// Copyright 2012 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/ast/ast.h"
#include <cmath> // For isfinite.
#include "src/ast/compile-time-value.h"
#include "src/ast/prettyprinter.h"
#include "src/ast/scopes.h"
#include "src/base/hashmap.h"
#include "src/builtins/builtins.h"
#include "src/code-stubs.h"
#include "src/contexts.h"
#include "src/conversions.h"
#include "src/elements.h"
#include "src/property-details.h"
#include "src/property.h"
#include "src/string-stream.h"
#include "src/type-info.h"
namespace v8 {
namespace internal {
// ----------------------------------------------------------------------------
// Implementation of other node functionality.
#ifdef DEBUG
void AstNode::Print(Isolate* isolate) {
AstPrinter::PrintOut(isolate, this);
}
#endif // DEBUG
#define RETURN_NODE(Node) \
case k##Node: \
return static_cast<Node*>(this);
IterationStatement* AstNode::AsIterationStatement() {
switch (node_type()) {
ITERATION_NODE_LIST(RETURN_NODE);
default:
return nullptr;
}
}
BreakableStatement* AstNode::AsBreakableStatement() {
switch (node_type()) {
BREAKABLE_NODE_LIST(RETURN_NODE);
ITERATION_NODE_LIST(RETURN_NODE);
default:
return nullptr;
}
}
MaterializedLiteral* AstNode::AsMaterializedLiteral() {
switch (node_type()) {
LITERAL_NODE_LIST(RETURN_NODE);
default:
return nullptr;
}
}
#undef RETURN_NODE
bool Expression::IsSmiLiteral() const {
return IsLiteral() && AsLiteral()->raw_value()->IsSmi();
}
bool Expression::IsStringLiteral() const {
return IsLiteral() && AsLiteral()->raw_value()->IsString();
}
bool Expression::IsPropertyName() const {
return IsLiteral() && AsLiteral()->IsPropertyName();
}
bool Expression::IsNullLiteral() const {
if (!IsLiteral()) return false;
return AsLiteral()->raw_value()->IsNull();
}
bool Expression::IsUndefinedLiteral() const {
if (IsLiteral() && AsLiteral()->raw_value()->IsUndefined()) return true;
const VariableProxy* var_proxy = AsVariableProxy();
if (var_proxy == nullptr) return false;
Variable* var = var_proxy->var();
// The global identifier "undefined" is immutable. Everything
// else could be reassigned.
return var != NULL && var->IsUnallocated() &&
var_proxy->raw_name()->IsOneByteEqualTo("undefined");
}
bool Expression::ToBooleanIsTrue() const {
return IsLiteral() && AsLiteral()->ToBooleanIsTrue();
}
bool Expression::ToBooleanIsFalse() const {
return IsLiteral() && AsLiteral()->ToBooleanIsFalse();
}
bool Expression::IsValidReferenceExpression() const {
// We don't want expressions wrapped inside RewritableExpression to be
// considered as valid reference expressions, as they will be rewritten
// to something (most probably involving a do expression).
if (IsRewritableExpression()) return false;
return IsProperty() ||
(IsVariableProxy() && AsVariableProxy()->IsValidReferenceExpression());
}
bool Expression::IsValidReferenceExpressionOrThis() const {
return IsValidReferenceExpression() ||
(IsVariableProxy() && AsVariableProxy()->is_this());
}
bool Expression::IsAnonymousFunctionDefinition() const {
return (IsFunctionLiteral() &&
AsFunctionLiteral()->IsAnonymousFunctionDefinition()) ||
(IsDoExpression() &&
AsDoExpression()->IsAnonymousFunctionDefinition());
}
void Expression::MarkTail() {
if (IsConditional()) {
AsConditional()->MarkTail();
} else if (IsCall()) {
AsCall()->MarkTail();
} else if (IsBinaryOperation()) {
AsBinaryOperation()->MarkTail();
}
}
bool DoExpression::IsAnonymousFunctionDefinition() const {
// This is specifically to allow DoExpressions to represent ClassLiterals.
