HELLO·Android
系统源代码
IT资讯
技术文章
我的收藏
注册
登录
-
我收藏的文章
创建代码块
我的代码块
我的账号
Oreo
|
8.0.0_r4
下载
查看原文件
收藏
根目录
external
v8
src
parsing
parser-base.h
// Copyright 2012 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #ifndef V8_PARSING_PARSER_BASE_H #define V8_PARSING_PARSER_BASE_H #include "src/ast/ast.h" #include "src/ast/scopes.h" #include "src/bailout-reason.h" #include "src/base/hashmap.h" #include "src/globals.h" #include "src/messages.h" #include "src/parsing/expression-classifier.h" #include "src/parsing/func-name-inferrer.h" #include "src/parsing/scanner.h" #include "src/parsing/token.h" namespace v8 { namespace internal { enum FunctionNameValidity { kFunctionNameIsStrictReserved, kSkipFunctionNameCheck, kFunctionNameValidityUnknown }; enum AllowLabelledFunctionStatement { kAllowLabelledFunctionStatement, kDisallowLabelledFunctionStatement, }; enum class ParseFunctionFlags { kIsNormal = 0, kIsGenerator = 1, kIsAsync = 2, kIsDefault = 4 }; static inline ParseFunctionFlags operator|(ParseFunctionFlags lhs, ParseFunctionFlags rhs) { typedef unsigned char T; return static_cast
(static_cast
(lhs) | static_cast
(rhs)); } static inline ParseFunctionFlags& operator|=(ParseFunctionFlags& lhs, const ParseFunctionFlags& rhs) { lhs = lhs | rhs; return lhs; } static inline bool operator&(ParseFunctionFlags bitfield, ParseFunctionFlags mask) { typedef unsigned char T; return static_cast
(bitfield) & static_cast
(mask); } struct FormalParametersBase { explicit FormalParametersBase(DeclarationScope* scope) : scope(scope) {} int num_parameters() const { // Don't include the rest parameter into the function's formal parameter // count (esp. the SharedFunctionInfo::internal_formal_parameter_count, // which says whether we need to create an arguments adaptor frame). return arity - has_rest; } void UpdateArityAndFunctionLength(bool is_optional, bool is_rest) { if (!is_optional && !is_rest && function_length == arity) { ++function_length; } ++arity; } DeclarationScope* scope; bool has_rest = false; bool is_simple = true; int materialized_literals_count = 0; int function_length = 0; int arity = 0; }; // ---------------------------------------------------------------------------- // The CHECK_OK macro is a convenient macro to enforce error // handling for functions that may fail (by returning !*ok). // // CAUTION: This macro appends extra statements after a call, // thus it must never be used where only a single statement // is correct (e.g. an if statement branch w/o braces)! #define CHECK_OK_CUSTOM(x, ...) ok); \ if (!*ok) return impl()->x(__VA_ARGS__); \ ((void)0 #define DUMMY ) // to make indentation work #undef DUMMY // Used in functions where the return type is ExpressionT. #define CHECK_OK CHECK_OK_CUSTOM(EmptyExpression) // Common base class template shared between parser and pre-parser. // The Impl parameter is the actual class of the parser/pre-parser, // following the Curiously Recurring Template Pattern (CRTP). // The structure of the parser objects is roughly the following: // // // A structure template containing type definitions, needed to // // avoid a cyclic dependency. // template
// struct ParserTypes; // // // The parser base object, which should just implement pure // // parser behavior. The Impl parameter is the actual derived // // class (according to CRTP), which implements impure parser // // behavior. // template
// class ParserBase { ... }; // // // And then, for each parser variant (e.g., parser, preparser, etc): // class Parser; // // template <> // class ParserTypes
{ ... }; // // class Parser : public ParserBase
{ ... }; // // The parser base object implements pure parsing, according to the // language grammar. Different parser implementations may exhibit // different parser-driven behavior that is not considered as pure // parsing, e.g., early error detection and reporting, AST generation, etc. // The ParserTypes structure encapsulates the differences in the // types used in parsing methods. E.g., Parser methods use Expression* // and PreParser methods use PreParserExpression. For any given parser // implementation class Impl, it is expected to contain the following typedefs: // // template <> // struct ParserTypes
{ // // Synonyms for ParserBase
and Impl, respectively. // typedef Base; // typedef Impl; // // TODO(nikolaos): this one will probably go away, as it is // // not related to pure parsing. // typedef Variable; // // Return types for traversing functions. // typedef Identifier; // typedef Expression; // typedef FunctionLiteral; // typedef ObjectLiteralProperty; // typedef ClassLiteralProperty; // typedef ExpressionList; // typedef ObjectPropertyList; // typedef ClassPropertyList; // typedef FormalParameters; // typedef Statement; // typedef StatementList; // typedef Block; // typedef BreakableStatement; // typedef IterationStatement; // // For constructing objects returned by the traversing functions. // typedef Factory; // // For other implementation-specific tasks. // typedef Target; // typedef TargetScope; // }; template
struct ParserTypes; template
class ParserBase { public: // Shorten type names defined by ParserTypes
. typedef ParserTypes
Types; typedef typename Types::Identifier IdentifierT; typedef typename Types::Expression ExpressionT; typedef typename Types::FunctionLiteral FunctionLiteralT; typedef typename Types::ObjectLiteralProperty ObjectLiteralPropertyT; typedef typename Types::ClassLiteralProperty ClassLiteralPropertyT; typedef typename Types::ExpressionList ExpressionListT; typedef typename Types::FormalParameters FormalParametersT; typedef typename Types::Statement StatementT; typedef typename Types::StatementList StatementListT; typedef typename Types::Block BlockT; typedef typename v8::internal::ExpressionClassifier
