// Copyright 2014 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/base/adapters.h"
#include "src/compiler/instruction-selector-impl.h"
#include "src/compiler/node-matchers.h"
#include "src/compiler/node-properties.h"
#include "src/ppc/frames-ppc.h"
namespace v8 {
namespace internal {
namespace compiler {
enum ImmediateMode {
kInt16Imm,
kInt16Imm_Unsigned,
kInt16Imm_Negate,
kInt16Imm_4ByteAligned,
kShift32Imm,
kShift64Imm,
kNoImmediate
};
// Adds PPC-specific methods for generating operands.
class PPCOperandGenerator final : public OperandGenerator {
public:
explicit PPCOperandGenerator(InstructionSelector* selector)
: OperandGenerator(selector) {}
InstructionOperand UseOperand(Node* node, ImmediateMode mode) {
if (CanBeImmediate(node, mode)) {
return UseImmediate(node);
}
return UseRegister(node);
}
bool CanBeImmediate(Node* node, ImmediateMode mode) {
int64_t value;
if (node->opcode() == IrOpcode::kInt32Constant)
value = OpParameter<int32_t>(node);
else if (node->opcode() == IrOpcode::kInt64Constant)
value = OpParameter<int64_t>(node);
else
return false;
return CanBeImmediate(value, mode);
}
bool CanBeImmediate(int64_t value, ImmediateMode mode) {
switch (mode) {
case kInt16Imm:
return is_int16(value);
case kInt16Imm_Unsigned:
return is_uint16(value);
case kInt16Imm_Negate:
return is_int16(-value);
case kInt16Imm_4ByteAligned:
return is_int16(value) && !(value & 3);
case kShift32Imm:
return 0 <= value && value < 32;
case kShift64Imm:
return 0 <= value && value < 64;
case kNoImmediate:
return false;
}
return false;
}
};
namespace {
void VisitRR(InstructionSelector* selector, InstructionCode opcode,
Node* node) {
PPCOperandGenerator g(selector);
selector->Emit(opcode, g.DefineAsRegister(node),
g.UseRegister(node->InputAt(0)));
}
void VisitRRR(InstructionSelector* selector, InstructionCode opcode,
Node* node) {
PPCOperandGenerator g(selector);
selector->Emit(opcode, g.DefineAsRegister(node),
g.UseRegister(node->InputAt(0)),
g.UseRegister(node->InputAt(1)));
}
void VisitRRO(InstructionSelector* selector, InstructionCode opcode, Node* node,
ImmediateMode operand_mode) {
PPCOperandGenerator g(selector);
selector->Emit(opcode, g.DefineAsRegister(node),
g.UseRegister(node->InputAt(0)),
g.UseOperand(node->InputAt(1), operand_mode));
}
#if V8_TARGET_ARCH_PPC64
void VisitTryTruncateDouble(InstructionSelector* selector,
InstructionCode opcode, Node* node) {
PPCOperandGenerator g(selector);
InstructionOperand inputs[] = {g.UseRegister(node->InputAt(0))};
InstructionOperand outputs[2];
size_t output_count = 0;
outputs[output_count++] = g.DefineAsRegister(node);
Node* success_output = NodeProperties::FindProjection(node, 1);
if (success_output) {
outputs[output_count++] = g.DefineAsRegister(success_output);
}
selector->Emit(opcode, output_count, outputs, 1, inputs);
}
#endif
// Shared routine for multiple binary operations.
template <typename Matcher>
void VisitBinop(InstructionSelector* selector, Node* node,
InstructionCode opcode, ImmediateMode operand_mode,
FlagsContinuation* cont) {
PPCOperandGenerator g(selector);
Matcher m(node);
InstructionOperand inputs[4];
size_t input_count = 0;
InstructionOperand outputs[2];
size_t output_count = 0;
inputs[input_count++] = g.UseRegister(m.left().node());
inputs[input_count++] = g.UseOperand(m.right().node(), operand_mode);
if (cont->IsBranch()) {
inputs[input_count++] = g.Label(cont->true_block());
inputs[input_count++] = g.Label(cont->false_block());
}
if (cont->IsDeoptimize()) {
// If we can deoptimize as a result of the binop, we need to make sure that
// the deopt inputs are not overwritten by the binop result. One way
// to achieve that is to declare the output register as same-as-first.
outputs[output_count++] = g.DefineSameAsFirst(node);
} else {
outputs[output_count++] = g.DefineAsRegister(node);
}
if (cont->IsSet()) {
outputs[output_count++] = g.DefineAsRegister(cont->result());
}
DCHECK_NE(0u, input_count);
DCHECK_NE(0u, output_count);
DCHECK_GE(arraysize(inputs), input_count);
DCHECK_GE(arraysize(outputs), output_count);
opcode = cont->Encode(opcode);
if (cont->IsDeoptimize()) {
selector->EmitDeoptimize(opcode, output_count, outputs, input_count, inputs,
cont->reason(), cont->frame_state());
} else {
selector->Emit(opcode, output_count, outputs, input_count, inputs);
}
}
// Shared routine for multiple binary operations.
template <typename Matcher>
void VisitBinop(InstructionSelector* selector, Node* node,
InstructionCode opcode, ImmediateMode operand_mode) {
FlagsContinuation cont;
VisitBinop<Matcher>(selector, node, opcode, operand_mode, &cont);
}
} // namespace
void InstructionSelector::VisitLoad(Node* node) {
LoadRepresentation load_rep = LoadRepresentationOf(node->op());
PPCOperandGenerator g(this);
Node* base = node->InputAt(0);
Node* offset = node->InputAt(1);
ArchOpcode opcode = kArchNop;
ImmediateMode mode = kInt16Imm;
switch (load_rep.representation()) {
case MachineRepresentation::kFloat32:
opcode = kPPC_LoadFloat32;
break;
case MachineRepresentation::kFloat64:
opcode = kPPC_LoadDouble;
break;
case MachineRepresentation::kBit: // Fall through.
case MachineRepresentation::kWord8:
opcode = load_rep.IsSigned() ? kPPC_LoadWordS8 : kPPC_LoadWordU8;
break;
case MachineRepresentation::kWord16:
opcode = load_rep.IsSigned() ? kPPC_LoadWordS16 : kPPC_LoadWordU16;
break;
#if !V8_TARGET_ARCH_PPC64
case MachineRepresentation::kTaggedSigned: // Fall through.
case MachineRepresentation::kTaggedPointer: // Fall through.
case MachineRepresentation::kTagged: // Fall through.
#endif
case MachineRepresentation::kWord32:
opcode = kPPC_LoadWordU32;
break;
#if V8_TARGET_ARCH_PPC64
case MachineRepresentation::kTaggedSigned: // Fall through.
case MachineRepresentation::kTaggedPointer: // Fall through.
case MachineRepresentation::kTagged: // Fall through.
case MachineRepresentation::kWord64:
opcode = kPPC_LoadWord64;
mode = kInt16Imm_4ByteAligned;
break;
#else
case MachineRepresentation::kWord64: // Fall through.
#endif
case MachineRepresentation::kSimd128: // Fall through.
case MachineRepresentation::kNone:
UNREACHABLE();
return;
}
if (g.CanBeImmediate(offset, mode)) {
Emit(opcode | AddressingModeField::encode(kMode_MRI),
g.DefineAsRegister(node), g.UseRegister(base), g.UseImmediate(offset));
} else if (g.CanBeImmediate(base, mode)) {
Emit(opcode | AddressingModeField::encode(kMode_MRI),
g.DefineAsRegister(node), g.UseRegister(offset), g.UseImmediate(base));
} else {
Emit(opcode | AddressingModeField::encode(kMode_MRR),
g.DefineAsRegister(node), g.UseRegister(base), g.UseRegister(offset));
}
}
void InstructionSelector::VisitProtectedLoad(Node* node) {
// TODO(eholk)
UNIMPLEMENTED();
}
void InstructionSelector::VisitStore(Node* node) {
PPCOperandGenerator g(this);
Node* base = node->InputAt(0);
Node* offset = node->InputAt(1);
Node* value = node->InputAt(2);
StoreRepresentation store_rep = StoreRepresentationOf(node->op());
WriteBarrierKind write_barrier_kind = store_rep.write_barrier_kind();
MachineRepresentation rep = store_rep.representation();
if (write_barrier_kind != kNoWriteBarrier) {
DCHECK(CanBeTaggedPointer(rep));
AddressingMode addressing_mode;
InstructionOperand inputs[3];
size_t input_count = 0;
inputs[input_count++] = g.UseUniqueRegister(base);
// OutOfLineRecordWrite uses the offset in an 'add' instruction as well as
// for the store itself, so we must check compatibility with both.
if (g.CanBeImmediate(offset, kInt16Imm)
#if V8_TARGET_ARCH_PPC64
&& g.CanBeImmediate(offset, kInt16Imm_4ByteAligned)
#endif
) {
inputs[input_count++] = g.UseImmediate(offset);
addressing_mode = kMode_MRI;
} else {
inputs[input_count++] = g.UseUniqueRegister(offset);
addressing_mode = kMode_MRR;
}
inputs[input_count++] = g.UseUniqueRegister(value);
RecordWriteMode record_write_mode = RecordWriteMode::kValueIsAny;
switch (write_barrier_kind) {
case kNoWriteBarrier:
UNREACHABLE();
break;
case kMapWriteBarrier:
record_write_mode = RecordWriteMode::kValueIsMap;
break;
case kPointerWriteBarrier:
record_write_mode = RecordWriteMode::kValueIsPointer;
break;
case kFullWriteBarrier:
record_write_mode = RecordWriteMode::kValueIsAny;
break;
}
InstructionOperand temps[] = {g.TempRegister(), g.TempRegister()};
size_t const temp_count = arraysize(temps);
InstructionCode code = kArchStoreWithWriteBarrier;
code |= AddressingModeField::encode(addressing_mode);
code |= MiscField::encode(static_cast<int>(record_write_mode));
Emit(code, 0, nullptr, input_count, inputs, temp_count, temps);
} else {
ArchOpcode opcode = kArchNop;
ImmediateMode mode = kInt16Imm;
switch (rep) {
case MachineRepresentation::kFloat32:
opcode = kPPC_StoreFloat32;
break;
case MachineRepresentation::kFloat64:
opcode = kPPC_StoreDouble;
break;
case MachineRepresentation::kBit: // Fall through.
case MachineRepresentation::kWord8:
opcode = kPPC_StoreWord8;
break;
case MachineRepresentation::kWord16:
opcode = kPPC_StoreWord16;
break;
#if !V8_TARGET_ARCH_PPC64
case MachineRepresentation::kTaggedSigned: // Fall through.
case MachineRepresentation::kTaggedPointer: // Fall through.
case MachineRepresentation::kTagged: // Fall through.