return represented_function_ != nullptr &&
represented_function_->raw_name()->length() == 0;
}
bool Statement::IsJump() const {
switch (node_type()) {
#define JUMP_NODE_LIST(V) \
V(Block) \
V(ExpressionStatement) \
V(ContinueStatement) \
V(BreakStatement) \
V(ReturnStatement) \
V(IfStatement)
#define GENERATE_CASE(Node) \
case k##Node: \
return static_cast<const Node*>(this)->IsJump();
JUMP_NODE_LIST(GENERATE_CASE)
#undef GENERATE_CASE
#undef JUMP_NODE_LIST
default:
return false;
}
}
VariableProxy::VariableProxy(Variable* var, int start_position)
: Expression(start_position, kVariableProxy),
raw_name_(var->raw_name()),
next_unresolved_(nullptr) {
bit_field_ |= IsThisField::encode(var->is_this()) |
IsAssignedField::encode(false) |
IsResolvedField::encode(false) |
HoleCheckModeField::encode(HoleCheckMode::kElided);
BindTo(var);
}
VariableProxy::VariableProxy(const AstRawString* name,
VariableKind variable_kind, int start_position)
: Expression(start_position, kVariableProxy),
raw_name_(name),
next_unresolved_(nullptr) {
bit_field_ |= IsThisField::encode(variable_kind == THIS_VARIABLE) |
IsAssignedField::encode(false) |
IsResolvedField::encode(false) |
HoleCheckModeField::encode(HoleCheckMode::kElided);
}
VariableProxy::VariableProxy(const VariableProxy* copy_from)
: Expression(copy_from->position(), kVariableProxy),
next_unresolved_(nullptr) {
bit_field_ = copy_from->bit_field_;
DCHECK(!copy_from->is_resolved());
raw_name_ = copy_from->raw_name_;
}
void VariableProxy::BindTo(Variable* var) {
DCHECK((is_this() && var->is_this()) || raw_name() == var->raw_name());
set_var(var);
set_is_resolved();
var->set_is_used();
}
void VariableProxy::AssignFeedbackVectorSlots(Isolate* isolate,
FeedbackVectorSpec* spec,
FeedbackVectorSlotCache* cache) {
if (UsesVariableFeedbackSlot()) {
// VariableProxies that point to the same Variable within a function can
// make their loads from the same IC slot.
if (var()->IsUnallocated() || var()->mode() == DYNAMIC_GLOBAL) {
ZoneHashMap::Entry* entry = cache->Get(var());
if (entry != NULL) {
variable_feedback_slot_ = FeedbackVectorSlot(
static_cast<int>(reinterpret_cast<intptr_t>(entry->value)));
return;
}
variable_feedback_slot_ = spec->AddLoadGlobalICSlot(var()->name());
cache->Put(var(), variable_feedback_slot_);
} else {
variable_feedback_slot_ = spec->AddLoadICSlot();
}
}
}
static void AssignVectorSlots(Expression* expr, FeedbackVectorSpec* spec,
FeedbackVectorSlot* out_slot) {
Property* property = expr->AsProperty();
LhsKind assign_type = Property::GetAssignType(property);
if ((assign_type == VARIABLE &&
expr->AsVariableProxy()->var()->IsUnallocated()) ||
assign_type == NAMED_PROPERTY || assign_type == KEYED_PROPERTY) {
// TODO(ishell): consider using ICSlotCache for variables here.
FeedbackVectorSlotKind kind = assign_type == KEYED_PROPERTY
? FeedbackVectorSlotKind::KEYED_STORE_IC
: FeedbackVectorSlotKind::STORE_IC;
*out_slot = spec->AddSlot(kind);
}
}
void ForInStatement::AssignFeedbackVectorSlots(Isolate* isolate,
FeedbackVectorSpec* spec,
FeedbackVectorSlotCache* cache) {
AssignVectorSlots(each(), spec, &each_slot_);
for_in_feedback_slot_ = spec->AddGeneralSlot();
}
Assignment::Assignment(Token::Value op, Expression* target, Expression* value,
int pos)
: Expression(pos, kAssignment),
target_(target),
value_(value),
binary_operation_(NULL) {
bit_field_ |= IsUninitializedField::encode(false) |
KeyTypeField::encode(ELEMENT) |
StoreModeField::encode(STANDARD_STORE) | TokenField::encode(op);
}
void Assignment::AssignFeedbackVectorSlots(Isolate* isolate,
FeedbackVectorSpec* spec,
FeedbackVectorSlotCache* cache) {
AssignVectorSlots(target(), spec, &slot_);
}
void CountOperation::AssignFeedbackVectorSlots(Isolate* isolate,
FeedbackVectorSpec* spec,
FeedbackVectorSlotCache* cache) {
AssignVectorSlots(expression(), spec, &slot_);
// Assign a slot to collect feedback about binary operations. Used only in
// ignition. Fullcodegen uses AstId to record type feedback.