ExpressionClassifier; // All implementation-specific methods must be called through this. Impl* impl() { return static_cast
(this); } const Impl* impl() const { return static_cast
(this); } ParserBase(Zone* zone, Scanner* scanner, uintptr_t stack_limit, v8::Extension* extension, AstValueFactory* ast_value_factory, RuntimeCallStats* runtime_call_stats) : scope_state_(nullptr), function_state_(nullptr), extension_(extension), fni_(nullptr), ast_value_factory_(ast_value_factory), ast_node_factory_(ast_value_factory), runtime_call_stats_(runtime_call_stats), parsing_module_(false), stack_limit_(stack_limit), zone_(zone), classifier_(nullptr), scanner_(scanner), stack_overflow_(false), default_eager_compile_hint_(FunctionLiteral::kShouldLazyCompile), allow_lazy_(false), allow_natives_(false), allow_tailcalls_(false), allow_harmony_do_expressions_(false), allow_harmony_function_sent_(false), allow_harmony_async_await_(false), allow_harmony_restrictive_generators_(false), allow_harmony_trailing_commas_(false), allow_harmony_class_fields_(false) {} #define ALLOW_ACCESSORS(name) \ bool allow_##name() const { return allow_##name##_; } \ void set_allow_##name(bool allow) { allow_##name##_ = allow; } ALLOW_ACCESSORS(lazy); ALLOW_ACCESSORS(natives); ALLOW_ACCESSORS(tailcalls); ALLOW_ACCESSORS(harmony_do_expressions); ALLOW_ACCESSORS(harmony_function_sent); ALLOW_ACCESSORS(harmony_async_await); ALLOW_ACCESSORS(harmony_restrictive_generators); ALLOW_ACCESSORS(harmony_trailing_commas); ALLOW_ACCESSORS(harmony_class_fields); #undef ALLOW_ACCESSORS uintptr_t stack_limit() const { return stack_limit_; } void set_stack_limit(uintptr_t stack_limit) { stack_limit_ = stack_limit; } void set_default_eager_compile_hint( FunctionLiteral::EagerCompileHint eager_compile_hint) { default_eager_compile_hint_ = eager_compile_hint; } FunctionLiteral::EagerCompileHint default_eager_compile_hint() const { return default_eager_compile_hint_; } Zone* zone() const { return zone_; } protected: friend class v8::internal::ExpressionClassifier
>; enum AllowRestrictedIdentifiers { kAllowRestrictedIdentifiers, kDontAllowRestrictedIdentifiers }; enum LazyParsingResult { kLazyParsingComplete, kLazyParsingAborted }; enum VariableDeclarationContext { kStatementListItem, kStatement, kForStatement }; enum class FunctionBodyType { kNormal, kSingleExpression }; class Checkpoint; class ClassLiteralChecker; class ObjectLiteralChecker; // --------------------------------------------------------------------------- // ScopeState and its subclasses implement the parser's scope stack. // ScopeState keeps track of the current scope, and the outer ScopeState. The // parser's scope_state_ points to the top ScopeState. ScopeState's // constructor push on the scope stack and the destructors pop. BlockState and // FunctionState are used to hold additional per-block and per-function state. class ScopeState BASE_EMBEDDED { public: V8_INLINE Scope* scope() const { return scope_; } Zone* zone() const { return scope_->zone(); } protected: ScopeState(ScopeState** scope_stack, Scope* scope) : scope_stack_(scope_stack), outer_scope_(*scope_stack), scope_(scope) { *scope_stack = this; } ~ScopeState() { *scope_stack_ = outer_scope_; } private: ScopeState** const scope_stack_; ScopeState* const outer_scope_; Scope* const scope_; }; class BlockState final : public ScopeState { public: BlockState(ScopeState** scope_stack, Scope* scope) : ScopeState(scope_stack, scope) {} // BlockState(ScopeState**) automatically manages Scope(BLOCK_SCOPE) // allocation. // TODO(verwaest): Move to LazyBlockState class that only allocates the // scope when needed. explicit BlockState(Zone* zone, ScopeState** scope_stack) : ScopeState(scope_stack, NewScope(zone, *scope_stack)) {} void SetNonlinear() { this->scope()->SetNonlinear(); } void set_start_position(int pos) { this->scope()->set_start_position(pos); } void set_end_position(int pos) { this->scope()->set_end_position(pos); } void set_is_hidden() { this->scope()->set_is_hidden(); } Scope* FinalizedBlockScope() const { return this->scope()->FinalizeBlockScope(); } LanguageMode language_mode() const { return this->scope()->language_mode(); } private: Scope* NewScope(Zone* zone, ScopeState* outer_state) { Scope* parent = outer_state->scope(); return new (zone) Scope(zone, parent, BLOCK_SCOPE); } }; struct DestructuringAssignment { public: DestructuringAssignment(ExpressionT expression, Scope* scope) : assignment(expression), scope(scope) {} ExpressionT assignment; Scope* scope; }; class TailCallExpressionList { public: explicit TailCallExpressionList(Zone* zone) : zone_(zone), expressions_(0, zone), has_explicit_tail_calls_(false) {} const ZoneList
& expressions() const { return expressions_; } const Scanner::Location& location() const { return loc_; } bool has_explicit_tail_calls() const { return has_explicit_tail_calls_; } void Swap(TailCallExpressionList& other) { expressions_.Swap(&other.expressions_); std::swap(loc_, other.loc_); std::swap(has_explicit_tail_calls_, other.has_explicit_tail_calls_); } void AddImplicitTailCall(ExpressionT expr) { expressions_.Add(expr, zone_); } void Append(const TailCallExpressionList& other) { if (!has_explicit_tail_calls()) { loc_ = other.loc_; has_explicit_tail_calls_ = other.has_explicit_tail_calls_; } expressions_.AddAll(other.expressions_, zone_); } private: Zone* zone_; ZoneList