#endif
case MachineRepresentation::kWord32:
opcode = kPPC_StoreWord32;
break;
#if V8_TARGET_ARCH_PPC64
case MachineRepresentation::kTaggedSigned: // Fall through.
case MachineRepresentation::kTaggedPointer: // Fall through.
case MachineRepresentation::kTagged: // Fall through.
case MachineRepresentation::kWord64:
opcode = kPPC_StoreWord64;
mode = kInt16Imm_4ByteAligned;
break;
#else
case MachineRepresentation::kWord64: // Fall through.
#endif
case MachineRepresentation::kSimd128: // Fall through.
case MachineRepresentation::kNone:
UNREACHABLE();
return;
}
if (g.CanBeImmediate(offset, mode)) {
Emit(opcode | AddressingModeField::encode(kMode_MRI), g.NoOutput(),
g.UseRegister(base), g.UseImmediate(offset), g.UseRegister(value));
} else if (g.CanBeImmediate(base, mode)) {
Emit(opcode | AddressingModeField::encode(kMode_MRI), g.NoOutput(),
g.UseRegister(offset), g.UseImmediate(base), g.UseRegister(value));
} else {
Emit(opcode | AddressingModeField::encode(kMode_MRR), g.NoOutput(),
g.UseRegister(base), g.UseRegister(offset), g.UseRegister(value));
}
}
}
// Architecture supports unaligned access, therefore VisitLoad is used instead
void InstructionSelector::VisitUnalignedLoad(Node* node) { UNREACHABLE(); }
// Architecture supports unaligned access, therefore VisitStore is used instead
void InstructionSelector::VisitUnalignedStore(Node* node) { UNREACHABLE(); }
void InstructionSelector::VisitCheckedLoad(Node* node) {
CheckedLoadRepresentation load_rep = CheckedLoadRepresentationOf(node->op());
PPCOperandGenerator g(this);
Node* const base = node->InputAt(0);
Node* const offset = node->InputAt(1);
Node* const length = node->InputAt(2);
ArchOpcode opcode = kArchNop;
switch (load_rep.representation()) {
case MachineRepresentation::kWord8:
opcode = load_rep.IsSigned() ? kCheckedLoadInt8 : kCheckedLoadUint8;
break;
case MachineRepresentation::kWord16:
opcode = load_rep.IsSigned() ? kCheckedLoadInt16 : kCheckedLoadUint16;
break;
case MachineRepresentation::kWord32:
opcode = kCheckedLoadWord32;
break;
#if V8_TARGET_ARCH_PPC64
case MachineRepresentation::kWord64:
opcode = kCheckedLoadWord64;
break;
#endif
case MachineRepresentation::kFloat32:
opcode = kCheckedLoadFloat32;
break;
case MachineRepresentation::kFloat64:
opcode = kCheckedLoadFloat64;
break;
case MachineRepresentation::kBit: // Fall through.
case MachineRepresentation::kTaggedSigned: // Fall through.
case MachineRepresentation::kTaggedPointer: // Fall through.
case MachineRepresentation::kTagged: // Fall through.
#if !V8_TARGET_ARCH_PPC64
case MachineRepresentation::kWord64: // Fall through.
#endif
case MachineRepresentation::kSimd128: // Fall through.
case MachineRepresentation::kNone:
UNREACHABLE();
return;
}
AddressingMode addressingMode = kMode_MRR;
Emit(opcode | AddressingModeField::encode(addressingMode),
g.DefineAsRegister(node), g.UseRegister(base), g.UseRegister(offset),
g.UseOperand(length, kInt16Imm_Unsigned));
}
void InstructionSelector::VisitCheckedStore(Node* node) {
MachineRepresentation rep = CheckedStoreRepresentationOf(node->op());
PPCOperandGenerator g(this);
Node* const base = node->InputAt(0);
Node* const offset = node->InputAt(1);
Node* const length = node->InputAt(2);
Node* const value = node->InputAt(3);
ArchOpcode opcode = kArchNop;
switch (rep) {
case MachineRepresentation::kWord8:
opcode = kCheckedStoreWord8;
break;
case MachineRepresentation::kWord16:
opcode = kCheckedStoreWord16;
break;
case MachineRepresentation::kWord32:
opcode = kCheckedStoreWord32;
break;
#if V8_TARGET_ARCH_PPC64
case MachineRepresentation::kWord64:
opcode = kCheckedStoreWord64;
break;
#endif
case MachineRepresentation::kFloat32:
opcode = kCheckedStoreFloat32;
break;
case MachineRepresentation::kFloat64:
opcode = kCheckedStoreFloat64;
break;
case MachineRepresentation::kBit: // Fall through.
case MachineRepresentation::kTaggedSigned: // Fall through.
case MachineRepresentation::kTaggedPointer: // Fall through.
case MachineRepresentation::kTagged: // Fall through.
#if !V8_TARGET_ARCH_PPC64
case MachineRepresentation::kWord64: // Fall through.
#endif
case MachineRepresentation::kSimd128: // Fall through.
case MachineRepresentation::kNone:
UNREACHABLE();
return;
}
AddressingMode addressingMode = kMode_MRR;
Emit(opcode | AddressingModeField::encode(addressingMode), g.NoOutput(),
g.UseRegister(base), g.UseRegister(offset),
g.UseOperand(length, kInt16Imm_Unsigned), g.UseRegister(value));
}
template <typename Matcher>
static void VisitLogical(InstructionSelector* selector, Node* node, Matcher* m,
ArchOpcode opcode, bool left_can_cover,
bool right_can_cover, ImmediateMode imm_mode) {
PPCOperandGenerator g(selector);
// Map instruction to equivalent operation with inverted right input.
ArchOpcode inv_opcode = opcode;
switch (opcode) {
case kPPC_And:
inv_opcode = kPPC_AndComplement;
break;
case kPPC_Or:
inv_opcode = kPPC_OrComplement;
break;
default:
UNREACHABLE();
}
// Select Logical(y, ~x) for Logical(Xor(x, -1), y).
if ((m->left().IsWord32Xor() || m->left().IsWord64Xor()) && left_can_cover) {
Matcher mleft(m->left().node());
if (mleft.right().Is(-1)) {
selector->Emit(inv_opcode, g.DefineAsRegister(node),
g.UseRegister(m->right().node()),
g.UseRegister(mleft.left().node()));
return;
}
}
// Select Logical(x, ~y) for Logical(x, Xor(y, -1)).
if ((m->right().IsWord32Xor() || m->right().IsWord64Xor()) &&
right_can_cover) {
Matcher mright(m->right().node());
if (mright.right().Is(-1)) {
// TODO(all): support shifted operand on right.
selector->Emit(inv_opcode, g.DefineAsRegister(node),
g.UseRegister(m->left().node()),
g.UseRegister(mright.left().node()));
return;
}
}
VisitBinop<Matcher>(selector, node, opcode, imm_mode);
}
static inline bool IsContiguousMask32(uint32_t value, int* mb, int* me) {
int mask_width = base::bits::CountPopulation32(value);
int mask_msb = base::bits::CountLeadingZeros32(value);
int mask_lsb = base::bits::CountTrailingZeros32(value);
if ((mask_width == 0) || (mask_msb + mask_width + mask_lsb != 32))
return false;
*mb = mask_lsb + mask_width - 1;
*me = mask_lsb;
return true;
}
#if V8_TARGET_ARCH_PPC64
static inline bool IsContiguousMask64(uint64_t value, int* mb, int* me) {
int mask_width = base::bits::CountPopulation64(value);
int mask_msb = base::bits::CountLeadingZeros64(value);
int mask_lsb = base::bits::CountTrailingZeros64(value);
if ((mask_width == 0) || (mask_msb + mask_width + mask_lsb != 64))
return false;
*mb = mask_lsb + mask_width - 1;
*me = mask_lsb;
return true;
}
#endif
// TODO(mbrandy): Absorb rotate-right into rlwinm?
void InstructionSelector::VisitWord32And(Node* node) {
PPCOperandGenerator g(this);
Int32BinopMatcher m(node);
int mb = 0;
int me = 0;
if (m.right().HasValue() && IsContiguousMask32(m.right().Value(), &mb, &me)) {
int sh = 0;
Node* left = m.left().node();
if ((m.left().IsWord32Shr() || m.left().IsWord32Shl()) &&
CanCover(node, left)) {
// Try to absorb left/right shift into rlwinm
Int32BinopMatcher mleft(m.left().node());
if (mleft.right().IsInRange(0, 31)) {
left = mleft.left().node();
sh = mleft.right().Value();
if (m.left().IsWord32Shr()) {
// Adjust the mask such that it doesn't include any rotated bits.