binary_operation_slot_ = spec->AddInterpreterBinaryOpICSlot();
}
Token::Value Assignment::binary_op() const {
switch (op()) {
case Token::ASSIGN_BIT_OR: return Token::BIT_OR;
case Token::ASSIGN_BIT_XOR: return Token::BIT_XOR;
case Token::ASSIGN_BIT_AND: return Token::BIT_AND;
case Token::ASSIGN_SHL: return Token::SHL;
case Token::ASSIGN_SAR: return Token::SAR;
case Token::ASSIGN_SHR: return Token::SHR;
case Token::ASSIGN_ADD: return Token::ADD;
case Token::ASSIGN_SUB: return Token::SUB;
case Token::ASSIGN_MUL: return Token::MUL;
case Token::ASSIGN_DIV: return Token::DIV;
case Token::ASSIGN_MOD: return Token::MOD;
default: UNREACHABLE();
}
return Token::ILLEGAL;
}
bool FunctionLiteral::ShouldEagerCompile() const {
return scope()->ShouldEagerCompile();
}
void FunctionLiteral::SetShouldEagerCompile() {
scope()->set_should_eager_compile();
}
bool FunctionLiteral::AllowsLazyCompilation() {
return scope()->AllowsLazyCompilation();
}
int FunctionLiteral::start_position() const {
return scope()->start_position();
}
int FunctionLiteral::end_position() const {
return scope()->end_position();
}
LanguageMode FunctionLiteral::language_mode() const {
return scope()->language_mode();
}
FunctionKind FunctionLiteral::kind() const { return scope()->function_kind(); }
bool FunctionLiteral::NeedsHomeObject(Expression* expr) {
if (expr == nullptr || !expr->IsFunctionLiteral()) return false;
DCHECK_NOT_NULL(expr->AsFunctionLiteral()->scope());
return expr->AsFunctionLiteral()->scope()->NeedsHomeObject();
}
ObjectLiteralProperty::ObjectLiteralProperty(Expression* key, Expression* value,
Kind kind, bool is_computed_name)
: LiteralProperty(key, value, is_computed_name),
kind_(kind),
emit_store_(true) {}
ObjectLiteralProperty::ObjectLiteralProperty(AstValueFactory* ast_value_factory,
Expression* key, Expression* value,
bool is_computed_name)
: LiteralProperty(key, value, is_computed_name), emit_store_(true) {
if (!is_computed_name &&
key->AsLiteral()->raw_value()->EqualsString(
ast_value_factory->proto_string())) {
kind_ = PROTOTYPE;
} else if (value_->AsMaterializedLiteral() != NULL) {
kind_ = MATERIALIZED_LITERAL;
} else if (value_->IsLiteral()) {
kind_ = CONSTANT;
} else {
kind_ = COMPUTED;
}
}
bool LiteralProperty::NeedsSetFunctionName() const {
return is_computed_name_ &&
(value_->IsAnonymousFunctionDefinition() ||
(value_->IsFunctionLiteral() &&
IsConciseMethod(value_->AsFunctionLiteral()->kind())));
}
ClassLiteralProperty::ClassLiteralProperty(Expression* key, Expression* value,
Kind kind, bool is_static,
bool is_computed_name)
: LiteralProperty(key, value, is_computed_name),
kind_(kind),
is_static_(is_static) {}
void ClassLiteral::AssignFeedbackVectorSlots(Isolate* isolate,
FeedbackVectorSpec* spec,
FeedbackVectorSlotCache* cache) {
// This logic that computes the number of slots needed for vector store
// ICs must mirror FullCodeGenerator::VisitClassLiteral.