expressions_; Scanner::Location loc_; bool has_explicit_tail_calls_; }; // Defines whether tail call expressions are allowed or not. enum class ReturnExprContext { // We are inside return statement which is allowed to contain tail call // expressions. Tail call expressions are allowed. kInsideValidReturnStatement, // We are inside a block in which tail call expressions are allowed but // not yet inside a return statement. kInsideValidBlock, // Tail call expressions are not allowed in the following blocks. kInsideTryBlock, kInsideForInOfBody, }; class FunctionState final : public ScopeState { public: FunctionState(FunctionState** function_state_stack, ScopeState** scope_stack, DeclarationScope* scope); ~FunctionState(); DeclarationScope* scope() const { return ScopeState::scope()->AsDeclarationScope(); } int NextMaterializedLiteralIndex() { return next_materialized_literal_index_++; } int materialized_literal_count() { return next_materialized_literal_index_; } void SkipMaterializedLiterals(int count) { next_materialized_literal_index_ += count; } void AddProperty() { expected_property_count_++; } int expected_property_count() { return expected_property_count_; } FunctionKind kind() const { return scope()->function_kind(); } FunctionState* outer() const { return outer_function_state_; } void set_generator_object_variable(typename Types::Variable* variable) { DCHECK(variable != NULL); DCHECK(IsResumableFunction(kind())); generator_object_variable_ = variable; } typename Types::Variable* generator_object_variable() const { return generator_object_variable_; } void set_promise_variable(typename Types::Variable* variable) { DCHECK(variable != NULL); DCHECK(IsAsyncFunction(kind())); promise_variable_ = variable; } typename Types::Variable* promise_variable() const { return promise_variable_; } const ZoneList
& destructuring_assignments_to_rewrite() const { return destructuring_assignments_to_rewrite_; } TailCallExpressionList& tail_call_expressions() { return tail_call_expressions_; } void AddImplicitTailCallExpression(ExpressionT expression) { if (return_expr_context() == ReturnExprContext::kInsideValidReturnStatement) { tail_call_expressions_.AddImplicitTailCall(expression); } } ZoneList
* GetReportedErrorList() { return &reported_errors_; } ReturnExprContext return_expr_context() const { return return_expr_context_; } void set_return_expr_context(ReturnExprContext context) { return_expr_context_ = context; } ZoneList
* non_patterns_to_rewrite() { return &non_patterns_to_rewrite_; } bool next_function_is_parenthesized() const { return next_function_is_parenthesized_; } void set_next_function_is_parenthesized(bool parenthesized) { next_function_is_parenthesized_ = parenthesized; } bool this_function_is_parenthesized() const { return this_function_is_parenthesized_; } private: void AddDestructuringAssignment(DestructuringAssignment pair) { destructuring_assignments_to_rewrite_.Add(pair, this->zone()); } void AddNonPatternForRewriting(ExpressionT expr, bool* ok) { non_patterns_to_rewrite_.Add(expr, this->zone()); if (non_patterns_to_rewrite_.length() >= std::numeric_limits
::max()) *ok = false; } // Used to assign an index to each literal that needs materialization in // the function. Includes regexp literals, and boilerplate for object and // array literals. int next_materialized_literal_index_; // Properties count estimation. int expected_property_count_; // For generators, this variable may hold the generator object. It variable // is used by yield expressions and return statements. It is not necessary // for generator functions to have this variable set. Variable* generator_object_variable_; // For async functions, this variable holds a temporary for the Promise // being created as output of the async function. Variable* promise_variable_; FunctionState** function_state_stack_; FunctionState* outer_function_state_; ZoneList
destructuring_assignments_to_rewrite_; TailCallExpressionList tail_call_expressions_; ReturnExprContext return_expr_context_; ZoneList
non_patterns_to_rewrite_; ZoneList
reported_errors_; // If true, the next (and immediately following) function literal is // preceded by a parenthesis. bool next_function_is_parenthesized_; // The value of the parents' next_function_is_parenthesized_, as it applies // to this function. Filled in by constructor. bool this_function_is_parenthesized_; friend Impl; friend class Checkpoint; }; // This scope sets current ReturnExprContext to given value. class ReturnExprScope { public: explicit ReturnExprScope(FunctionState* function_state, ReturnExprContext return_expr_context) : function_state_(function_state), sav_return_expr_context_(function_state->return_expr_context()) { // Don't update context if we are requested to enable tail call // expressions but current block does not allow them. if (return_expr_context != ReturnExprContext::kInsideValidReturnStatement || sav_return_expr_context_ == ReturnExprContext::kInsideValidBlock) { function_state->set_return_expr_context(return_expr_context); } } ~ReturnExprScope() { function_state_->set_return_expr_context(sav_return_expr_context_); } private: FunctionState* function_state_; ReturnExprContext sav_return_expr_context_; }; // Collects all return expressions at tail call position in this scope // to a separate list. class CollectExpressionsInTailPositionToListScope { public: CollectExpressionsInTailPositionToListScope(FunctionState* function_state, TailCallExpressionList* list) : function_state_(function_state), list_(list) { function_state->tail_call_expressions().Swap(*list_); } ~CollectExpressionsInTailPositionToListScope() { function_state_->tail_call_expressions().Swap(*list_); } private: FunctionState* function_state_; TailCallExpressionList* list_; }; // Annoyingly, arrow functions first parse as comma expressions, then when we // see the => we have to go back and reinterpret the arguments as being formal // parameters. To do so we need to reset some of the parser state back to // what it was before the arguments were first seen. class Checkpoint BASE_EMBEDDED { public: explicit Checkpoint(ParserBase* parser) { function_state_ = parser->function_state_; next_materialized_literal_index_ = function_state_->next_materialized_literal_index_; expected_property_count_ = function_state_->expected_property_count_; } void Restore(int* materialized_literal_index_delta) { *materialized_literal_index_delta = function_state_->next_materialized_literal_index_ - next_materialized_literal_index_; function_state_->next_materialized_literal_index_ = next_materialized_literal_index_; function_state_->expected_property_count_ = expected_property_count_; } private: FunctionState* function_state_; int next_materialized_literal_index_; int expected_property_count_; }; struct DeclarationDescriptor { enum Kind { NORMAL, PARAMETER }; Scope* scope; Scope* hoist_scope; VariableMode mode; int declaration_pos; int initialization_pos; Kind declaration_kind; }; struct DeclarationParsingResult { struct Declaration { Declaration(ExpressionT pattern, int initializer_position, ExpressionT initializer) : pattern(pattern), initializer_position(initializer_position), initializer(initializer) {} ExpressionT pattern; int initializer_position; ExpressionT initializer; }; DeclarationParsingResult() : declarations(4), first_initializer_loc(Scanner::Location::invalid()), bindings_loc(Scanner::Location::invalid()) {} DeclarationDescriptor descriptor; List
declarations; Scanner::Location first_initializer_loc; Scanner::Location bindings_loc; }; struct CatchInfo { public: explicit CatchInfo(ParserBase* parser) : name(parser->impl()->EmptyIdentifier()), variable(nullptr), pattern(parser->impl()->EmptyExpression()), scope(nullptr), init_block(parser->impl()->NullBlock()), inner_block(parser->impl()->NullBlock()), for_promise_reject(false), bound_names(1, parser->zone()), tail_call_expressions(parser->zone()) {} IdentifierT name; Variable* variable; ExpressionT pattern; Scope* scope; BlockT init_block; BlockT inner_block; bool for_promise_reject; ZoneList
bound_names; TailCallExpressionList tail_call_expressions; }; struct ForInfo { public: explicit ForInfo(ParserBase* parser) : bound_names(1, parser->zone()), mode(ForEachStatement::ENUMERATE), position(kNoSourcePosition), parsing_result() {} ZoneList
bound_names; ForEachStatement::VisitMode mode; int position; DeclarationParsingResult parsing_result; }; struct ClassInfo { public: explicit ClassInfo(ParserBase* parser) : proxy(nullptr), extends(parser->impl()->EmptyExpression()), properties(parser->impl()->NewClassPropertyList(4)), instance_field_initializers(parser->impl()->NewExpressionList(0)), constructor(parser->impl()->EmptyFunctionLiteral()), has_seen_constructor(false), static_initializer_var(nullptr) {} VariableProxy* proxy; ExpressionT extends; typename Types::ClassPropertyList properties; ExpressionListT instance_field_initializers; FunctionLiteralT constructor; bool has_seen_constructor; Variable* static_initializer_var; }; DeclarationScope* NewScriptScope() const { return new (zone()) DeclarationScope(zone(), ast_value_factory()); } DeclarationScope* NewVarblockScope() const { return new (zone()) DeclarationScope(zone(), scope(), BLOCK_SCOPE); } ModuleScope* NewModuleScope(DeclarationScope* parent) const { return new (zone()) ModuleScope(parent, ast_value_factory()); } DeclarationScope* NewEvalScope(Scope* parent) const { return new (zone()) DeclarationScope(zone(), parent, EVAL_SCOPE); } Scope* NewScope(ScopeType scope_type) const { return NewScopeWithParent(scope(), scope_type); } // This constructor should only be used when absolutely necessary. Most scopes // should automatically use scope() as parent, and be fine with // NewScope(ScopeType) above. Scope* NewScopeWithParent(Scope* parent, ScopeType scope_type) const { // Must always use the specific constructors for the blacklisted scope // types. DCHECK_NE(FUNCTION_SCOPE, scope_type); DCHECK_NE(SCRIPT_SCOPE, scope_type); DCHECK_NE(MODULE_SCOPE, scope_type); DCHECK_NOT_NULL(parent); return new (zone()) Scope(zone(), parent, scope_type); } DeclarationScope* NewFunctionScope(FunctionKind kind) const { DCHECK(ast_value_factory()); DeclarationScope* result = new (zone()) DeclarationScope(zone(), scope(), FUNCTION_SCOPE, kind); // TODO(verwaest): Move into the DeclarationScope constructor. if (!IsArrowFunction(kind)) { result->DeclareDefaultFunctionVariables(ast_value_factory()); } return result; } V8_INLINE DeclarationScope* GetDeclarationScope() const { return scope()->GetDeclarationScope(); } V8_INLINE DeclarationScope* GetClosureScope() const { return scope()->GetClosureScope(); } Scanner* scanner() const { return scanner_; } AstValueFactory* ast_value_factory() const { return ast_value_factory_; } int position() const { return scanner_->location().beg_pos; } int peek_position() const { return scanner_->peek_location().beg_pos; } bool stack_overflow() const { return