if (mb > 31 - sh) mb = 31 - sh;
sh = (32 - sh) & 0x1f;
} else {
// Adjust the mask such that it doesn't include any rotated bits.
if (me < sh) me = sh;
}
}
}
if (mb >= me) {
Emit(kPPC_RotLeftAndMask32, g.DefineAsRegister(node), g.UseRegister(left),
g.TempImmediate(sh), g.TempImmediate(mb), g.TempImmediate(me));
return;
}
}
VisitLogical<Int32BinopMatcher>(
this, node, &m, kPPC_And, CanCover(node, m.left().node()),
CanCover(node, m.right().node()), kInt16Imm_Unsigned);
}
#if V8_TARGET_ARCH_PPC64
// TODO(mbrandy): Absorb rotate-right into rldic?
void InstructionSelector::VisitWord64And(Node* node) {
PPCOperandGenerator g(this);
Int64BinopMatcher m(node);
int mb = 0;
int me = 0;
if (m.right().HasValue() && IsContiguousMask64(m.right().Value(), &mb, &me)) {
int sh = 0;
Node* left = m.left().node();
if ((m.left().IsWord64Shr() || m.left().IsWord64Shl()) &&
CanCover(node, left)) {
// Try to absorb left/right shift into rldic
Int64BinopMatcher mleft(m.left().node());
if (mleft.right().IsInRange(0, 63)) {
left = mleft.left().node();
sh = mleft.right().Value();
if (m.left().IsWord64Shr()) {
// Adjust the mask such that it doesn't include any rotated bits.
if (mb > 63 - sh) mb = 63 - sh;
sh = (64 - sh) & 0x3f;
} else {
// Adjust the mask such that it doesn't include any rotated bits.
if (me < sh) me = sh;
}
}
}
if (mb >= me) {
bool match = false;
ArchOpcode opcode;
int mask;
if (me == 0) {
match = true;
opcode = kPPC_RotLeftAndClearLeft64;
mask = mb;
} else if (mb == 63) {
match = true;
opcode = kPPC_RotLeftAndClearRight64;
mask = me;
} else if (sh && me <= sh && m.left().IsWord64Shl()) {
match = true;
opcode = kPPC_RotLeftAndClear64;
mask = mb;
}
if (match) {
Emit(opcode, g.DefineAsRegister(node), g.UseRegister(left),
g.TempImmediate(sh), g.TempImmediate(mask));
return;
}
}
}
VisitLogical<Int64BinopMatcher>(
this, node, &m, kPPC_And, CanCover(node, m.left().node()),
CanCover(node, m.right().node()), kInt16Imm_Unsigned);
}
#endif
void InstructionSelector::VisitWord32Or(Node* node) {
Int32BinopMatcher m(node);
VisitLogical<Int32BinopMatcher>(
this, node, &m, kPPC_Or, CanCover(node, m.left().node()),
CanCover(node, m.right().node()), kInt16Imm_Unsigned);
}
#if V8_TARGET_ARCH_PPC64
void InstructionSelector::VisitWord64Or(Node* node) {
Int64BinopMatcher m(node);
VisitLogical<Int64BinopMatcher>(
this, node, &m, kPPC_Or, CanCover(node, m.left().node()),
CanCover(node, m.right().node()), kInt16Imm_Unsigned);
}
#endif
void InstructionSelector::VisitWord32Xor(Node* node) {
PPCOperandGenerator g(this);
Int32BinopMatcher m(node);
if (m.right().Is(-1)) {
Emit(kPPC_Not, g.DefineAsRegister(node), g.UseRegister(m.left().node()));
} else {
VisitBinop<Int32BinopMatcher>(this, node, kPPC_Xor, kInt16Imm_Unsigned);
}
}
#if V8_TARGET_ARCH_PPC64
void InstructionSelector::VisitWord64Xor(Node* node) {
PPCOperandGenerator g(this);
Int64BinopMatcher m(node);
if (m.right().Is(-1)) {
Emit(kPPC_Not, g.DefineAsRegister(node), g.UseRegister(m.left().node()));
} else {
VisitBinop<Int64BinopMatcher>(this, node, kPPC_Xor, kInt16Imm_Unsigned);
}
}
#endif
void InstructionSelector::VisitWord32Shl(Node* node) {
PPCOperandGenerator g(this);
Int32BinopMatcher m(node);
if (m.left().IsWord32And() && m.right().IsInRange(0, 31)) {
// Try to absorb logical-and into rlwinm
Int32BinopMatcher mleft(m.left().node());
int sh = m.right().Value();
int mb;
int me;
if (mleft.right().HasValue() &&
IsContiguousMask32(mleft.right().Value() << sh, &mb, &me)) {
// Adjust the mask such that it doesn't include any rotated bits.
if (me < sh) me = sh;
if (mb >= me) {
Emit(kPPC_RotLeftAndMask32, g.DefineAsRegister(node),
g.UseRegister(mleft.left().node()), g.TempImmediate(sh),
g.TempImmediate(mb), g.TempImmediate(me));
return;
}
}
}
VisitRRO(this, kPPC_ShiftLeft32, node, kShift32Imm);
}
#if V8_TARGET_ARCH_PPC64
void InstructionSelector::VisitWord64Shl(Node* node) {
PPCOperandGenerator g(this);
Int64BinopMatcher m(node);
// TODO(mbrandy): eliminate left sign extension if right >= 32
if (m.left().IsWord64And() && m.right().IsInRange(0, 63)) {
// Try to absorb logical-and into rldic
Int64BinopMatcher mleft(m.left().node());
int sh = m.right().Value();
int mb;
int me;
if (mleft.right().HasValue() &&
IsContiguousMask64(mleft.right().Value() << sh, &mb, &me)) {
// Adjust the mask such that it doesn't include any rotated bits.
if (me < sh) me = sh;
if (mb >= me) {
bool match = false;
ArchOpcode opcode;
int mask;
if (me == 0) {
match = true;
opcode = kPPC_RotLeftAndClearLeft64;
mask = mb;
} else if (mb == 63) {
match = true;
opcode = kPPC_RotLeftAndClearRight64;
mask = me;
} else if (sh && me <= sh) {
match = true;
opcode = kPPC_RotLeftAndClear64;
mask = mb;
}
if (match) {
Emit(opcode, g.DefineAsRegister(node),
g.UseRegister(mleft.left().node()), g.TempImmediate(sh),
g.TempImmediate(mask));
return;
}
}
}
}
VisitRRO(this, kPPC_ShiftLeft64, node, kShift64Imm);
}
#endif
void InstructionSelector::VisitWord32Shr(Node* node) {
PPCOperandGenerator g(this);
Int32BinopMatcher m(node);
if (m.left().IsWord32And() && m.right().IsInRange(0, 31)) {
// Try to absorb logical-and into rlwinm
Int32BinopMatcher mleft(m.left().node());
int sh = m.right().Value();
int mb;
int me;
if (mleft.right().HasValue() &&
IsContiguousMask32((uint32_t)(mleft.right().Value()) >> sh, &mb, &me)) {
// Adjust the mask such that it doesn't include any rotated bits.
if (mb > 31 - sh) mb = 31 - sh;
sh = (32 - sh) & 0x1f;
if (mb >= me) {
Emit(kPPC_RotLeftAndMask32, g.DefineAsRegister(node),
g.UseRegister(mleft.left().node()), g.TempImmediate(sh),
g.TempImmediate(mb), g.TempImmediate(me));
return;
}
}
}
VisitRRO(this, kPPC_ShiftRight32, node, kShift32Imm);
}
#if V8_TARGET_ARCH_PPC64
void InstructionSelector::VisitWord64Shr(Node* node) {
PPCOperandGenerator g(this);
Int64BinopMatcher m(node);
if (m.left().IsWord64And() && m.right().IsInRange(0, 63)) {
// Try to absorb logical-and into rldic
Int64BinopMatcher mleft(m.left().node());
int sh = m.right().Value();
int mb;
int me;
if (mleft.right().HasValue() &&
IsContiguousMask64((uint64_t)(mleft.right().Value()) >> sh, &mb, &me)) {
// Adjust the mask such that it doesn't include any rotated bits.
if (mb > 63 - sh) mb = 63 - sh;
sh = (64 - sh) & 0x3f;
if (mb >= me) {
bool match = false;
ArchOpcode opcode;
int mask;
if (me == 0) {
match = true;
opcode = kPPC_RotLeftAndClearLeft64;
mask = mb;
} else if (mb == 63) {
match = true;
opcode = kPPC_RotLeftAndClearRight64;
mask = me;
}
if (match) {
Emit(opcode, g.DefineAsRegister(node),
g.UseRegister(mleft.left().node()), g.TempImmediate(sh),
g.TempImmediate(mask));
return;
}
}
}
}
VisitRRO(this, kPPC_ShiftRight64, node, kShift64Imm);
}
#endif
void InstructionSelector::VisitWord32Sar(Node* node) {
PPCOperandGenerator g(this);
Int32BinopMatcher m(node);
// Replace with sign extension for (x << K) >> K where K is 16 or 24.
if (CanCover(node, m.left().node()) && m.left().IsWord32Shl()) {
Int32BinopMatcher mleft(m.left().node());
if (mleft.right().Is(16) && m.right().Is(16)) {
Emit(kPPC_ExtendSignWord16, g.DefineAsRegister(node),
g.UseRegister(mleft.left().node()));
return;
} else if (mleft.right().Is(24) && m.right().Is(24)) {
Emit(kPPC_ExtendSignWord8, g.DefineAsRegister(node),
g.UseRegister(mleft.left().node()));
return;
}
}
VisitRRO(this, kPPC_ShiftRightAlg32, node, kShift32Imm);
}
#if !V8_TARGET_ARCH_PPC64
void VisitPairBinop(InstructionSelector* selector, InstructionCode opcode,
InstructionCode opcode2, Node* node) {
PPCOperandGenerator g(selector);
Node* projection1 = NodeProperties::FindProjection(node, 1);
if (projection1) {
// We use UseUniqueRegister here to avoid register sharing with the output
// registers.