prototype_slot_ = spec->AddLoadICSlot();
if (NeedsProxySlot()) {
proxy_slot_ = spec->AddStoreICSlot();
}
for (int i = 0; i < properties()->length(); i++) {
ClassLiteral::Property* property = properties()->at(i);
Expression* value = property->value();
if (FunctionLiteral::NeedsHomeObject(value)) {
property->SetSlot(spec->AddStoreICSlot());
}
}
}
bool ObjectLiteral::Property::IsCompileTimeValue() const {
return kind_ == CONSTANT ||
(kind_ == MATERIALIZED_LITERAL &&
CompileTimeValue::IsCompileTimeValue(value_));
}
void ObjectLiteral::Property::set_emit_store(bool emit_store) {
emit_store_ = emit_store;
}
bool ObjectLiteral::Property::emit_store() const { return emit_store_; }
void ObjectLiteral::AssignFeedbackVectorSlots(Isolate* isolate,
FeedbackVectorSpec* spec,
FeedbackVectorSlotCache* cache) {
// This logic that computes the number of slots needed for vector store
// ics must mirror FullCodeGenerator::VisitObjectLiteral.
int property_index = 0;
for (; property_index < properties()->length(); property_index++) {
ObjectLiteral::Property* property = properties()->at(property_index);
if (property->is_computed_name()) break;
if (property->IsCompileTimeValue()) continue;
Literal* key = property->key()->AsLiteral();
Expression* value = property->value();
switch (property->kind()) {
case ObjectLiteral::Property::CONSTANT:
UNREACHABLE();
case ObjectLiteral::Property::MATERIALIZED_LITERAL:
// Fall through.
case ObjectLiteral::Property::COMPUTED:
// It is safe to use [[Put]] here because the boilerplate already
// contains computed properties with an uninitialized value.
if (key->value()->IsInternalizedString()) {
if (property->emit_store()) {
property->SetSlot(spec->AddStoreICSlot());
if (FunctionLiteral::NeedsHomeObject(value)) {
property->SetSlot(spec->AddStoreICSlot(), 1);
}
}
break;
}
if (property->emit_store() && FunctionLiteral::NeedsHomeObject(value)) {
property->SetSlot(spec->AddStoreICSlot());
}
break;
case ObjectLiteral::Property::PROTOTYPE:
break;
case ObjectLiteral::Property::GETTER:
if (property->emit_store() && FunctionLiteral::NeedsHomeObject(value)) {
property->SetSlot(spec->AddStoreICSlot());
}
break;
case ObjectLiteral::Property::SETTER:
if (property->emit_store() && FunctionLiteral::NeedsHomeObject(value)) {
property->SetSlot(spec->AddStoreICSlot());
}
break;
}
}
for (; property_index < properties()->length(); property_index++) {
ObjectLiteral::Property* property = properties()->at(property_index);
Expression* value = property->value();
if (property->kind() != ObjectLiteral::Property::PROTOTYPE) {
if (FunctionLiteral::NeedsHomeObject(value)) {
property->SetSlot(spec->AddStoreICSlot());
}
}
}
}
void ObjectLiteral::CalculateEmitStore(Zone* zone) {
const auto GETTER = ObjectLiteral::Property::GETTER;
const auto SETTER = ObjectLiteral::Property::SETTER;
ZoneAllocationPolicy allocator(zone);
CustomMatcherZoneHashMap table(
Literal::Match, ZoneHashMap::kDefaultHashMapCapacity, allocator);
for (int i = properties()->length() - 1; i >= 0; i--) {
ObjectLiteral::Property* property = properties()->at(i);
if (property->is_computed_name()) continue;
if (property->kind() == ObjectLiteral::Property::PROTOTYPE) continue;
Literal* literal = property->key()->AsLiteral();
DCHECK(!literal->IsNullLiteral());
// If there is an existing entry do not emit a store unless the previous
// entry was also an accessor.
