should force a new malloc
REPORTER_ASSERT(reporter, obj0.unique());
REPORTER_ASSERT(reporter, obj1.unique());
tmp[0].reset(SkRef(&obj0));
tmp[1].reset(SkRef(&obj1));
REPORTER_ASSERT(reporter, !obj0.unique());
REPORTER_ASSERT(reporter, !obj1.unique());
}
REPORTER_ASSERT(reporter, obj0.unique());
REPORTER_ASSERT(reporter, obj1.unique());
}
/////////////////////////////////////////////////////////////////////////////
#define kSEARCH_COUNT 91
static void test_search(skiatest::Reporter* reporter) {
int i, array[kSEARCH_COUNT];
SkRandom rand;
for (i = 0; i < kSEARCH_COUNT; i++) {
array[i] = rand.nextS();
}
SkTHeapSort<int>(array, kSEARCH_COUNT);
// make sure we got sorted properly
for (i = 1; i < kSEARCH_COUNT; i++) {
REPORTER_ASSERT(reporter, array[i-1] <= array[i]);
}
// make sure we can find all of our values
for (i = 0; i < kSEARCH_COUNT; i++) {
int index = SkTSearch<int>(array, kSEARCH_COUNT, array[i], sizeof(int));
REPORTER_ASSERT(reporter, index == i);
}
// make sure that random values are either found, or the correct
// insertion index is returned
for (i = 0; i < 10000; i++) {
int value = rand.nextS();
int index = SkTSearch<int>(array, kSEARCH_COUNT, value, sizeof(int));
if (index >= 0) {
REPORTER_ASSERT(reporter,
index < kSEARCH_COUNT && array[index] == value);
} else {
index = ~index;
REPORTER_ASSERT(reporter, index <= kSEARCH_COUNT);
if (index < kSEARCH_COUNT) {
REPORTER_ASSERT(reporter, value < array[index]);
if (index > 0) {
REPORTER_ASSERT(reporter, value > array[index - 1]);
}
} else {
// we should append the new value
REPORTER_ASSERT(reporter, value > array[kSEARCH_COUNT - 1]);
}
}
}
}
static void test_utf16(skiatest::Reporter* reporter) {
static const SkUnichar gUni[] = {
0x10000, 0x18080, 0x20202, 0xFFFFF, 0x101234
};
uint16_t buf[2];
for (size_t i = 0; i < SK_ARRAY_COUNT(gUni); i++) {
size_t count = SkUTF16_FromUnichar(gUni[i], buf);
REPORTER_ASSERT(reporter, count == 2);
size_t count2 = SkUTF16_CountUnichars(buf, 2);
REPORTER_ASSERT(reporter, count2 == 1);
const uint16_t* ptr = buf;
SkUnichar c = SkUTF16_NextUnichar(&ptr);
REPORTER_ASSERT(reporter, c == gUni[i]);
REPORTER_ASSERT(reporter, ptr - buf == 2);
}
}
DEF_TEST(Utils, reporter) {
static const struct {
const char* fUtf8;
SkUnichar fUni;
} gTest[] = {
{ "a", 'a' },
{ "\x7f", 0x7f },
{ "\xC2\x80", 0x80 },
{ "\xC3\x83", (3 << 6) | 3 },
{ "\xDF\xBF", 0x7ff },
{ "\xE0\xA0\x80", 0x800 },
{ "\xE0\xB0\xB8", 0xC38 },
{ "\xE3\x83\x83", (3 << 12) | (3 << 6) | 3 },
{ "\xEF\xBF\xBF", 0xFFFF },
{ "\xF0\x90\x80\x80", 0x10000 },
{ "\xF3\x83\x83\x83", (3 << 18) | (3 << 12) | (3 << 6) | 3 }
};
for (size_t i = 0; i < SK_ARRAY_COUNT(gTest); i++) {
const char* p = gTest[i].fUtf8;
int n = SkUTF8_CountUnichars(p);
