// Copyright 2012 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#if V8_TARGET_ARCH_IA32
#include "src/codegen.h"
#include "src/ic/ic.h"
#include "src/ic/ic-compiler.h"
#include "src/ic/stub-cache.h"
namespace v8 {
namespace internal {
// ----------------------------------------------------------------------------
// Static IC stub generators.
//
#define __ ACCESS_MASM(masm)
// Helper function used to load a property from a dictionary backing
// storage. This function may fail to load a property even though it is
// in the dictionary, so code at miss_label must always call a backup
// property load that is complete. This function is safe to call if
// name is not internalized, and will jump to the miss_label in that
// case. The generated code assumes that the receiver has slow
// properties, is not a global object and does not have interceptors.
static void GenerateDictionaryLoad(MacroAssembler* masm, Label* miss_label,
Register elements, Register name,
Register r0, Register r1, Register result) {
// Register use:
//
// elements - holds the property dictionary on entry and is unchanged.
//
// name - holds the name of the property on entry and is unchanged.
//
// Scratch registers:
//
// r0 - used for the index into the property dictionary
//
// r1 - used to hold the capacity of the property dictionary.
//
// result - holds the result on exit.
Label done;
// Probe the dictionary.
NameDictionaryLookupStub::GeneratePositiveLookup(masm, miss_label, &done,
elements, name, r0, r1);
// If probing finds an entry in the dictionary, r0 contains the
// index into the dictionary. Check that the value is a normal
// property.
__ bind(&done);
const int kElementsStartOffset =
NameDictionary::kHeaderSize +
NameDictionary::kElementsStartIndex * kPointerSize;
const int kDetailsOffset = kElementsStartOffset + 2 * kPointerSize;
__ test(Operand(elements, r0, times_4, kDetailsOffset - kHeapObjectTag),
Immediate(PropertyDetails::TypeField::kMask << kSmiTagSize));
__ j(not_zero, miss_label);
// Get the value at the masked, scaled index.
const int kValueOffset = kElementsStartOffset + kPointerSize;
__ mov(result, Operand(elements, r0, times_4, kValueOffset - kHeapObjectTag));
}
// Helper function used to store a property to a dictionary backing
// storage. This function may fail to store a property eventhough it
// is in the dictionary, so code at miss_label must always call a
// backup property store that is complete. This function is safe to
// call if name is not internalized, and will jump to the miss_label in
// that case. The generated code assumes that the receiver has slow
// properties, is not a global object and does not have interceptors.
static void GenerateDictionaryStore(MacroAssembler* masm, Label* miss_label,
Register elements, Register name,
Register value, Register r0, Register r1) {
// Register use:
//
// elements - holds the property dictionary on entry and is clobbered.
//
// name - holds the name of the property on entry and is unchanged.
//
// value - holds the value to store and is unchanged.
//
// r0 - used for index into the property dictionary and is clobbered.
//
// r1 - used to hold the capacity of the property dictionary and is clobbered.
Label done;
// Probe the dictionary.
NameDictionaryLookupStub::GeneratePositiveLookup(masm, miss_label, &done,
elements, name, r0, r1);
// If probing finds an entry in the dictionary, r0 contains the
// index into the dictionary. Check that the value is a normal
// property that is not read only.
__ bind(&done);
const int kElementsStartOffset =
NameDictionary::kHeaderSize +
NameDictionary::kElementsStartIndex * kPointerSize;
const int kDetailsOffset = kElementsStartOffset + 2 * kPointerSize;
const int kTypeAndReadOnlyMask =
(PropertyDetails::TypeField::kMask |
PropertyDetails::AttributesField::encode(READ_ONLY))
<< kSmiTagSize;
__ test(Operand(elements, r0, times_4, kDetailsOffset - kHeapObjectTag),
Immediate(kTypeAndReadOnlyMask));
__ j(not_zero, miss_label);
// Store the value at the masked, scaled index.
const int kValueOffset = kElementsStartOffset + kPointerSize;
__ lea(r0, Operand(elements, r0, times_4, kValueOffset - kHeapObjectTag));
__ mov(Operand(r0, 0), value);
// Update write barrier. Make sure not to clobber the value.