InstructionOperand inputs[] = {
g.UseRegister(node->InputAt(0)), g.UseUniqueRegister(node->InputAt(1)),
g.UseRegister(node->InputAt(2)), g.UseUniqueRegister(node->InputAt(3))};
InstructionOperand outputs[] = {
g.DefineAsRegister(node),
g.DefineAsRegister(NodeProperties::FindProjection(node, 1))};
selector->Emit(opcode, 2, outputs, 4, inputs);
} else {
// The high word of the result is not used, so we emit the standard 32 bit
// instruction.
selector->Emit(opcode2, g.DefineSameAsFirst(node),
g.UseRegister(node->InputAt(0)),
g.UseRegister(node->InputAt(2)));
}
}
void InstructionSelector::VisitInt32PairAdd(Node* node) {
VisitPairBinop(this, kPPC_AddPair, kPPC_Add, node);
}
void InstructionSelector::VisitInt32PairSub(Node* node) {
VisitPairBinop(this, kPPC_SubPair, kPPC_Sub, node);
}
void InstructionSelector::VisitInt32PairMul(Node* node) {
PPCOperandGenerator g(this);
Node* projection1 = NodeProperties::FindProjection(node, 1);
if (projection1) {
InstructionOperand inputs[] = {g.UseUniqueRegister(node->InputAt(0)),
g.UseUniqueRegister(node->InputAt(1)),
g.UseUniqueRegister(node->InputAt(2)),
g.UseUniqueRegister(node->InputAt(3))};
InstructionOperand outputs[] = {
g.DefineAsRegister(node),
g.DefineAsRegister(NodeProperties::FindProjection(node, 1))};
InstructionOperand temps[] = {g.TempRegister(), g.TempRegister()};
Emit(kPPC_MulPair, 2, outputs, 4, inputs, 2, temps);
} else {
// The high word of the result is not used, so we emit the standard 32 bit
// instruction.
Emit(kPPC_Mul32, g.DefineSameAsFirst(node), g.UseRegister(node->InputAt(0)),
g.UseRegister(node->InputAt(2)));
}
}
namespace {
// Shared routine for multiple shift operations.
void VisitPairShift(InstructionSelector* selector, InstructionCode opcode,
Node* node) {
PPCOperandGenerator g(selector);
// We use g.UseUniqueRegister here to guarantee that there is
// no register aliasing of input registers with output registers.
Int32Matcher m(node->InputAt(2));
InstructionOperand shift_operand;
if (m.HasValue()) {
shift_operand = g.UseImmediate(m.node());
} else {
shift_operand = g.UseUniqueRegister(m.node());
}
InstructionOperand inputs[] = {g.UseUniqueRegister(node->InputAt(0)),
g.UseUniqueRegister(node->InputAt(1)),
shift_operand};
Node* projection1 = NodeProperties::FindProjection(node, 1);
InstructionOperand outputs[2];
InstructionOperand temps[1];
int32_t output_count = 0;
int32_t temp_count = 0;
outputs[output_count++] = g.DefineAsRegister(node);
if (projection1) {
outputs[output_count++] = g.DefineAsRegister(projection1);
} else {
temps[temp_count++] = g.TempRegister();
}
selector->Emit(opcode, output_count, outputs, 3, inputs, temp_count, temps);
}
} // namespace
void InstructionSelector::VisitWord32PairShl(Node* node) {
VisitPairShift(this, kPPC_ShiftLeftPair, node);
}
void InstructionSelector::VisitWord32PairShr(Node* node) {
VisitPairShift(this, kPPC_ShiftRightPair, node);
}
void InstructionSelector::VisitWord32PairSar(Node* node) {
VisitPairShift(this, kPPC_ShiftRightAlgPair, node);
}
#endif
#if V8_TARGET_ARCH_PPC64
void InstructionSelector::VisitWord64Sar(Node* node) {
PPCOperandGenerator g(this);
Int64BinopMatcher m(node);
if (CanCover(m.node(), m.left().node()) && m.left().IsLoad() &&
m.right().Is(32)) {
// Just load and sign-extend the interesting 4 bytes instead. This happens,
// for example, when we're loading and untagging SMIs.
BaseWithIndexAndDisplacement64Matcher mleft(m.left().node(),
AddressOption::kAllowAll);
if (mleft.matches() && mleft.index() == nullptr) {
int64_t offset = 0;
Node* displacement = mleft.displacement();
if (displacement != nullptr) {
Int64Matcher mdisplacement(displacement);
DCHECK(mdisplacement.HasValue());
offset = mdisplacement.Value();
}
offset = SmiWordOffset(offset);
if (g.CanBeImmediate(offset, kInt16Imm_4ByteAligned)) {
Emit(kPPC_LoadWordS32 | AddressingModeField::encode(kMode_MRI),
g.DefineAsRegister(node), g.UseRegister(mleft.base()),
g.TempImmediate(offset));
return;
}
}
}
VisitRRO(this, kPPC_ShiftRightAlg64, node, kShift64Imm);
}
#endif
// TODO(mbrandy): Absorb logical-and into rlwinm?
void InstructionSelector::VisitWord32Ror(Node* node) {
VisitRRO(this, kPPC_RotRight32, node, kShift32Imm);
}
#if V8_TARGET_ARCH_PPC64
// TODO(mbrandy): Absorb logical-and into rldic?
void InstructionSelector::VisitWord64Ror(Node* node) {
VisitRRO(this, kPPC_RotRight64, node, kShift64Imm);
}
#endif
void InstructionSelector::VisitWord32Clz(Node* node) {
PPCOperandGenerator g(this);
Emit(kPPC_Cntlz32, g.DefineAsRegister(node), g.UseRegister(node->InputAt(0)));
}
#if V8_TARGET_ARCH_PPC64
void InstructionSelector::VisitWord64Clz(Node* node) {
PPCOperandGenerator g(this);
Emit(kPPC_Cntlz64, g.DefineAsRegister(node), g.UseRegister(node->InputAt(0)));
}
#endif
void InstructionSelector::VisitWord32Popcnt(Node* node) {
PPCOperandGenerator g(this);
Emit(kPPC_Popcnt32, g.DefineAsRegister(node),
g.UseRegister(node->InputAt(0)));
}
#if V8_TARGET_ARCH_PPC64
void InstructionSelector::VisitWord64Popcnt(Node* node) {
PPCOperandGenerator g(this);
Emit(kPPC_Popcnt64, g.DefineAsRegister(node),
g.UseRegister(node->InputAt(0)));
}
#endif
void InstructionSelector::VisitWord32Ctz(Node* node) { UNREACHABLE(); }
#if V8_TARGET_ARCH_PPC64
void InstructionSelector::VisitWord64Ctz(Node* node) { UNREACHABLE(); }
#endif
void InstructionSelector::VisitWord32ReverseBits(Node* node) { UNREACHABLE(); }
#if V8_TARGET_ARCH_PPC64
void InstructionSelector::VisitWord64ReverseBits(Node* node) { UNREACHABLE(); }
#endif
void InstructionSelector::VisitWord64ReverseBytes(Node* node) { UNREACHABLE(); }
void InstructionSelector::VisitWord32ReverseBytes(Node* node) { UNREACHABLE(); }
void InstructionSelector::VisitInt32Add(Node* node) {
VisitBinop<Int32BinopMatcher>(this, node, kPPC_Add, kInt16Imm);
}
#if V8_TARGET_ARCH_PPC64
void InstructionSelector::VisitInt64Add(Node* node) {
VisitBinop<Int64BinopMatcher>(this, node, kPPC_Add, kInt16Imm);
}
#endif
void InstructionSelector::VisitInt32Sub(Node* node) {
PPCOperandGenerator g(this);
Int32BinopMatcher m(node);
if (m.left().Is(0)) {
Emit(kPPC_Neg, g.DefineAsRegister(node), g.UseRegister(m.right().node()));
} else {
VisitBinop<Int32BinopMatcher>(this, node, kPPC_Sub, kInt16Imm_Negate);
}
}
#if V8_TARGET_ARCH_PPC64
void InstructionSelector::VisitInt64Sub(Node* node) {
PPCOperandGenerator g(this);
Int64BinopMatcher m(node);
if (m.left().Is(0)) {
Emit(kPPC_Neg, g.DefineAsRegister(node), g.UseRegister(m.right().node()));
} else {
VisitBinop<Int64BinopMatcher>(this, node, kPPC_Sub, kInt16Imm_Negate);
}
}
#endif
namespace {
void VisitCompare(InstructionSelector* selector, InstructionCode opcode,
InstructionOperand left, InstructionOperand right,
FlagsContinuation* cont);
void EmitInt32MulWithOverflow(InstructionSelector* selector, Node* node,
FlagsContinuation* cont) {
PPCOperandGenerator g(selector);
Int32BinopMatcher m(node);
InstructionOperand result_operand = g.DefineAsRegister(node);
InstructionOperand high32_operand = g.TempRegister();
InstructionOperand temp_operand = g.TempRegister();
{