SkUnichar u0 = SkUTF8_ToUnichar(gTest[i].fUtf8);
SkUnichar u1 = SkUTF8_NextUnichar(&p);
REPORTER_ASSERT(reporter, n == 1);
REPORTER_ASSERT(reporter, u0 == u1);
REPORTER_ASSERT(reporter, u0 == gTest[i].fUni);
REPORTER_ASSERT(reporter,
p - gTest[i].fUtf8 == (int)strlen(gTest[i].fUtf8));
}
test_utf16(reporter);
test_search(reporter);
test_autounref(reporter);
test_autostarray(reporter);
}
#define ASCII_BYTE "X"
#define CONTINUATION_BYTE "\x80"
#define LEADING_TWO_BYTE "\xC4"
#define LEADING_THREE_BYTE "\xE0"
#define LEADING_FOUR_BYTE "\xF0"
#define INVALID_BYTE "\xFC"
static bool valid_utf8(const char* p, size_t l) {
return SkUTF8_CountUnicharsWithError(p, l) >= 0;
}
DEF_TEST(Utils_UTF8_ValidLength, r) {
const char* goodTestcases[] = {
"",
ASCII_BYTE,
ASCII_BYTE ASCII_BYTE,
LEADING_TWO_BYTE CONTINUATION_BYTE,
ASCII_BYTE LEADING_TWO_BYTE CONTINUATION_BYTE,
ASCII_BYTE ASCII_BYTE LEADING_TWO_BYTE CONTINUATION_BYTE,
LEADING_THREE_BYTE CONTINUATION_BYTE CONTINUATION_BYTE,
ASCII_BYTE LEADING_THREE_BYTE CONTINUATION_BYTE CONTINUATION_BYTE,
ASCII_BYTE ASCII_BYTE LEADING_THREE_BYTE CONTINUATION_BYTE CONTINUATION_BYTE,
LEADING_FOUR_BYTE CONTINUATION_BYTE CONTINUATION_BYTE CONTINUATION_BYTE,
ASCII_BYTE LEADING_FOUR_BYTE CONTINUATION_BYTE CONTINUATION_BYTE CONTINUATION_BYTE,
ASCII_BYTE ASCII_BYTE LEADING_FOUR_BYTE CONTINUATION_BYTE CONTINUATION_BYTE
CONTINUATION_BYTE,
};
for (const char* testcase : goodTestcases) {
REPORTER_ASSERT(r, valid_utf8(testcase, strlen(testcase)));
}
const char* badTestcases[] = {
INVALID_BYTE,
INVALID_BYTE CONTINUATION_BYTE,
INVALID_BYTE CONTINUATION_BYTE CONTINUATION_BYTE,
INVALID_BYTE CONTINUATION_BYTE CONTINUATION_BYTE CONTINUATION_BYTE,
LEADING_TWO_BYTE,
CONTINUATION_BYTE,
CONTINUATION_BYTE CONTINUATION_BYTE,
LEADING_THREE_BYTE CONTINUATION_BYTE,
CONTINUATION_BYTE CONTINUATION_BYTE CONTINUATION_BYTE,
LEADING_FOUR_BYTE CONTINUATION_BYTE,
CONTINUATION_BYTE CONTINUATION_BYTE CONTINUATION_BYTE CONTINUATION_BYTE,
ASCII_BYTE INVALID_BYTE,
ASCII_BYTE INVALID_BYTE CONTINUATION_BYTE,
ASCII_BYTE INVALID_BYTE CONTINUATION_BYTE CONTINUATION_BYTE,
ASCII_BYTE INVALID_BYTE CONTINUATION_BYTE CONTINUATION_BYTE CONTINUATION_BYTE,
ASCII_BYTE LEADING_TWO_BYTE,
ASCII_BYTE CONTINUATION_BYTE,
ASCII_BYTE CONTINUATION_BYTE CONTINUATION_BYTE,
ASCII_BYTE LEADING_THREE_BYTE CONTINUATION_BYTE,
ASCII_BYTE CONTINUATION_BYTE CONTINUATION_BYTE CONTINUATION_BYTE,
ASCII_BYTE LEADING_FOUR_BYTE CONTINUATION_BYTE,
ASCII_BYTE CONTINUATION_BYTE CONTINUATION_BYTE CONTINUATION_BYTE CONTINUATION_BYTE,
// LEADING_FOUR_BYTE LEADING_TWO_BYTE CONTINUATION_BYTE,
};
for (const char* testcase : badTestcases) {
REPORTER_ASSERT(r, !valid_utf8(testcase, strlen(testcase)));
}
}