__ mov(r1, value);
__ RecordWrite(elements, r0, r1, kDontSaveFPRegs);
}
static void KeyedStoreGenerateMegamorphicHelper(
MacroAssembler* masm, Label* fast_object, Label* fast_double, Label* slow,
KeyedStoreCheckMap check_map, KeyedStoreIncrementLength increment_length) {
Label transition_smi_elements;
Label finish_object_store, non_double_value, transition_double_elements;
Label fast_double_without_map_check;
Register receiver = StoreDescriptor::ReceiverRegister();
Register key = StoreDescriptor::NameRegister();
Register value = StoreDescriptor::ValueRegister();
DCHECK(receiver.is(edx));
DCHECK(key.is(ecx));
DCHECK(value.is(eax));
// key is a smi.
// ebx: FixedArray receiver->elements
// edi: receiver map
// Fast case: Do the store, could either Object or double.
__ bind(fast_object);
if (check_map == kCheckMap) {
__ mov(edi, FieldOperand(ebx, HeapObject::kMapOffset));
__ cmp(edi, masm->isolate()->factory()->fixed_array_map());
__ j(not_equal, fast_double);
}
// HOLECHECK: guards "A[i] = V"
// We have to go to the runtime if the current value is the hole because
// there may be a callback on the element
Label holecheck_passed1;
__ cmp(FixedArrayElementOperand(ebx, key),
masm->isolate()->factory()->the_hole_value());
__ j(not_equal, &holecheck_passed1);
__ JumpIfDictionaryInPrototypeChain(receiver, ebx, edi, slow);
__ mov(ebx, FieldOperand(receiver, JSObject::kElementsOffset));
__ bind(&holecheck_passed1);
// Smi stores don't require further checks.
Label non_smi_value;
__ JumpIfNotSmi(value, &non_smi_value);
if (increment_length == kIncrementLength) {
// Add 1 to receiver->length.
__ add(FieldOperand(receiver, JSArray::kLengthOffset),
Immediate(Smi::FromInt(1)));
}
// It's irrelevant whether array is smi-only or not when writing a smi.
__ mov(FixedArrayElementOperand(ebx, key), value);
__ ret(StoreWithVectorDescriptor::kStackArgumentsCount * kPointerSize);
__ bind(&non_smi_value);
// Escape to elements kind transition case.
__ mov(edi, FieldOperand(receiver, HeapObject::kMapOffset));
__ CheckFastObjectElements(edi, &transition_smi_elements);
// Fast elements array, store the value to the elements backing store.
__ bind(&finish_object_store);
if (increment_length == kIncrementLength) {
// Add 1 to receiver->length.
__ add(FieldOperand(receiver, JSArray::kLengthOffset),
Immediate(Smi::FromInt(1)));
}
__ mov(FixedArrayElementOperand(ebx, key), value);
// Update write barrier for the elements array address.
__ mov(edx, value); // Preserve the value which is returned.
__ RecordWriteArray(ebx, edx, key, kDontSaveFPRegs, EMIT_REMEMBERED_SET,
OMIT_SMI_CHECK);
__ ret(StoreWithVectorDescriptor::kStackArgumentsCount * kPointerSize);
__ bind(fast_double);
if (check_map == kCheckMap) {
// Check for fast double array case. If this fails, call through to the
// runtime.
__ cmp(edi, masm->isolate()->factory()->fixed_double_array_map());
__ j(not_equal, slow);
// If the value is a number, store it as a double in the FastDoubleElements
// array.
}
// HOLECHECK: guards "A[i] double hole?"