InstructionOperand outputs[] = {result_operand, high32_operand};
InstructionOperand inputs[] = {g.UseRegister(m.left().node()),
g.UseRegister(m.right().node())};
selector->Emit(kPPC_Mul32WithHigh32, 2, outputs, 2, inputs);
}
{
InstructionOperand shift_31 = g.UseImmediate(31);
InstructionOperand outputs[] = {temp_operand};
InstructionOperand inputs[] = {result_operand, shift_31};
selector->Emit(kPPC_ShiftRightAlg32, 1, outputs, 2, inputs);
}
VisitCompare(selector, kPPC_Cmp32, high32_operand, temp_operand, cont);
}
} // namespace
void InstructionSelector::VisitInt32Mul(Node* node) {
VisitRRR(this, kPPC_Mul32, node);
}
#if V8_TARGET_ARCH_PPC64
void InstructionSelector::VisitInt64Mul(Node* node) {
VisitRRR(this, kPPC_Mul64, node);
}
#endif
void InstructionSelector::VisitInt32MulHigh(Node* node) {
PPCOperandGenerator g(this);
Emit(kPPC_MulHigh32, g.DefineAsRegister(node),
g.UseRegister(node->InputAt(0)), g.UseRegister(node->InputAt(1)));
}
void InstructionSelector::VisitUint32MulHigh(Node* node) {
PPCOperandGenerator g(this);
Emit(kPPC_MulHighU32, g.DefineAsRegister(node),
g.UseRegister(node->InputAt(0)), g.UseRegister(node->InputAt(1)));
}
void InstructionSelector::VisitInt32Div(Node* node) {
VisitRRR(this, kPPC_Div32, node);
}
#if V8_TARGET_ARCH_PPC64
void InstructionSelector::VisitInt64Div(Node* node) {
VisitRRR(this, kPPC_Div64, node);
}
#endif
void InstructionSelector::VisitUint32Div(Node* node) {
VisitRRR(this, kPPC_DivU32, node);
}
#if V8_TARGET_ARCH_PPC64
void InstructionSelector::VisitUint64Div(Node* node) {
VisitRRR(this, kPPC_DivU64, node);
}
#endif
void InstructionSelector::VisitInt32Mod(Node* node) {
VisitRRR(this, kPPC_Mod32, node);
}
#if V8_TARGET_ARCH_PPC64
void InstructionSelector::VisitInt64Mod(Node* node) {
VisitRRR(this, kPPC_Mod64, node);
}
#endif
void InstructionSelector::VisitUint32Mod(Node* node) {
VisitRRR(this, kPPC_ModU32, node);
}
#if V8_TARGET_ARCH_PPC64
void InstructionSelector::VisitUint64Mod(Node* node) {
VisitRRR(this, kPPC_ModU64, node);
}
#endif
void InstructionSelector::VisitChangeFloat32ToFloat64(Node* node) {
VisitRR(this, kPPC_Float32ToDouble, node);
}
void InstructionSelector::VisitRoundInt32ToFloat32(Node* node) {
VisitRR(this, kPPC_Int32ToFloat32, node);
}
void InstructionSelector::VisitRoundUint32ToFloat32(Node* node) {
VisitRR(this, kPPC_Uint32ToFloat32, node);
}
void InstructionSelector::VisitChangeInt32ToFloat64(Node* node) {
VisitRR(this, kPPC_Int32ToDouble, node);
}
void InstructionSelector::VisitChangeUint32ToFloat64(Node* node) {
VisitRR(this, kPPC_Uint32ToDouble, node);
}
void InstructionSelector::VisitChangeFloat64ToInt32(Node* node) {
VisitRR(this, kPPC_DoubleToInt32, node);
}
void InstructionSelector::VisitChangeFloat64ToUint32(Node* node) {
VisitRR(this, kPPC_DoubleToUint32, node);
}
void InstructionSelector::VisitTruncateFloat64ToUint32(Node* node) {
VisitRR(this, kPPC_DoubleToUint32, node);
}
#if V8_TARGET_ARCH_PPC64
void InstructionSelector::VisitTryTruncateFloat32ToInt64(Node* node) {
VisitTryTruncateDouble(this, kPPC_DoubleToInt64, node);
}
void InstructionSelector::VisitTryTruncateFloat64ToInt64(Node* node) {
VisitTryTruncateDouble(this, kPPC_DoubleToInt64, node);
}
void InstructionSelector::VisitTryTruncateFloat32ToUint64(Node* node) {
VisitTryTruncateDouble(this, kPPC_DoubleToUint64, node);
}
void InstructionSelector::VisitTryTruncateFloat64ToUint64(Node* node) {
VisitTryTruncateDouble(this, kPPC_DoubleToUint64, node);
}
void InstructionSelector::VisitChangeInt32ToInt64(Node* node) {
// TODO(mbrandy): inspect input to see if nop is appropriate.
VisitRR(this, kPPC_ExtendSignWord32, node);
}
void InstructionSelector::VisitChangeUint32ToUint64(Node* node) {
// TODO(mbrandy): inspect input to see if nop is appropriate.
VisitRR(this, kPPC_Uint32ToUint64, node);
}
#endif
void InstructionSelector::VisitTruncateFloat64ToFloat32(Node* node) {
VisitRR(this, kPPC_DoubleToFloat32, node);
}
void InstructionSelector::VisitTruncateFloat64ToWord32(Node* node) {
VisitRR(this, kArchTruncateDoubleToI, node);
}
void InstructionSelector::VisitRoundFloat64ToInt32(Node* node) {
VisitRR(this, kPPC_DoubleToInt32, node);
}
void InstructionSelector::VisitTruncateFloat32ToInt32(Node* node) {
VisitRR(this, kPPC_DoubleToInt32, node);
}
void InstructionSelector::VisitTruncateFloat32ToUint32(Node* node) {
VisitRR(this, kPPC_DoubleToUint32, node);
}
#if V8_TARGET_ARCH_PPC64
void InstructionSelector::VisitTruncateInt64ToInt32(Node* node) {
// TODO(mbrandy): inspect input to see if nop is appropriate.
VisitRR(this, kPPC_Int64ToInt32, node);
}
void InstructionSelector::VisitRoundInt64ToFloat32(Node* node) {
VisitRR(this, kPPC_Int64ToFloat32, node);
}
void InstructionSelector::VisitRoundInt64ToFloat64(Node* node) {
VisitRR(this, kPPC_Int64ToDouble, node);
}
void InstructionSelector::VisitRoundUint64ToFloat32(Node* node) {
VisitRR(this, kPPC_Uint64ToFloat32, node);
}
void InstructionSelector::VisitRoundUint64ToFloat64(Node* node) {
VisitRR(this, kPPC_Uint64ToDouble, node);
}
#endif
void InstructionSelector::VisitBitcastFloat32ToInt32(Node* node) {
VisitRR(this, kPPC_BitcastFloat32ToInt32, node);
}
#if V8_TARGET_ARCH_PPC64
void InstructionSelector::VisitBitcastFloat64ToInt64(Node* node) {
VisitRR(this, kPPC_BitcastDoubleToInt64, node);
}
#endif
void InstructionSelector::VisitBitcastInt32ToFloat32(Node* node) {
VisitRR(this, kPPC_BitcastInt32ToFloat32, node);
}
#if V8_TARGET_ARCH_PPC64
void InstructionSelector::VisitBitcastInt64ToFloat64(Node* node) {
VisitRR(this, kPPC_BitcastInt64ToDouble, node);
}
#endif
void InstructionSelector::VisitFloat32Add(Node* node) {
VisitRRR(this, kPPC_AddDouble | MiscField::encode(1), node);
}
void InstructionSelector::VisitFloat64Add(Node* node) {
// TODO(mbrandy): detect multiply-add
VisitRRR(this, kPPC_AddDouble, node);
}
void InstructionSelector::VisitFloat32Sub(Node* node) {
VisitRRR(this, kPPC_SubDouble | MiscField::encode(1), node);
}
void InstructionSelector::VisitFloat64Sub(Node* node) {
// TODO(mbrandy): detect multiply-subtract
VisitRRR(this, kPPC_SubDouble, node);
}
void InstructionSelector::VisitFloat32Mul(Node* node) {
VisitRRR(this, kPPC_MulDouble | MiscField::encode(1), node);
}
void InstructionSelector::VisitFloat64Mul(Node* node) {
// TODO(mbrandy): detect negate
VisitRRR(this, kPPC_MulDouble, node);
}
void InstructionSelector::VisitFloat32Div(Node* node) {
VisitRRR(this, kPPC_DivDouble | MiscField::encode(1), node);
}
void InstructionSelector::VisitFloat64Div(Node* node) {
VisitRRR(this, kPPC_DivDouble, node);
}
void InstructionSelector::VisitFloat64Mod(Node* node) {
PPCOperandGenerator g(this);
Emit(kPPC_ModDouble, g.DefineAsFixed(node, d1),
g.UseFixed(node->InputAt(0), d1),
g.UseFixed(node->InputAt(1), d2))->MarkAsCall();
}
void InstructionSelector::VisitFloat32Max(Node* node) {
VisitRRR(this, kPPC_MaxDouble | MiscField::encode(1), node);
}
void InstructionSelector::VisitFloat64Max(Node* node) {
VisitRRR(this, kPPC_MaxDouble, node);
}
void InstructionSelector::VisitFloat64SilenceNaN(Node* node) {
VisitRR(this, kPPC_Float64SilenceNaN, node);