stack_overflow_; } void set_stack_overflow() { stack_overflow_ = true; } INLINE(Token::Value peek()) { if (stack_overflow_) return Token::ILLEGAL; return scanner()->peek(); } INLINE(Token::Value PeekAhead()) { if (stack_overflow_) return Token::ILLEGAL; return scanner()->PeekAhead(); } INLINE(Token::Value Next()) { if (stack_overflow_) return Token::ILLEGAL; { if (GetCurrentStackPosition() < stack_limit_) { // Any further calls to Next or peek will return the illegal token. // The current call must return the next token, which might already // have been peek'ed. stack_overflow_ = true; } } return scanner()->Next(); } void Consume(Token::Value token) { Token::Value next = Next(); USE(next); USE(token); DCHECK(next == token); } bool Check(Token::Value token) { Token::Value next = peek(); if (next == token) { Consume(next); return true; } return false; } void Expect(Token::Value token, bool* ok) { Token::Value next = Next(); if (next != token) { ReportUnexpectedToken(next); *ok = false; } } void ExpectSemicolon(bool* ok) { // Check for automatic semicolon insertion according to // the rules given in ECMA-262, section 7.9, page 21. Token::Value tok = peek(); if (tok == Token::SEMICOLON) { Next(); return; } if (scanner()->HasAnyLineTerminatorBeforeNext() || tok == Token::RBRACE || tok == Token::EOS) { return; } Expect(Token::SEMICOLON, ok); } // Dummy functions, just useful as arguments to CHECK_OK_CUSTOM. static void Void() {} template
static T Return(T result) { return result; } bool is_any_identifier(Token::Value token) { return token == Token::IDENTIFIER || token == Token::ENUM || token == Token::AWAIT || token == Token::ASYNC || token == Token::FUTURE_STRICT_RESERVED_WORD || token == Token::LET || token == Token::STATIC || token == Token::YIELD; } bool peek_any_identifier() { return is_any_identifier(peek()); } bool CheckContextualKeyword(Vector
keyword) { if (PeekContextualKeyword(keyword)) { Consume(Token::IDENTIFIER); return true; } return false; } bool PeekContextualKeyword(Vector
keyword) { return peek() == Token::IDENTIFIER && scanner()->is_next_contextual_keyword(keyword); } void ExpectMetaProperty(Vector
property_name, const char* full_name, int pos, bool* ok); void ExpectContextualKeyword(Vector
keyword, bool* ok) { Expect(Token::IDENTIFIER, CHECK_OK_CUSTOM(Void)); if (!scanner()->is_literal_contextual_keyword(keyword)) { ReportUnexpectedToken(scanner()->current_token()); *ok = false; } } bool CheckInOrOf(ForEachStatement::VisitMode* visit_mode) { if (Check(Token::IN)) { *visit_mode = ForEachStatement::ENUMERATE; return true; } else if (CheckContextualKeyword(CStrVector("of"))) { *visit_mode = ForEachStatement::ITERATE; return true; } return false; } bool PeekInOrOf() { return peek() == Token::IN || PeekContextualKeyword(CStrVector("of")); } // Checks whether an octal literal was last seen between beg_pos and end_pos. // If so, reports an error. Only called for strict mode and template strings. void CheckOctalLiteral(int beg_pos, int end_pos, MessageTemplate::Template message, bool* ok) { Scanner::Location octal = scanner()->octal_position(); if (octal.IsValid() && beg_pos <= octal.beg_pos && octal.end_pos <= end_pos) { impl()->ReportMessageAt(octal, message); scanner()->clear_octal_position(); *ok = false; } } // for now, this check just collects statistics. void CheckDecimalLiteralWithLeadingZero(int beg_pos, int end_pos) { Scanner::Location token_location = scanner()->decimal_with_leading_zero_position(); if (token_location.IsValid() && beg_pos <= token_location.beg_pos && token_location.end_pos <= end_pos) { scanner()->clear_decimal_with_leading_zero_position(); impl()->CountUsage(v8::Isolate::kDecimalWithLeadingZeroInStrictMode); } } inline void CheckStrictOctalLiteral(int beg_pos, int end_pos, bool* ok) { CheckOctalLiteral(beg_pos, end_pos, MessageTemplate::kStrictOctalLiteral, ok); } inline void CheckTemplateOctalLiteral(int beg_pos, int end_pos, bool* ok) { CheckOctalLiteral(beg_pos, end_pos, MessageTemplate::kTemplateOctalLiteral, ok); } void CheckDestructuringElement(ExpressionT element, int beg_pos, int end_pos); // Checking the name of a function literal. This has to be done after parsing // the function, since the function can declare itself strict. void CheckFunctionName(LanguageMode language_mode, IdentifierT function_name, FunctionNameValidity function_name_validity, const Scanner::Location& function_name_loc, bool* ok) { if (function_name_validity == kSkipFunctionNameCheck) return; // The function name needs to be checked in strict mode. if (is_sloppy(language_mode)) return; if (impl()->IsEvalOrArguments(function_name)) { impl()->ReportMessageAt(function_name_loc, MessageTemplate::kStrictEvalArguments); *ok = false; return; } if (function_name_validity == kFunctionNameIsStrictReserved) { impl()->ReportMessageAt(function_name_loc, MessageTemplate::kUnexpectedStrictReserved); *ok = false; return; } } // Determine precedence of given token. static int Precedence(Token::Value token, bool accept_IN) { if (token == Token::IN && !accept_IN) return 0; // 0 precedence will terminate binary expression parsing return Token::Precedence(token); } typename Types::Factory* factory() { return &ast_node_factory_; } DeclarationScope* GetReceiverScope() const { return scope()->GetReceiverScope(); } LanguageMode language_mode() { return scope()->language_mode(); } void RaiseLanguageMode(LanguageMode mode) { LanguageMode old = scope()->language_mode(); impl()->SetLanguageMode(scope(), old > mode ? old : mode); } bool is_generator() const { return IsGeneratorFunction(function_state_->kind()); } bool is_async_function() const { return IsAsyncFunction(function_state_->kind()); } bool is_resumable() const { return IsResumableFunction(function_state_->kind()); } // Report syntax errors. void ReportMessage(MessageTemplate::Template message) { Scanner::Location source_location = scanner()->location(); impl()->ReportMessageAt(source_location, message, static_cast