// We have to see if the double version of the hole is present. If so
// go to the runtime.
uint32_t offset = FixedDoubleArray::kHeaderSize + sizeof(kHoleNanLower32);
__ cmp(FieldOperand(ebx, key, times_4, offset), Immediate(kHoleNanUpper32));
__ j(not_equal, &fast_double_without_map_check);
__ JumpIfDictionaryInPrototypeChain(receiver, ebx, edi, slow);
__ mov(ebx, FieldOperand(receiver, JSObject::kElementsOffset));
__ bind(&fast_double_without_map_check);
__ StoreNumberToDoubleElements(value, ebx, key, edi, xmm0,
&transition_double_elements);
if (increment_length == kIncrementLength) {
// Add 1 to receiver->length.
__ add(FieldOperand(receiver, JSArray::kLengthOffset),
Immediate(Smi::FromInt(1)));
}
__ ret(StoreWithVectorDescriptor::kStackArgumentsCount * kPointerSize);
__ bind(&transition_smi_elements);
__ mov(ebx, FieldOperand(receiver, HeapObject::kMapOffset));
// Transition the array appropriately depending on the value type.
__ CheckMap(value, masm->isolate()->factory()->heap_number_map(),
&non_double_value, DONT_DO_SMI_CHECK);
// Value is a double. Transition FAST_SMI_ELEMENTS -> FAST_DOUBLE_ELEMENTS
// and complete the store.
__ LoadTransitionedArrayMapConditional(FAST_SMI_ELEMENTS,
FAST_DOUBLE_ELEMENTS, ebx, edi, slow);
AllocationSiteMode mode =
AllocationSite::GetMode(FAST_SMI_ELEMENTS, FAST_DOUBLE_ELEMENTS);
ElementsTransitionGenerator::GenerateSmiToDouble(masm, receiver, key, value,
ebx, mode, slow);
__ mov(ebx, FieldOperand(receiver, JSObject::kElementsOffset));
__ jmp(&fast_double_without_map_check);
__ bind(&non_double_value);
// Value is not a double, FAST_SMI_ELEMENTS -> FAST_ELEMENTS
__ LoadTransitionedArrayMapConditional(FAST_SMI_ELEMENTS, FAST_ELEMENTS, ebx,
edi, slow);
mode = AllocationSite::GetMode(FAST_SMI_ELEMENTS, FAST_ELEMENTS);
ElementsTransitionGenerator::GenerateMapChangeElementsTransition(
masm, receiver, key, value, ebx, mode, slow);
__ mov(ebx, FieldOperand(receiver, JSObject::kElementsOffset));
__ jmp(&finish_object_store);
__ bind(&transition_double_elements);
// Elements are FAST_DOUBLE_ELEMENTS, but value is an Object that's not a
// HeapNumber. Make sure that the receiver is a Array with FAST_ELEMENTS and
// transition array from FAST_DOUBLE_ELEMENTS to FAST_ELEMENTS
__ mov(ebx, FieldOperand(receiver, HeapObject::kMapOffset));
__ LoadTransitionedArrayMapConditional(FAST_DOUBLE_ELEMENTS, FAST_ELEMENTS,
ebx, edi, slow);
mode = AllocationSite::GetMode(FAST_DOUBLE_ELEMENTS, FAST_ELEMENTS);
ElementsTransitionGenerator::GenerateDoubleToObject(masm, receiver, key,
value, ebx, mode, slow);
__ mov(ebx, FieldOperand(receiver, JSObject::kElementsOffset));
__ jmp(&finish_object_store);
}
void KeyedStoreIC::GenerateMegamorphic(MacroAssembler* masm,
LanguageMode language_mode) {
typedef StoreWithVectorDescriptor Descriptor;
// Return address is on the stack.
Label slow, fast_object, fast_object_grow;
Label fast_double, fast_double_grow;
Label array, extra, check_if_double_array, maybe_name_key, miss;
Register receiver = Descriptor::ReceiverRegister();
Register key = Descriptor::NameRegister();
DCHECK(receiver.is(edx));
DCHECK(key.is(ecx));
// Check that the object isn't a smi.
__ JumpIfSmi(receiver, &slow);
// Get the map from the receiver.
__ mov(edi, FieldOperand(receiver, HeapObject::kMapOffset));
// Check that the receiver does not require access checks.