}
void InstructionSelector::VisitFloat32Min(Node* node) {
VisitRRR(this, kPPC_MinDouble | MiscField::encode(1), node);
}
void InstructionSelector::VisitFloat64Min(Node* node) {
VisitRRR(this, kPPC_MinDouble, node);
}
void InstructionSelector::VisitFloat32Abs(Node* node) {
VisitRR(this, kPPC_AbsDouble | MiscField::encode(1), node);
}
void InstructionSelector::VisitFloat64Abs(Node* node) {
VisitRR(this, kPPC_AbsDouble, node);
}
void InstructionSelector::VisitFloat32Sqrt(Node* node) {
VisitRR(this, kPPC_SqrtDouble | MiscField::encode(1), node);
}
void InstructionSelector::VisitFloat64Ieee754Unop(Node* node,
InstructionCode opcode) {
PPCOperandGenerator g(this);
Emit(opcode, g.DefineAsFixed(node, d1), g.UseFixed(node->InputAt(0), d1))
->MarkAsCall();
}
void InstructionSelector::VisitFloat64Ieee754Binop(Node* node,
InstructionCode opcode) {
PPCOperandGenerator g(this);
Emit(opcode, g.DefineAsFixed(node, d1),
g.UseFixed(node->InputAt(0), d1),
g.UseFixed(node->InputAt(1), d2))->MarkAsCall();
}
void InstructionSelector::VisitFloat64Sqrt(Node* node) {
VisitRR(this, kPPC_SqrtDouble, node);
}
void InstructionSelector::VisitFloat32RoundDown(Node* node) {
VisitRR(this, kPPC_FloorDouble | MiscField::encode(1), node);
}
void InstructionSelector::VisitFloat64RoundDown(Node* node) {
VisitRR(this, kPPC_FloorDouble, node);
}
void InstructionSelector::VisitFloat32RoundUp(Node* node) {
VisitRR(this, kPPC_CeilDouble | MiscField::encode(1), node);
}
void InstructionSelector::VisitFloat64RoundUp(Node* node) {
VisitRR(this, kPPC_CeilDouble, node);
}
void InstructionSelector::VisitFloat32RoundTruncate(Node* node) {
VisitRR(this, kPPC_TruncateDouble | MiscField::encode(1), node);
}
void InstructionSelector::VisitFloat64RoundTruncate(Node* node) {
VisitRR(this, kPPC_TruncateDouble, node);
}
void InstructionSelector::VisitFloat64RoundTiesAway(Node* node) {
VisitRR(this, kPPC_RoundDouble, node);
}
void InstructionSelector::VisitFloat32RoundTiesEven(Node* node) {
UNREACHABLE();
}
void InstructionSelector::VisitFloat64RoundTiesEven(Node* node) {
UNREACHABLE();
}
void InstructionSelector::VisitFloat32Neg(Node* node) {
VisitRR(this, kPPC_NegDouble, node);
}
void InstructionSelector::VisitFloat64Neg(Node* node) {
VisitRR(this, kPPC_NegDouble, node);
}
void InstructionSelector::VisitInt32AddWithOverflow(Node* node) {
if (Node* ovf = NodeProperties::FindProjection(node, 1)) {
FlagsContinuation cont = FlagsContinuation::ForSet(kOverflow, ovf);
return VisitBinop<Int32BinopMatcher>(this, node, kPPC_AddWithOverflow32,
kInt16Imm, &cont);
}
FlagsContinuation cont;
VisitBinop<Int32BinopMatcher>(this, node, kPPC_AddWithOverflow32, kInt16Imm,
&cont);
}
void InstructionSelector::VisitInt32SubWithOverflow(Node* node) {
if (Node* ovf = NodeProperties::FindProjection(node, 1)) {
FlagsContinuation cont = FlagsContinuation::ForSet(kOverflow, ovf);
return VisitBinop<Int32BinopMatcher>(this, node, kPPC_SubWithOverflow32,
kInt16Imm_Negate, &cont);
}
FlagsContinuation cont;
VisitBinop<Int32BinopMatcher>(this, node, kPPC_SubWithOverflow32,
kInt16Imm_Negate, &cont);
}
#if V8_TARGET_ARCH_PPC64
void InstructionSelector::VisitInt64AddWithOverflow(Node* node) {
if (Node* ovf = NodeProperties::FindProjection(node, 1)) {
FlagsContinuation cont = FlagsContinuation::ForSet(kOverflow, ovf);
return VisitBinop<Int64BinopMatcher>(this, node, kPPC_Add, kInt16Imm,
&cont);
}
FlagsContinuation cont;
VisitBinop<Int64BinopMatcher>(this, node, kPPC_Add, kInt16Imm, &cont);
}
void InstructionSelector::VisitInt64SubWithOverflow(Node* node) {
if (Node* ovf = NodeProperties::FindProjection(node, 1)) {
FlagsContinuation cont = FlagsContinuation::ForSet(kOverflow, ovf);
return VisitBinop<Int64BinopMatcher>(this, node, kPPC_Sub, kInt16Imm_Negate,
&cont);
}
FlagsContinuation cont;
VisitBinop<Int64BinopMatcher>(this, node, kPPC_Sub, kInt16Imm_Negate, &cont);
}
#endif
static bool CompareLogical(FlagsContinuation* cont) {
switch (cont->condition()) {
case kUnsignedLessThan:
case kUnsignedGreaterThanOrEqual:
case kUnsignedLessThanOrEqual:
case kUnsignedGreaterThan:
return true;
default:
return false;
}
UNREACHABLE();
return false;
}
namespace {
// Shared routine for multiple compare operations.
void VisitCompare(InstructionSelector* selector, InstructionCode opcode,
InstructionOperand left, InstructionOperand right,
FlagsContinuation* cont) {
PPCOperandGenerator g(selector);
opcode = cont->Encode(opcode);
if (cont->IsBranch()) {
selector->Emit(opcode, g.NoOutput(), left, right,
g.Label(cont->true_block()), g.Label(cont->false_block()));
} else if (cont->IsDeoptimize()) {
selector->EmitDeoptimize(opcode, g.NoOutput(), left, right, cont->reason(),
cont->frame_state());
} else {
DCHECK(cont->IsSet());
selector->Emit(opcode, g.DefineAsRegister(cont->result()), left, right);
}
}
// Shared routine for multiple word compare operations.
void VisitWordCompare(InstructionSelector* selector, Node* node,
InstructionCode opcode, FlagsContinuation* cont,
bool commutative, ImmediateMode immediate_mode) {
PPCOperandGenerator g(selector);
Node* left = node->InputAt(0);
Node* right = node->InputAt(1);
// Match immediates on left or right side of comparison.
if (g.CanBeImmediate(right, immediate_mode)) {
VisitCompare(selector, opcode, g.UseRegister(left), g.UseImmediate(right),
cont);
} else if (g.CanBeImmediate(left, immediate_mode)) {
if (!commutative) cont->Commute();
VisitCompare(selector, opcode, g.UseRegister(right), g.UseImmediate(left),
cont);
} else {
VisitCompare(selector, opcode, g.UseRegister(left), g.UseRegister(right),
cont);
}
}
void VisitWord32Compare(InstructionSelector* selector, Node* node,
FlagsContinuation* cont) {
ImmediateMode mode = (CompareLogical(cont) ? kInt16Imm_Unsigned : kInt16Imm);
VisitWordCompare(selector, node, kPPC_Cmp32, cont, false, mode);
}
#if V8_TARGET_ARCH_PPC64
void VisitWord64Compare(InstructionSelector* selector, Node* node,
FlagsContinuation* cont) {
ImmediateMode mode = (CompareLogical(cont) ? kInt16Imm_Unsigned : kInt16Imm);
VisitWordCompare(selector, node, kPPC_Cmp64, cont, false, mode);
}
#endif
// Shared routine for multiple float32 compare operations.
void VisitFloat32Compare(InstructionSelector* selector, Node* node,
FlagsContinuation* cont) {
PPCOperandGenerator g(selector);
Node* left = node->InputAt(0);
Node* right = node->InputAt(1);
VisitCompare(selector, kPPC_CmpDouble, g.UseRegister(left),
g.UseRegister(right), cont);
}
// Shared routine for multiple float64 compare operations.
void VisitFloat64Compare(InstructionSelector* selector, Node* node,
FlagsContinuation* cont) {
PPCOperandGenerator g(selector);
Node* left = node->InputAt(0);
Node* right = node->InputAt(1);
VisitCompare(selector, kPPC_CmpDouble, g.UseRegister(left),
g.UseRegister(right), cont);
}
// Shared routine for word comparisons against zero.
void VisitWordCompareZero(InstructionSelector* selector, Node* user,
Node* value, InstructionCode opcode,
FlagsContinuation* cont) {
// Try to combine with comparisons against 0 by simply inverting the branch.