uint32_t hash = literal->Hash();
ZoneHashMap::Entry* entry = table.LookupOrInsert(literal, hash, allocator);
if (entry->value != NULL) {
auto previous_kind =
static_cast<ObjectLiteral::Property*>(entry->value)->kind();
if (!((property->kind() == GETTER && previous_kind == SETTER) ||
(property->kind() == SETTER && previous_kind == GETTER))) {
property->set_emit_store(false);
}
}
entry->value = property;
}
}
bool ObjectLiteral::IsBoilerplateProperty(ObjectLiteral::Property* property) {
return property != NULL &&
property->kind() != ObjectLiteral::Property::PROTOTYPE;
}
void ObjectLiteral::BuildConstantProperties(Isolate* isolate) {
if (!constant_properties_.is_null()) return;
// Allocate a fixed array to hold all the constant properties.
Handle<FixedArray> constant_properties = isolate->factory()->NewFixedArray(
boilerplate_properties_ * 2, TENURED);
int position = 0;
// Accumulate the value in local variables and store it at the end.
bool is_simple = true;
int depth_acc = 1;
uint32_t max_element_index = 0;
uint32_t elements = 0;
for (int i = 0; i < properties()->length(); i++) {
ObjectLiteral::Property* property = properties()->at(i);
if (!IsBoilerplateProperty(property)) {
is_simple = false;
continue;
}
if (static_cast<uint32_t>(position) == boilerplate_properties_ * 2) {
DCHECK(property->is_computed_name());
is_simple = false;
break;
}
DCHECK(!property->is_computed_name());
MaterializedLiteral* m_literal = property->value()->AsMaterializedLiteral();
if (m_literal != NULL) {
m_literal->BuildConstants(isolate);
if (m_literal->depth() >= depth_acc) depth_acc = m_literal->depth() + 1;
}
// Add CONSTANT and COMPUTED properties to boilerplate. Use undefined
// value for COMPUTED properties, the real value is filled in at
// runtime. The enumeration order is maintained.
Handle<Object> key = property->key()->AsLiteral()->value();
Handle<Object> value = GetBoilerplateValue(property->value(), isolate);
// Ensure objects that may, at any point in time, contain fields with double
// representation are always treated as nested objects. This is true for
// computed fields (value is undefined), and smi and double literals
// (value->IsNumber()).
// TODO(verwaest): Remove once we can store them inline.
if (FLAG_track_double_fields &&
(value->IsNumber() || value->IsUninitialized(isolate))) {
bit_field_ = MayStoreDoublesField::update(bit_field_, true);
}
is_simple = is_simple && !value->IsUninitialized(isolate);
// Keep track of the number of elements in the object literal and
// the largest element index. If the largest element index is
// much larger than the number of elements, creating an object
// literal with fast elements will be a waste of space.
uint32_t element_index = 0;
if (key->IsString() && String::cast(*key)->AsArrayIndex(&element_index)) {
max_element_index = Max(element_index, max_element_index);
elements++;
key = isolate->factory()->NewNumberFromUint(element_index);
} else if (key->ToArrayIndex(&element_index)) {
max_element_index = Max(element_index, max_element_index);
elements++;
} else if (key->IsNumber()) {
key = isolate->factory()->NumberToString(key);
}
// Add name, value pair to the fixed array.
constant_properties->set(position++, *key);
constant_properties->set(position++, *value);
}
constant_properties_ = constant_properties;
bit_field_ = FastElementsField::update(
bit_field_,
(max_element_index <= 32) || ((2 * elements) >= max_element_index));
bit_field_ = HasElementsField::update(bit_field_, elements > 0);
set_is_simple(is_simple);
set_depth(depth_acc);
}
void ArrayLiteral::BuildConstantElements(Isolate* isolate) {
DCHECK_LT(first_spread_index_, 0);
if (!constant_elements_.is_null()) return;
int constants_length = values()->length();
ElementsKind kind = FIRST_FAST_ELEMENTS_KIND;
Handle<FixedArray> fixed_array =
isolate->factory()->NewFixedArrayWithHoles(constants_length);
// Fill in the literals.
bool is_simple = true;
int depth_acc = 1;
bool is_holey = false;
int array_index = 0;
for (; array_index < constants_length; array_index++) {
Expression* element = values()->at(array_index);
DCHECK(!element->IsSpread());
MaterializedLiteral* m_literal = element->AsMaterializedLiteral();
if (m_literal != NULL) {
m_literal->BuildConstants(isolate);
if (m_literal->depth() + 1 > depth_acc) {
depth_acc = m_literal->depth() + 1;
}
}
// New handle scope here, needs to be after BuildContants().