// The generic stub does not perform map checks.
__ test_b(FieldOperand(edi, Map::kBitFieldOffset),
Immediate(1 << Map::kIsAccessCheckNeeded));
__ j(not_zero, &slow);
__ LoadParameterFromStack<Descriptor>(Descriptor::ValueRegister(),
Descriptor::kValue);
// Check that the key is a smi.
__ JumpIfNotSmi(key, &maybe_name_key);
__ CmpInstanceType(edi, JS_ARRAY_TYPE);
__ j(equal, &array);
// Check that the object is some kind of JS object EXCEPT JS Value type. In
// the case that the object is a value-wrapper object, we enter the runtime
// system to make sure that indexing into string objects works as intended.
STATIC_ASSERT(JS_VALUE_TYPE < JS_OBJECT_TYPE);
__ CmpInstanceType(edi, JS_OBJECT_TYPE);
__ j(below, &slow);
// Object case: Check key against length in the elements array.
// Key is a smi.
// edi: receiver map
__ mov(ebx, FieldOperand(receiver, JSObject::kElementsOffset));
// Check array bounds. Both the key and the length of FixedArray are smis.
__ cmp(key, FieldOperand(ebx, FixedArray::kLengthOffset));
__ j(below, &fast_object);
// Slow case: call runtime.
__ bind(&slow);
PropertyICCompiler::GenerateRuntimeSetProperty(masm, language_mode);
// Never returns to here.
__ bind(&maybe_name_key);
__ mov(ebx, FieldOperand(key, HeapObject::kMapOffset));
__ movzx_b(ebx, FieldOperand(ebx, Map::kInstanceTypeOffset));
__ JumpIfNotUniqueNameInstanceType(ebx, &slow);
masm->isolate()->store_stub_cache()->GenerateProbe(masm, receiver, key, edi,
no_reg);
// Cache miss.
__ jmp(&miss);
// Extra capacity case: Check if there is extra capacity to
// perform the store and update the length. Used for adding one
// element to the array by writing to array[array.length].
__ bind(&extra);
// receiver is a JSArray.
// key is a smi.
// ebx: receiver->elements, a FixedArray
// edi: receiver map
// flags: compare (key, receiver.length())
// do not leave holes in the array:
__ j(not_equal, &slow);
__ cmp(key, FieldOperand(ebx, FixedArray::kLengthOffset));
__ j(above_equal, &slow);
__ mov(edi, FieldOperand(ebx, HeapObject::kMapOffset));
__ cmp(edi, masm->isolate()->factory()->fixed_array_map());
__ j(not_equal, &check_if_double_array);
__ jmp(&fast_object_grow);
__ bind(&check_if_double_array);
__ cmp(edi, masm->isolate()->factory()->fixed_double_array_map());
__ j(not_equal, &slow);
__ jmp(&fast_double_grow);
// Array case: Get the length and the elements array from the JS
// array. Check that the array is in fast mode (and writable); if it
// is the length is always a smi.
__ bind(&array);
// receiver is a JSArray.
// key is a smi.
// edi: receiver map
__ mov(ebx, FieldOperand(receiver, JSObject::kElementsOffset));
// Check the key against the length in the array and fall through to the
// common store code.
__ cmp(key, FieldOperand(receiver, JSArray::kLengthOffset)); // Compare smis.
__ j(above_equal, &extra);
KeyedStoreGenerateMegamorphicHelper(masm, &fast_object, &fast_double, &slow,
kCheckMap, kDontIncrementLength);
KeyedStoreGenerateMegamorphicHelper(masm, &fast_object_grow,
&fast_double_grow, &slow, kDontCheckMap,
kIncrementLength);
__ bind(&miss);
GenerateMiss(masm);
}
void LoadIC::GenerateNormal(MacroAssembler* masm) {
Register dictionary = eax;
DCHECK(!dictionary.is(LoadDescriptor::ReceiverRegister()));
DCHECK(!dictionary.is(LoadDescriptor::NameRegister()));
Label slow;
__ mov(dictionary, FieldOperand(LoadDescriptor::ReceiverRegister(),
JSObject::kPropertiesOffset));
GenerateDictionaryLoad(masm, &slow, dictionary,
LoadDescriptor::NameRegister(), edi, ebx, eax);
__ ret(0);
// Dictionary load failed, go slow (but don't miss).