(nullptr), kSyntaxError); } template
void ReportMessage(MessageTemplate::Template message, T arg, ParseErrorType error_type = kSyntaxError) { Scanner::Location source_location = scanner()->location(); impl()->ReportMessageAt(source_location, message, arg, error_type); } void ReportMessageAt(Scanner::Location location, MessageTemplate::Template message, ParseErrorType error_type) { impl()->ReportMessageAt(location, message, static_cast
(nullptr), error_type); } void GetUnexpectedTokenMessage( Token::Value token, MessageTemplate::Template* message, Scanner::Location* location, const char** arg, MessageTemplate::Template default_ = MessageTemplate::kUnexpectedToken); void ReportUnexpectedToken(Token::Value token); void ReportUnexpectedTokenAt( Scanner::Location location, Token::Value token, MessageTemplate::Template message = MessageTemplate::kUnexpectedToken); void ReportClassifierError( const typename ExpressionClassifier::Error& error) { impl()->ReportMessageAt(error.location, error.message, error.arg, error.type); } void ValidateExpression(bool* ok) { if (!classifier()->is_valid_expression()) { ReportClassifierError(classifier()->expression_error()); *ok = false; } } void ValidateFormalParameterInitializer(bool* ok) { if (!classifier()->is_valid_formal_parameter_initializer()) { ReportClassifierError(classifier()->formal_parameter_initializer_error()); *ok = false; } } void ValidateBindingPattern(bool* ok) { if (!classifier()->is_valid_binding_pattern()) { ReportClassifierError(classifier()->binding_pattern_error()); *ok = false; } } void ValidateAssignmentPattern(bool* ok) { if (!classifier()->is_valid_assignment_pattern()) { ReportClassifierError(classifier()->assignment_pattern_error()); *ok = false; } } void ValidateFormalParameters(LanguageMode language_mode, bool allow_duplicates, bool* ok) { if (!allow_duplicates && !classifier()->is_valid_formal_parameter_list_without_duplicates()) { ReportClassifierError(classifier()->duplicate_formal_parameter_error()); *ok = false; } else if (is_strict(language_mode) && !classifier()->is_valid_strict_mode_formal_parameters()) { ReportClassifierError(classifier()->strict_mode_formal_parameter_error()); *ok = false; } } bool IsValidArrowFormalParametersStart(Token::Value token) { return is_any_identifier(token) || token == Token::LPAREN; } void ValidateArrowFormalParameters(ExpressionT expr, bool parenthesized_formals, bool is_async, bool* ok) { if (classifier()->is_valid_binding_pattern()) { // A simple arrow formal parameter: IDENTIFIER => BODY. if (!impl()->IsIdentifier(expr)) { impl()->ReportMessageAt(scanner()->location(), MessageTemplate::kUnexpectedToken, Token::String(scanner()->current_token())); *ok = false; } } else if (!classifier()->is_valid_arrow_formal_parameters()) { // If after parsing the expr, we see an error but the expression is // neither a valid binding pattern nor a valid parenthesized formal // parameter list, show the "arrow formal parameters" error if the formals // started with a parenthesis, and the binding pattern error otherwise. const typename ExpressionClassifier::Error& error = parenthesized_formals ? classifier()->arrow_formal_parameters_error() : classifier()->binding_pattern_error(); ReportClassifierError(error); *ok = false; } if (is_async && !classifier()->is_valid_async_arrow_formal_parameters()) { const typename ExpressionClassifier::Error& error = classifier()->async_arrow_formal_parameters_error(); ReportClassifierError(error); *ok = false; } } void ValidateLetPattern(bool* ok) { if (!classifier()->is_valid_let_pattern()) { ReportClassifierError(classifier()->let_pattern_error()); *ok = false; } } void ExpressionUnexpectedToken() { MessageTemplate::Template message = MessageTemplate::kUnexpectedToken; const char* arg; Scanner::Location location = scanner()->peek_location(); GetUnexpectedTokenMessage(peek(), &message, &location, &arg); classifier()->RecordExpressionError(location, message, arg); } void BindingPatternUnexpectedToken() { MessageTemplate::Template message = MessageTemplate::kUnexpectedToken; const char* arg; Scanner::Location location = scanner()->peek_location(); GetUnexpectedTokenMessage(peek(), &message, &location, &arg); classifier()->RecordBindingPatternError(location, message, arg); } void ArrowFormalParametersUnexpectedToken() { MessageTemplate::Template message = MessageTemplate::kUnexpectedToken; const char* arg; Scanner::Location location = scanner()->peek_location(); GetUnexpectedTokenMessage(peek(), &message, &location, &arg); classifier()->RecordArrowFormalParametersError(location, message, arg); } // Recursive descent functions. // All ParseXXX functions take as the last argument an *ok parameter // which is set to false if parsing failed; it is unchanged otherwise. // By making the 'exception handling' explicit, we are forced to check // for failure at the call sites. The family of CHECK_OK* macros can // be useful for this. // Parses an identifier that is valid for the current scope, in particular it // fails on strict mode future reserved keywords in a strict