HandleScope scope(isolate);
Handle<Object> boilerplate_value = GetBoilerplateValue(element, isolate);
if (boilerplate_value->IsTheHole(isolate)) {
is_holey = true;
continue;
}
if (boilerplate_value->IsUninitialized(isolate)) {
boilerplate_value = handle(Smi::kZero, isolate);
is_simple = false;
}
kind = GetMoreGeneralElementsKind(kind,
boilerplate_value->OptimalElementsKind());
fixed_array->set(array_index, *boilerplate_value);
}
if (is_holey) kind = GetHoleyElementsKind(kind);
// Simple and shallow arrays can be lazily copied, we transform the
// elements array to a copy-on-write array.
if (is_simple && depth_acc == 1 && array_index > 0 &&
IsFastSmiOrObjectElementsKind(kind)) {
fixed_array->set_map(isolate->heap()->fixed_cow_array_map());
}
Handle<FixedArrayBase> elements = fixed_array;
if (IsFastDoubleElementsKind(kind)) {
ElementsAccessor* accessor = ElementsAccessor::ForKind(kind);
elements = isolate->factory()->NewFixedDoubleArray(constants_length);
// We are copying from non-fast-double to fast-double.
ElementsKind from_kind = TERMINAL_FAST_ELEMENTS_KIND;
accessor->CopyElements(fixed_array, from_kind, elements, constants_length);
}
// Remember both the literal's constant values as well as the ElementsKind
// in a 2-element FixedArray.
Handle<FixedArray> literals = isolate->factory()->NewFixedArray(2, TENURED);
literals->set(0, Smi::FromInt(kind));
literals->set(1, *elements);
constant_elements_ = literals;
set_is_simple(is_simple);
set_depth(depth_acc);
}
void ArrayLiteral::AssignFeedbackVectorSlots(Isolate* isolate,
FeedbackVectorSpec* spec,
FeedbackVectorSlotCache* cache) {
// This logic that computes the number of slots needed for vector store
// ics must mirror FullCodeGenerator::VisitArrayLiteral.
for (int array_index = 0; array_index < values()->length(); array_index++) {
Expression* subexpr = values()->at(array_index);
DCHECK(!subexpr->IsSpread());
if (CompileTimeValue::IsCompileTimeValue(subexpr)) continue;
// We'll reuse the same literal slot for all of the non-constant
// subexpressions that use a keyed store IC.
literal_slot_ = spec->AddKeyedStoreICSlot();
return;
}
}
Handle<Object> MaterializedLiteral::GetBoilerplateValue(Expression* expression,
Isolate* isolate) {
if (expression->IsLiteral()) {
return expression->AsLiteral()->value();
}
if (CompileTimeValue::IsCompileTimeValue(expression)) {
return CompileTimeValue::GetValue(isolate, expression);
}
return isolate->factory()->uninitialized_value();
}
void MaterializedLiteral::BuildConstants(Isolate* isolate) {
if (IsArrayLiteral()) {
return AsArrayLiteral()->BuildConstantElements(isolate);
}
if (IsObjectLiteral()) {
return AsObjectLiteral()->BuildConstantProperties(isolate);
}
DCHECK(IsRegExpLiteral());
DCHECK(depth() >= 1); // Depth should be initialized.
}
void UnaryOperation::RecordToBooleanTypeFeedback(TypeFeedbackOracle* oracle) {
// TODO(olivf) If this Operation is used in a test context, then the
// expression has a ToBoolean stub and we want to collect the type
// information. However the GraphBuilder expects it to be on the instruction
// corresponding to the TestContext, therefore we have to store it here and
// not on the operand.
set_to_boolean_types(oracle->ToBooleanTypes(expression()->test_id()));
}
void BinaryOperation::RecordToBooleanTypeFeedback(TypeFeedbackOracle* oracle) {
// TODO(olivf) If this Operation is used in a test context, then the right
// hand side has a ToBoolean stub and we want to collect the type information.