while (value->opcode() == IrOpcode::kWord32Equal &&
selector->CanCover(user, value)) {
Int32BinopMatcher m(value);
if (!m.right().Is(0)) break;
user = value;
value = m.left().node();
cont->Negate();
}
if (selector->CanCover(user, value)) {
switch (value->opcode()) {
case IrOpcode::kWord32Equal:
cont->OverwriteAndNegateIfEqual(kEqual);
return VisitWord32Compare(selector, value, cont);
case IrOpcode::kInt32LessThan:
cont->OverwriteAndNegateIfEqual(kSignedLessThan);
return VisitWord32Compare(selector, value, cont);
case IrOpcode::kInt32LessThanOrEqual:
cont->OverwriteAndNegateIfEqual(kSignedLessThanOrEqual);
return VisitWord32Compare(selector, value, cont);
case IrOpcode::kUint32LessThan:
cont->OverwriteAndNegateIfEqual(kUnsignedLessThan);
return VisitWord32Compare(selector, value, cont);
case IrOpcode::kUint32LessThanOrEqual:
cont->OverwriteAndNegateIfEqual(kUnsignedLessThanOrEqual);
return VisitWord32Compare(selector, value, cont);
#if V8_TARGET_ARCH_PPC64
case IrOpcode::kWord64Equal:
cont->OverwriteAndNegateIfEqual(kEqual);
return VisitWord64Compare(selector, value, cont);
case IrOpcode::kInt64LessThan:
cont->OverwriteAndNegateIfEqual(kSignedLessThan);
return VisitWord64Compare(selector, value, cont);
case IrOpcode::kInt64LessThanOrEqual:
cont->OverwriteAndNegateIfEqual(kSignedLessThanOrEqual);
return VisitWord64Compare(selector, value, cont);
case IrOpcode::kUint64LessThan:
cont->OverwriteAndNegateIfEqual(kUnsignedLessThan);
return VisitWord64Compare(selector, value, cont);
case IrOpcode::kUint64LessThanOrEqual:
cont->OverwriteAndNegateIfEqual(kUnsignedLessThanOrEqual);
return VisitWord64Compare(selector, value, cont);
#endif
case IrOpcode::kFloat32Equal:
cont->OverwriteAndNegateIfEqual(kEqual);
return VisitFloat32Compare(selector, value, cont);
case IrOpcode::kFloat32LessThan:
cont->OverwriteAndNegateIfEqual(kUnsignedLessThan);
return VisitFloat32Compare(selector, value, cont);
case IrOpcode::kFloat32LessThanOrEqual:
cont->OverwriteAndNegateIfEqual(kUnsignedLessThanOrEqual);
return VisitFloat32Compare(selector, value, cont);
case IrOpcode::kFloat64Equal:
cont->OverwriteAndNegateIfEqual(kEqual);
return VisitFloat64Compare(selector, value, cont);
case IrOpcode::kFloat64LessThan:
cont->OverwriteAndNegateIfEqual(kUnsignedLessThan);
return VisitFloat64Compare(selector, value, cont);
case IrOpcode::kFloat64LessThanOrEqual:
cont->OverwriteAndNegateIfEqual(kUnsignedLessThanOrEqual);
return VisitFloat64Compare(selector, value, cont);
case IrOpcode::kProjection:
// Check if this is the overflow output projection of an
// <Operation>WithOverflow node.
if (ProjectionIndexOf(value->op()) == 1u) {
// We cannot combine the <Operation>WithOverflow with this branch
// unless the 0th projection (the use of the actual value of the
// <Operation> is either nullptr, which means there's no use of the
// actual value, or was already defined, which means it is scheduled
// *AFTER* this branch).
Node* const node = value->InputAt(0);
Node* const result = NodeProperties::FindProjection(node, 0);
if (result == nullptr || selector->IsDefined(result)) {
switch (node->opcode()) {
case IrOpcode::kInt32AddWithOverflow:
cont->OverwriteAndNegateIfEqual(kOverflow);
return VisitBinop<Int32BinopMatcher>(
selector, node, kPPC_AddWithOverflow32, kInt16Imm, cont);
case IrOpcode::kInt32SubWithOverflow:
cont->OverwriteAndNegateIfEqual(kOverflow);
return VisitBinop<Int32BinopMatcher>(selector, node,
kPPC_SubWithOverflow32,
kInt16Imm_Negate, cont);
case IrOpcode::kInt32MulWithOverflow:
cont->OverwriteAndNegateIfEqual(kNotEqual);
return EmitInt32MulWithOverflow(selector, node, cont);
#if V8_TARGET_ARCH_PPC64
case IrOpcode::kInt64AddWithOverflow:
cont->OverwriteAndNegateIfEqual(kOverflow);
return VisitBinop<Int64BinopMatcher>(selector, node, kPPC_Add,
kInt16Imm, cont);
case IrOpcode::kInt64SubWithOverflow:
cont->OverwriteAndNegateIfEqual(kOverflow);
return VisitBinop<Int64BinopMatcher>(selector, node, kPPC_Sub,
kInt16Imm_Negate, cont);
#endif
default:
break;
}
}
}
break;
case IrOpcode::kInt32Sub:
return VisitWord32Compare(selector, value, cont);
case IrOpcode::kWord32And:
// TODO(mbandy): opportunity for rlwinm?
return VisitWordCompare(selector, value, kPPC_Tst32, cont, true,
kInt16Imm_Unsigned);
// TODO(mbrandy): Handle?
// case IrOpcode::kInt32Add:
// case IrOpcode::kWord32Or:
// case IrOpcode::kWord32Xor:
// case IrOpcode::kWord32Sar:
// case IrOpcode::kWord32Shl:
// case IrOpcode::kWord32Shr:
// case IrOpcode::kWord32Ror:
#if V8_TARGET_ARCH_PPC64
case IrOpcode::kInt64Sub:
return VisitWord64Compare(selector, value, cont);
case IrOpcode::kWord64And:
// TODO(mbandy): opportunity for rldic?
return VisitWordCompare(selector, value, kPPC_Tst64, cont, true,
kInt16Imm_Unsigned);
// TODO(mbrandy): Handle?
// case IrOpcode::kInt64Add:
// case IrOpcode::kWord64Or:
// case IrOpcode::kWord64Xor:
// case IrOpcode::kWord64Sar:
// case IrOpcode::kWord64Shl:
// case IrOpcode::kWord64Shr:
// case IrOpcode::kWord64Ror:
#endif
default:
break;
}
}
// Branch could not be combined with a compare, emit compare against 0.
PPCOperandGenerator g(selector);
VisitCompare(selector, opcode, g.UseRegister(value), g.TempImmediate(0),
cont);
}
void VisitWord32CompareZero(InstructionSelector* selector, Node* user,
Node* value, FlagsContinuation* cont) {
VisitWordCompareZero(selector, user, value, kPPC_Cmp32, cont);
}
#if V8_TARGET_ARCH_PPC64
void VisitWord64CompareZero(InstructionSelector* selector, Node* user,
Node* value, FlagsContinuation* cont) {
VisitWordCompareZero(selector, user, value, kPPC_Cmp64, cont);
}
#endif
} // namespace
void InstructionSelector::VisitBranch(Node* branch, BasicBlock* tbranch,
BasicBlock* fbranch) {
FlagsContinuation cont(kNotEqual, tbranch, fbranch);
VisitWord32CompareZero(this, branch, branch->InputAt(0), &cont);
}
void InstructionSelector::VisitDeoptimizeIf(Node* node) {
FlagsContinuation cont = FlagsContinuation::ForDeoptimize(
kNotEqual, DeoptimizeReasonOf(node->op()), node->InputAt(1));
VisitWord32CompareZero(this, node, node->InputAt(0), &cont);
}
void InstructionSelector::VisitDeoptimizeUnless(Node* node) {
FlagsContinuation cont = FlagsContinuation::ForDeoptimize(
kEqual, DeoptimizeReasonOf(node->op()), node->InputAt(1));
VisitWord32CompareZero(this, node, node->InputAt(0), &cont);
}
void InstructionSelector::VisitSwitch(Node* node, const SwitchInfo& sw) {
PPCOperandGenerator g(this);
InstructionOperand value_operand = g.UseRegister(node->InputAt(0));
// Emit either ArchTableSwitch or ArchLookupSwitch.
size_t table_space_cost = 4 + sw.value_range;
size_t table_time_cost = 3;
size_t lookup_space_cost = 3 + 2 * sw.case_count;
size_t lookup_time_cost = sw.case_count;
if (sw.case_count > 0 &&
table_space_cost + 3 * table_time_cost <=
lookup_space_cost + 3 * lookup_time_cost &&
sw.min_value > std::numeric_limits<int32_t>::min()) {
InstructionOperand index_operand = value_operand;
if (sw.min_value) {
index_operand = g.TempRegister();
Emit(kPPC_Sub, index_operand, value_operand,
g.TempImmediate(sw.min_value));
}
// Generate a table lookup.
return EmitTableSwitch(sw, index_operand);
}
// Generate a sequence of conditional jumps.