__ bind(&slow);
GenerateRuntimeGetProperty(masm);
}
static void LoadIC_PushArgs(MacroAssembler* masm) {
Register receiver = LoadDescriptor::ReceiverRegister();
Register name = LoadDescriptor::NameRegister();
Register slot = LoadDescriptor::SlotRegister();
Register vector = LoadWithVectorDescriptor::VectorRegister();
DCHECK(!edi.is(receiver) && !edi.is(name) && !edi.is(slot) &&
!edi.is(vector));
__ pop(edi);
__ push(receiver);
__ push(name);
__ push(slot);
__ push(vector);
__ push(edi);
}
void LoadIC::GenerateMiss(MacroAssembler* masm) {
// Return address is on the stack.
__ IncrementCounter(masm->isolate()->counters()->ic_load_miss(), 1);
LoadIC_PushArgs(masm);
// Perform tail call to the entry.
__ TailCallRuntime(Runtime::kLoadIC_Miss);
}
void LoadIC::GenerateRuntimeGetProperty(MacroAssembler* masm) {
// Return address is on the stack.
Register receiver = LoadDescriptor::ReceiverRegister();
Register name = LoadDescriptor::NameRegister();
DCHECK(!ebx.is(receiver) && !ebx.is(name));
__ pop(ebx);
__ push(receiver);
__ push(name);
__ push(ebx);
// Do tail-call to runtime routine.
__ TailCallRuntime(Runtime::kGetProperty);
}
void KeyedLoadIC::GenerateMiss(MacroAssembler* masm) {
// Return address is on the stack.
__ IncrementCounter(masm->isolate()->counters()->ic_keyed_load_miss(), 1);
LoadIC_PushArgs(masm);
// Perform tail call to the entry.
__ TailCallRuntime(Runtime::kKeyedLoadIC_Miss);
}
void KeyedLoadIC::GenerateRuntimeGetProperty(MacroAssembler* masm) {
// Return address is on the stack.
Register receiver = LoadDescriptor::ReceiverRegister();
Register name = LoadDescriptor::NameRegister();
DCHECK(!ebx.is(receiver) && !ebx.is(name));
__ pop(ebx);
__ push(receiver);
__ push(name);
__ push(ebx);
// Do tail-call to runtime routine.
__ TailCallRuntime(Runtime::kKeyedGetProperty);
}
static void StoreIC_PushArgs(MacroAssembler* masm) {
Register receiver = StoreWithVectorDescriptor::ReceiverRegister();
Register name = StoreWithVectorDescriptor::NameRegister();
STATIC_ASSERT(StoreWithVectorDescriptor::kStackArgumentsCount == 3);
// Current stack layout:
// - esp[12] -- value
// - esp[8] -- slot
// - esp[4] -- vector
// - esp[0] -- return address
Register return_address = StoreWithVectorDescriptor::SlotRegister();
__ pop(return_address);
__ push(receiver);
__ push(name);
__ push(return_address);
}
void StoreIC::GenerateMiss(MacroAssembler* masm) {
// Return address is on the stack.
StoreIC_PushArgs(masm);
// Perform tail call to the entry.
__ TailCallRuntime(Runtime::kStoreIC_Miss);
}
void StoreIC::GenerateNormal(MacroAssembler* masm) {
typedef StoreWithVectorDescriptor Descriptor;
Label restore_miss;
Register receiver = Descriptor::ReceiverRegister();
Register name = Descriptor::NameRegister();
Register value = Descriptor::ValueRegister();
// Since the slot and vector values are passed on the stack we can use
// respective registers as scratch registers.