scope. If // allow_eval_or_arguments is kAllowEvalOrArguments, we allow "eval" or // "arguments" as identifier even in strict mode (this is needed in cases like // "var foo = eval;"). IdentifierT ParseIdentifier(AllowRestrictedIdentifiers, bool* ok); IdentifierT ParseAndClassifyIdentifier(bool* ok); // Parses an identifier or a strict mode future reserved word, and indicate // whether it is strict mode future reserved. Allows passing in function_kind // for the case of parsing the identifier in a function expression, where the // relevant "function_kind" bit is of the function being parsed, not the // containing function. IdentifierT ParseIdentifierOrStrictReservedWord(FunctionKind function_kind, bool* is_strict_reserved, bool* ok); IdentifierT ParseIdentifierOrStrictReservedWord(bool* is_strict_reserved, bool* ok) { return ParseIdentifierOrStrictReservedWord(function_state_->kind(), is_strict_reserved, ok); } IdentifierT ParseIdentifierName(bool* ok); ExpressionT ParseRegExpLiteral(bool* ok); ExpressionT ParsePrimaryExpression(bool* is_async, bool* ok); ExpressionT ParsePrimaryExpression(bool* ok) { bool is_async; return ParsePrimaryExpression(&is_async, ok); } // This method wraps the parsing of the expression inside a new expression // classifier and calls RewriteNonPattern if parsing is successful. // It should be used whenever we're parsing an expression that will be // used as a non-pattern (i.e., in most cases). V8_INLINE ExpressionT ParseExpression(bool accept_IN, bool* ok); // This method does not wrap the parsing of the expression inside a // new expression classifier; it uses the top-level classifier instead. // It should be used whenever we're parsing something with the "cover" // grammar that recognizes both patterns and non-patterns (which roughly // corresponds to what's inside the parentheses generated by the symbol // "CoverParenthesizedExpressionAndArrowParameterList" in the ES 2017 // specification). ExpressionT ParseExpressionCoverGrammar(bool accept_IN, bool* ok); ExpressionT ParseArrayLiteral(bool* ok); enum class PropertyKind { kAccessorProperty, kValueProperty, kShorthandProperty, kMethodProperty, kClassField, kNotSet }; bool SetPropertyKindFromToken(Token::Value token, PropertyKind* kind); ExpressionT ParsePropertyName(IdentifierT* name, PropertyKind* kind, bool* is_generator, bool* is_get, bool* is_set, bool* is_async, bool* is_computed_name, bool* ok); ExpressionT ParseObjectLiteral(bool* ok); ClassLiteralPropertyT ParseClassPropertyDefinition( ClassLiteralChecker* checker, bool has_extends, bool* is_computed_name, bool* has_seen_constructor, bool* ok); FunctionLiteralT ParseClassFieldForInitializer(bool has_initializer, bool* ok); ObjectLiteralPropertyT ParseObjectPropertyDefinition( ObjectLiteralChecker* checker, bool* is_computed_name, bool* ok); ExpressionListT ParseArguments(Scanner::Location* first_spread_pos, bool maybe_arrow, bool* ok); ExpressionListT ParseArguments(Scanner::Location* first_spread_pos, bool* ok) { return ParseArguments(first_spread_pos, false, ok); } ExpressionT ParseAssignmentExpression(bool accept_IN, bool* ok); ExpressionT ParseYieldExpression(bool accept_IN, bool* ok); ExpressionT ParseConditionalExpression(bool accept_IN, bool* ok); ExpressionT ParseBinaryExpression(int prec, bool accept_IN, bool* ok); ExpressionT ParseUnaryExpression(bool* ok); ExpressionT ParsePostfixExpression(bool* ok); ExpressionT ParseLeftHandSideExpression(bool* ok); ExpressionT ParseMemberWithNewPrefixesExpression(bool* is_async, bool* ok); ExpressionT ParseMemberExpression(bool* is_async, bool* ok); ExpressionT ParseMemberExpressionContinuation(ExpressionT expression, bool* is_async, bool* ok); ExpressionT ParseArrowFunctionLiteral(bool accept_IN, const FormalParametersT& parameters, bool* ok); void ParseAsyncFunctionBody(Scope* scope, StatementListT body, FunctionKind kind, FunctionBodyType type, bool accept_IN, int pos, bool* ok); ExpressionT ParseAsyncFunctionLiteral(bool* ok); ExpressionT ParseClassLiteral(IdentifierT name, Scanner::Location class_name_location, bool name_is_strict_reserved, int class_token_pos, bool* ok); ExpressionT ParseTemplateLiteral(ExpressionT tag, int start, bool* ok); ExpressionT ParseSuperExpression(bool is_new, bool* ok); ExpressionT ParseNewTargetExpression(bool* ok); void ParseFormalParameter(FormalParametersT* parameters, bool* ok); void ParseFormalParameterList(FormalParametersT* parameters, bool* ok); void CheckArityRestrictions(int param_count, FunctionKind function_type, bool has_rest, int formals_start_pos, int formals_end_pos, bool* ok); BlockT ParseVariableDeclarations(VariableDeclarationContext var_context, DeclarationParsingResult* parsing_result, ZoneList
* names, bool* ok); StatementT ParseAsyncFunctionDeclaration(ZoneList
* names, bool default_export, bool* ok); StatementT ParseFunctionDeclaration(bool* ok); StatementT ParseHoistableDeclaration(ZoneList
* names, bool default_export, bool* ok); StatementT ParseHoistableDeclaration(int pos, ParseFunctionFlags flags, ZoneList
* names, bool default_export, bool* ok); StatementT ParseClassDeclaration(ZoneList