// However the GraphBuilder expects it to be on the instruction corresponding
// to the TestContext, therefore we have to store it here and not on the
// right hand operand.
set_to_boolean_types(oracle->ToBooleanTypes(right()->test_id()));
}
void BinaryOperation::AssignFeedbackVectorSlots(
Isolate* isolate, FeedbackVectorSpec* spec,
FeedbackVectorSlotCache* cache) {
// Feedback vector slot is only used by interpreter for binary operations.
// Full-codegen uses AstId to record type feedback.
switch (op()) {
// Comma, logical_or and logical_and do not collect type feedback.
case Token::COMMA:
case Token::AND:
case Token::OR:
return;
default:
type_feedback_slot_ = spec->AddInterpreterBinaryOpICSlot();
return;
}
}
static bool IsTypeof(Expression* expr) {
UnaryOperation* maybe_unary = expr->AsUnaryOperation();
return maybe_unary != NULL && maybe_unary->op() == Token::TYPEOF;
}
void CompareOperation::AssignFeedbackVectorSlots(
Isolate* isolate, FeedbackVectorSpec* spec,
FeedbackVectorSlotCache* cache_) {
// Feedback vector slot is only used by interpreter for binary operations.
// Full-codegen uses AstId to record type feedback.
switch (op()) {
// instanceof and in do not collect type feedback.
case Token::INSTANCEOF:
case Token::IN:
return;
default:
type_feedback_slot_ = spec->AddInterpreterCompareICSlot();
}
}
// Check for the pattern: typeof <expression> equals <string literal>.
static bool MatchLiteralCompareTypeof(Expression* left,
Token::Value op,
Expression* right,
Expression** expr,
Handle<String>* check) {
if (IsTypeof(left) && right->IsStringLiteral() && Token::IsEqualityOp(op)) {
*expr = left->AsUnaryOperation()->expression();
*check = Handle<String>::cast(right->AsLiteral()->value());
return true;
}
return false;
}
bool CompareOperation::IsLiteralCompareTypeof(Expression** expr,
Handle<String>* check) {
return MatchLiteralCompareTypeof(left_, op(), right_, expr, check) ||
MatchLiteralCompareTypeof(right_, op(), left_, expr, check);
}
static bool IsVoidOfLiteral(Expression* expr) {
UnaryOperation* maybe_unary = expr->AsUnaryOperation();
return maybe_unary != NULL &&
maybe_unary->op() == Token::VOID &&
maybe_unary->expression()->IsLiteral();
}
// Check for the pattern: void <literal> equals <expression> or
// undefined equals <expression>
static bool MatchLiteralCompareUndefined(Expression* left,
Token::Value op,
Expression* right,
Expression** expr) {
if (IsVoidOfLiteral(left) && Token::IsEqualityOp(op)) {
*expr = right;
return true;
}
if (left->IsUndefinedLiteral() && Token::IsEqualityOp(op)) {
*expr = right;
return true;
}
return false;
}
bool CompareOperation::IsLiteralCompareUndefined(Expression** expr) {
return MatchLiteralCompareUndefined(left_, op(), right_, expr) ||
MatchLiteralCompareUndefined(right_, op(), left_, expr);
}
// Check for the pattern: null equals <expression>
static bool MatchLiteralCompareNull(Expression* left,
Token::Value op,
Expression* right,
Expression** expr) {
if (left->IsNullLiteral() && Token::IsEqualityOp(op)) {
*expr = right;
return true;
}
return false;
}
bool CompareOperation::IsLiteralCompareNull(Expression** expr) {
return MatchLiteralCompareNull(left_, op(), right_, expr) ||
MatchLiteralCompareNull(right_, op(), left_, expr);
}
// ----------------------------------------------------------------------------
// Recording of type feedback
// TODO(rossberg): all RecordTypeFeedback functions should disappear
// once we use the common type field in the AST consistently.