return EmitLookupSwitch(sw, value_operand);
}
void InstructionSelector::VisitWord32Equal(Node* const node) {
FlagsContinuation cont = FlagsContinuation::ForSet(kEqual, node);
Int32BinopMatcher m(node);
if (m.right().Is(0)) {
return VisitWord32CompareZero(this, m.node(), m.left().node(), &cont);
}
VisitWord32Compare(this, node, &cont);
}
void InstructionSelector::VisitInt32LessThan(Node* node) {
FlagsContinuation cont = FlagsContinuation::ForSet(kSignedLessThan, node);
VisitWord32Compare(this, node, &cont);
}
void InstructionSelector::VisitInt32LessThanOrEqual(Node* node) {
FlagsContinuation cont =
FlagsContinuation::ForSet(kSignedLessThanOrEqual, node);
VisitWord32Compare(this, node, &cont);
}
void InstructionSelector::VisitUint32LessThan(Node* node) {
FlagsContinuation cont = FlagsContinuation::ForSet(kUnsignedLessThan, node);
VisitWord32Compare(this, node, &cont);
}
void InstructionSelector::VisitUint32LessThanOrEqual(Node* node) {
FlagsContinuation cont =
FlagsContinuation::ForSet(kUnsignedLessThanOrEqual, node);
VisitWord32Compare(this, node, &cont);
}
#if V8_TARGET_ARCH_PPC64
void InstructionSelector::VisitWord64Equal(Node* const node) {
FlagsContinuation cont = FlagsContinuation::ForSet(kEqual, node);
Int64BinopMatcher m(node);
if (m.right().Is(0)) {
return VisitWord64CompareZero(this, m.node(), m.left().node(), &cont);
}
VisitWord64Compare(this, node, &cont);
}
void InstructionSelector::VisitInt64LessThan(Node* node) {
FlagsContinuation cont = FlagsContinuation::ForSet(kSignedLessThan, node);
VisitWord64Compare(this, node, &cont);
}
void InstructionSelector::VisitInt64LessThanOrEqual(Node* node) {
FlagsContinuation cont =
FlagsContinuation::ForSet(kSignedLessThanOrEqual, node);
VisitWord64Compare(this, node, &cont);
}
void InstructionSelector::VisitUint64LessThan(Node* node) {
FlagsContinuation cont = FlagsContinuation::ForSet(kUnsignedLessThan, node);
VisitWord64Compare(this, node, &cont);
}
void InstructionSelector::VisitUint64LessThanOrEqual(Node* node) {
FlagsContinuation cont =
FlagsContinuation::ForSet(kUnsignedLessThanOrEqual, node);
VisitWord64Compare(this, node, &cont);
}
#endif
void InstructionSelector::VisitInt32MulWithOverflow(Node* node) {
if (Node* ovf = NodeProperties::FindProjection(node, 1)) {
FlagsContinuation cont = FlagsContinuation::ForSet(kNotEqual, ovf);
return EmitInt32MulWithOverflow(this, node, &cont);
}
FlagsContinuation cont;
EmitInt32MulWithOverflow(this, node, &cont);
}
void InstructionSelector::VisitFloat32Equal(Node* node) {
FlagsContinuation cont = FlagsContinuation::ForSet(kEqual, node);
VisitFloat32Compare(this, node, &cont);
}
void InstructionSelector::VisitFloat32LessThan(Node* node) {
FlagsContinuation cont = FlagsContinuation::ForSet(kUnsignedLessThan, node);
VisitFloat32Compare(this, node, &cont);
}
void InstructionSelector::VisitFloat32LessThanOrEqual(Node* node) {
FlagsContinuation cont =
FlagsContinuation::ForSet(kUnsignedLessThanOrEqual, node);
VisitFloat32Compare(this, node, &cont);
}
void InstructionSelector::VisitFloat64Equal(Node* node) {
FlagsContinuation cont = FlagsContinuation::ForSet(kEqual, node);
VisitFloat64Compare(this, node, &cont);
}
void InstructionSelector::VisitFloat64LessThan(Node* node) {
FlagsContinuation cont = FlagsContinuation::ForSet(kUnsignedLessThan, node);
VisitFloat64Compare(this, node, &cont);
}
void InstructionSelector::VisitFloat64LessThanOrEqual(Node* node) {
FlagsContinuation cont =
FlagsContinuation::ForSet(kUnsignedLessThanOrEqual, node);
VisitFloat64Compare(this, node, &cont);
}
void InstructionSelector::EmitPrepareArguments(
ZoneVector<PushParameter>* arguments, const CallDescriptor* descriptor,
Node* node) {
PPCOperandGenerator g(this);
// Prepare for C function call.
if (descriptor->IsCFunctionCall()) {
Emit(kArchPrepareCallCFunction |
MiscField::encode(static_cast<int>(descriptor->ParameterCount())),
0, nullptr, 0, nullptr);
// Poke any stack arguments.
int slot = kStackFrameExtraParamSlot;
for (PushParameter input : (*arguments)) {
Emit(kPPC_StoreToStackSlot, g.NoOutput(), g.UseRegister(input.node()),
g.TempImmediate(slot));
++slot;
}
} else {
// Push any stack arguments.
int num_slots = static_cast<int>(descriptor->StackParameterCount());
int slot = 0;
for (PushParameter input : (*arguments)) {
if (slot == 0) {
DCHECK(input.node());
Emit(kPPC_PushFrame, g.NoOutput(), g.UseRegister(input.node()),
g.TempImmediate(num_slots));
} else {
// Skip any alignment holes in pushed nodes.
if (input.node()) {
Emit(kPPC_StoreToStackSlot, g.NoOutput(), g.UseRegister(input.node()),
g.TempImmediate(slot));
}
}
++slot;
}
}
}
bool InstructionSelector::IsTailCallAddressImmediate() { return false; }
int InstructionSelector::GetTempsCountForTailCallFromJSFunction() { return 3; }
void InstructionSelector::VisitFloat64ExtractLowWord32(Node* node) {
PPCOperandGenerator g(this);
Emit(kPPC_DoubleExtractLowWord32, g.DefineAsRegister(node),
g.UseRegister(node->InputAt(0)));
}
void InstructionSelector::VisitFloat64ExtractHighWord32(Node* node) {
PPCOperandGenerator g(this);
Emit(kPPC_DoubleExtractHighWord32, g.DefineAsRegister(node),
g.UseRegister(node->InputAt(0)));
}
void InstructionSelector::VisitFloat64InsertLowWord32(Node* node) {
PPCOperandGenerator g(this);
Node* left = node->InputAt(0);
Node* right = node->InputAt(1);
if (left->opcode() == IrOpcode::kFloat64InsertHighWord32 &&
CanCover(node, left)) {
left = left->InputAt(1);
Emit(kPPC_DoubleConstruct, g.DefineAsRegister(node), g.UseRegister(left),
g.UseRegister(right));
return;
}
Emit(kPPC_DoubleInsertLowWord32, g.DefineSameAsFirst(node),
g.UseRegister(left), g.UseRegister(right));
}
void InstructionSelector::VisitFloat64InsertHighWord32(Node* node) {
PPCOperandGenerator g(this);
Node* left = node->InputAt(0);
Node* right = node->InputAt(1);
if (left->opcode() == IrOpcode::kFloat64InsertLowWord32 &&
CanCover(node, left)) {
left = left->InputAt(1);
Emit(kPPC_DoubleConstruct, g.DefineAsRegister(node), g.UseRegister(right),
g.UseRegister(left));
return;
}
Emit(kPPC_DoubleInsertHighWord32, g.DefineSameAsFirst(node),
g.UseRegister(left), g.UseRegister(right));
}
void InstructionSelector::VisitAtomicLoad(Node* node) {
LoadRepresentation load_rep = LoadRepresentationOf(node->op());
PPCOperandGenerator g(this);
Node* base = node->InputAt(0);
Node* index = node->InputAt(1);
ArchOpcode opcode = kArchNop;
switch (load_rep.representation()) {
case MachineRepresentation::kWord8:
opcode = load_rep.IsSigned() ? kAtomicLoadInt8 : kAtomicLoadUint8;
break;
case MachineRepresentation::kWord16:
opcode = load_rep.IsSigned() ? kAtomicLoadInt16 : kAtomicLoadUint16;
break;
case MachineRepresentation::kWord32:
opcode = kAtomicLoadWord32;
break;
default:
UNREACHABLE();
return;
}
Emit(opcode | AddressingModeField::encode(kMode_MRR),
g.DefineAsRegister(node), g.UseRegister(base), g.UseRegister(index));
}
void InstructionSelector::VisitAtomicStore(Node* node) {
MachineRepresentation rep = AtomicStoreRepresentationOf(node->op());
PPCOperandGenerator g(this);
Node* base = node->InputAt(0);
Node* index = node->InputAt(1);
Node* value = node->InputAt(2);
ArchOpcode opcode = kArchNop;
switch (rep) {
case MachineRepresentation::kWord8:
opcode = kAtomicStoreWord8;
break;
case MachineRepresentation::kWord16:
opcode = kAtomicStoreWord16;
break;
case MachineRepresentation::kWord32:
opcode = kAtomicStoreWord32;
break;
default:
UNREACHABLE();
return;
}
InstructionOperand inputs[4];
size_t input_count = 0;
inputs[input_count++] = g.UseUniqueRegister(base);
inputs[input_count++] = g.UseUniqueRegister(index);
inputs[input_count++] = g.UseUniqueRegister(value);
Emit(opcode | AddressingModeField::encode(kMode_MRR),
0, nullptr, input_count, inputs);
}
// static
MachineOperatorBuilder::Flags
InstructionSelector::SupportedMachineOperatorFlags() {
return MachineOperatorBuilder::kFloat32RoundDown |
MachineOperatorBuilder::kFloat64RoundDown |
MachineOperatorBuilder::kFloat32RoundUp |
MachineOperatorBuilder::kFloat64RoundUp |
MachineOperatorBuilder::kFloat32RoundTruncate |
MachineOperatorBuilder::kFloat64RoundTruncate |
MachineOperatorBuilder::kFloat64RoundTiesAway |
MachineOperatorBuilder::kWord32Popcnt |
MachineOperatorBuilder::kWord64Popcnt;
// We omit kWord32ShiftIsSafe as s[rl]w use 0x3f as a mask rather than 0x1f.
}
// static
MachineOperatorBuilder::AlignmentRequirements
InstructionSelector::AlignmentRequirements() {
return MachineOperatorBuilder::AlignmentRequirements::
FullUnalignedAccessSupport();
}
} // namespace compiler
} // namespace internal
} // namespace v8