Register scratch1 = Descriptor::VectorRegister();
Register scratch2 = Descriptor::SlotRegister();
__ LoadParameterFromStack<Descriptor>(value, Descriptor::kValue);
// A lot of registers are needed for storing to slow case objects.
// Push and restore receiver but rely on GenerateDictionaryStore preserving
// the value and name.
__ push(receiver);
Register dictionary = receiver;
__ mov(dictionary, FieldOperand(receiver, JSObject::kPropertiesOffset));
GenerateDictionaryStore(masm, &restore_miss, dictionary, name, value,
scratch1, scratch2);
__ Drop(1);
Counters* counters = masm->isolate()->counters();
__ IncrementCounter(counters->ic_store_normal_hit(), 1);
__ ret(Descriptor::kStackArgumentsCount * kPointerSize);
__ bind(&restore_miss);
__ pop(receiver);
__ IncrementCounter(counters->ic_store_normal_miss(), 1);
GenerateMiss(masm);
}
void KeyedStoreIC::GenerateMiss(MacroAssembler* masm) {
// Return address is on the stack.
StoreIC_PushArgs(masm);
// Do tail-call to runtime routine.
__ TailCallRuntime(Runtime::kKeyedStoreIC_Miss);
}
void KeyedStoreIC::GenerateSlow(MacroAssembler* masm) {
// Return address is on the stack.
StoreIC_PushArgs(masm);
// Do tail-call to runtime routine.
__ TailCallRuntime(Runtime::kKeyedStoreIC_Slow);
}
#undef __
Condition CompareIC::ComputeCondition(Token::Value op) {
switch (op) {
case Token::EQ_STRICT:
case Token::EQ:
return equal;
case Token::LT:
return less;
case Token::GT:
return greater;
case Token::LTE:
return less_equal;
case Token::GTE:
return greater_equal;
default:
UNREACHABLE();
return no_condition;
}
}
bool CompareIC::HasInlinedSmiCode(Address address) {
// The address of the instruction following the call.
Address test_instruction_address =
address + Assembler::kCallTargetAddressOffset;
// If the instruction following the call is not a test al, nothing
// was inlined.
return *test_instruction_address == Assembler::kTestAlByte;
}
void PatchInlinedSmiCode(Isolate* isolate, Address address,
InlinedSmiCheck check) {
// The address of the instruction following the call.
Address test_instruction_address =
address + Assembler::kCallTargetAddressOffset;
// If the instruction following the call is not a test al, nothing
// was inlined.
if (*test_instruction_address != Assembler::kTestAlByte) {
DCHECK(*test_instruction_address == Assembler::kNopByte);
return;
}
Address delta_address = test_instruction_address + 1;
// The delta to the start of the map check instruction and the
// condition code uses at the patched jump.
uint8_t delta = *reinterpret_cast<uint8_t*>(delta_address);
if (FLAG_trace_ic) {
PrintF("[ patching ic at %p, test=%p, delta=%d\n",
static_cast<void*>(address),
static_cast<void*>(test_instruction_address), delta);
}
// Patch with a short conditional jump. Enabling means switching from a short
// jump-if-carry/not-carry to jump-if-zero/not-zero, whereas disabling is the
// reverse operation of that.
Address jmp_address = test_instruction_address - delta;
DCHECK((check == ENABLE_INLINED_SMI_CHECK)
? (*jmp_address == Assembler::kJncShortOpcode ||
*jmp_address == Assembler::kJcShortOpcode)
: (*jmp_address == Assembler::kJnzShortOpcode ||
*jmp_address == Assembler::kJzShortOpcode));
Condition cc =
(check == ENABLE_INLINED_SMI_CHECK)
? (*jmp_address == Assembler::kJncShortOpcode ? not_zero : zero)
: (*jmp_address == Assembler::kJnzShortOpcode ? not_carry : carry);
*jmp_address = static_cast<byte>(Assembler::kJccShortPrefix | cc);
}
} // namespace internal
} // namespace v8
#endif // V8_TARGET_ARCH_IA32