void Expression::RecordToBooleanTypeFeedback(TypeFeedbackOracle* oracle) {
if (IsUnaryOperation()) {
AsUnaryOperation()->RecordToBooleanTypeFeedback(oracle);
} else if (IsBinaryOperation()) {
AsBinaryOperation()->RecordToBooleanTypeFeedback(oracle);
} else {
set_to_boolean_types(oracle->ToBooleanTypes(test_id()));
}
}
SmallMapList* Expression::GetReceiverTypes() {
switch (node_type()) {
#define NODE_LIST(V) \
PROPERTY_NODE_LIST(V) \
V(Call)
#define GENERATE_CASE(Node) \
case k##Node: \
return static_cast<Node*>(this)->GetReceiverTypes();
NODE_LIST(GENERATE_CASE)
#undef NODE_LIST
#undef GENERATE_CASE
default:
UNREACHABLE();
return nullptr;
}
}
KeyedAccessStoreMode Expression::GetStoreMode() const {
switch (node_type()) {
#define GENERATE_CASE(Node) \
case k##Node: \
return static_cast<const Node*>(this)->GetStoreMode();
PROPERTY_NODE_LIST(GENERATE_CASE)
#undef GENERATE_CASE
default:
UNREACHABLE();
return STANDARD_STORE;
}
}
IcCheckType Expression::GetKeyType() const {
switch (node_type()) {
#define GENERATE_CASE(Node) \
case k##Node: \
return static_cast<const Node*>(this)->GetKeyType();
PROPERTY_NODE_LIST(GENERATE_CASE)
#undef GENERATE_CASE
default:
UNREACHABLE();
return PROPERTY;
}
}
bool Expression::IsMonomorphic() const {
switch (node_type()) {
#define GENERATE_CASE(Node) \
case k##Node: \
return static_cast<const Node*>(this)->IsMonomorphic();
PROPERTY_NODE_LIST(GENERATE_CASE)
CALL_NODE_LIST(GENERATE_CASE)
#undef GENERATE_CASE
default:
UNREACHABLE();
return false;
}
}
void Call::AssignFeedbackVectorSlots(Isolate* isolate, FeedbackVectorSpec* spec,
FeedbackVectorSlotCache* cache) {
ic_slot_ = spec->AddCallICSlot();
}
Call::CallType Call::GetCallType() const {
VariableProxy* proxy = expression()->AsVariableProxy();
if (proxy != NULL) {
if (proxy->var()->IsUnallocated()) {
return GLOBAL_CALL;
} else if (proxy->var()->IsLookupSlot()) {
// Calls going through 'with' always use DYNAMIC rather than DYNAMIC_LOCAL
// or DYNAMIC_GLOBAL.
return proxy->var()->mode() == DYNAMIC ? WITH_CALL : OTHER_CALL;
}
}
if (expression()->IsSuperCallReference()) return SUPER_CALL;
Property* property = expression()->AsProperty();
if (property != nullptr) {
bool is_super = property->IsSuperAccess();
if (property->key()->IsPropertyName()) {
return is_super ? NAMED_SUPER_PROPERTY_CALL : NAMED_PROPERTY_CALL;
} else {
return is_super ? KEYED_SUPER_PROPERTY_CALL : KEYED_PROPERTY_CALL;
}
}
return OTHER_CALL;
}
CaseClause::CaseClause(Expression* label, ZoneList<Statement*>* statements,
int pos)
: Expression(pos, kCaseClause),
label_(label),
statements_(statements),
compare_type_(AstType::None()) {}
void CaseClause::AssignFeedbackVectorSlots(Isolate* isolate,
FeedbackVectorSpec* spec,
FeedbackVectorSlotCache* cache) {
type_feedback_slot_ = spec->AddInterpreterCompareICSlot();
}
uint32_t Literal::Hash() {
return raw_value()->IsString()
? raw_value()->AsString()->hash()
: ComputeLongHash(double_to_uint64(raw_value()->AsNumber()));
}
// static
bool Literal::Match(void* literal1, void* literal2) {
const AstValue* x = static_cast<Literal*>(literal1)->raw_value();
const AstValue* y = static_cast<Literal*>(literal2)->raw_value();
return (x->IsString() && y->IsString() && x->AsString() == y->AsString()) ||
(x->IsNumber() && y->IsNumber() && x->AsNumber() == y->AsNumber());
}
} // namespace internal
} // namespace v8