* names, bool default_export, bool* ok); StatementT ParseNativeDeclaration(bool* ok); // Under some circumstances, we allow preparsing to abort if the preparsed // function is "long and trivial", and fully parse instead. Our current // definition of "long and trivial" is: // - over kLazyParseTrialLimit statements // - all starting with an identifier (i.e., no if, for, while, etc.) static const int kLazyParseTrialLimit = 200; // TODO(nikolaos, marja): The first argument should not really be passed // by value. The method is expected to add the parsed statements to the // list. This works because in the case of the parser, StatementListT is // a pointer whereas the preparser does not really modify the body. V8_INLINE void ParseStatementList(StatementListT body, int end_token, bool* ok) { LazyParsingResult result = ParseStatementList(body, end_token, false, ok); USE(result); DCHECK_EQ(result, kLazyParsingComplete); } LazyParsingResult ParseStatementList(StatementListT body, int end_token, bool may_abort, bool* ok); StatementT ParseStatementListItem(bool* ok); StatementT ParseStatement(ZoneList
* labels, AllowLabelledFunctionStatement allow_function, bool* ok); StatementT ParseStatementAsUnlabelled(ZoneList
* labels, bool* ok); BlockT ParseBlock(ZoneList
* labels, bool* ok); // Parse a SubStatement in strict mode, or with an extra block scope in // sloppy mode to handle // ES#sec-functiondeclarations-in-ifstatement-statement-clauses // The legacy parameter indicates whether function declarations are // banned by the ES2015 specification in this location, and they are being // permitted here to match previous V8 behavior. StatementT ParseScopedStatement(ZoneList
* labels, bool legacy, bool* ok); StatementT ParseVariableStatement(VariableDeclarationContext var_context, ZoneList
* names, bool* ok); // Magical syntax support. ExpressionT ParseV8Intrinsic(bool* ok); ExpressionT ParseDoExpression(bool* ok); StatementT ParseDebuggerStatement(bool* ok); StatementT ParseExpressionOrLabelledStatement( ZoneList
* labels, AllowLabelledFunctionStatement allow_function, bool* ok); StatementT ParseIfStatement(ZoneList
* labels, bool* ok); StatementT ParseContinueStatement(bool* ok); StatementT ParseBreakStatement(ZoneList
* labels, bool* ok); StatementT ParseReturnStatement(bool* ok); StatementT ParseWithStatement(ZoneList
* labels, bool* ok); StatementT ParseDoWhileStatement(ZoneList
* labels, bool* ok); StatementT ParseWhileStatement(ZoneList
* labels, bool* ok); StatementT ParseThrowStatement(bool* ok); StatementT ParseSwitchStatement(ZoneList
* labels, bool* ok); StatementT ParseTryStatement(bool* ok); StatementT ParseForStatement(ZoneList
* labels, bool* ok); bool IsNextLetKeyword(); bool IsTrivialExpression(); // Checks if the expression is a valid reference expression (e.g., on the // left-hand side of assignments). Although ruled out by ECMA as early errors, // we allow calls for web compatibility and rewrite them to a runtime throw. ExpressionT CheckAndRewriteReferenceExpression( ExpressionT expression, int beg_pos, int end_pos, MessageTemplate::Template message, bool* ok); ExpressionT CheckAndRewriteReferenceExpression( ExpressionT expression, int beg_pos, int end_pos, MessageTemplate::Template message, ParseErrorType type, bool* ok); bool IsValidReferenceExpression(ExpressionT expression); bool IsAssignableIdentifier(ExpressionT expression) { if (!impl()->IsIdentifier(expression)) return false; if (is_strict(language_mode()) && impl()->IsEvalOrArguments(impl()->AsIdentifier(expression))) { return false; } return true; } bool IsValidPattern(ExpressionT expression) { return expression->IsObjectLiteral() || expression->IsArrayLiteral(); } // Keep track of eval() calls since they disable all local variable // optimizations. This checks if expression is an eval call, and if yes, // forwards the information to scope. Call::PossiblyEval CheckPossibleEvalCall(ExpressionT expression, Scope* scope) { if (impl()->IsIdentifier(expression) && impl()->IsEval(impl()->AsIdentifier(expression))) { scope->RecordEvalCall(); if (is_sloppy(scope->language_mode())) { // For sloppy scopes we also have to record the call at function level, // in case it includes declarations that will be hoisted. scope->GetDeclarationScope()->RecordEvalCall(); } return Call::IS_POSSIBLY_EVAL; } return Call::NOT_EVAL; } // Validation per ES6 object literals. class ObjectLiteralChecker { public: explicit ObjectLiteralChecker(ParserBase* parser) : parser_(parser), has_seen_proto_(false) {} void CheckDuplicateProto(Token::Value property); private: bool IsProto() { return this->scanner()->LiteralMatches("__proto__", 9); } ParserBase* parser() const { return parser_; } Scanner* scanner() const { return parser_->scanner(); } ParserBase* parser_; bool has_seen_proto_; }; // Validation per ES6 class literals. class ClassLiteralChecker { public: explicit ClassLiteralChecker(ParserBase* parser) : parser_(parser), has_seen_constructor_(false) {} void CheckClassMethodName(Token::Value property, PropertyKind type, bool is_generator, bool is_async, bool is_static, bool* ok); private: bool IsConstructor() { return this->scanner()->LiteralMatches("constructor", 11); } bool IsPrototype() { return this->scanner()->LiteralMatches("prototype", 9); } ParserBase* parser() const { return parser_; } Scanner* scanner() const { return parser_->scanner(); } ParserBase* parser_; bool has_seen_constructor_; }; ModuleDescriptor* module() const { return scope()->AsModuleScope()->module(); } Scope* scope() const { return scope_state_->scope(); } // Stack of expression classifiers. // The top of the stack is always pointed to by classifier(). V8_INLINE ExpressionClassifier* classifier() const { DCHECK_NOT_NULL(classifier_); return classifier_; } // Accumulates the classifier that is on top of the stack (inner) to // the one that is right below (outer) and pops the inner. V8_INLINE void Accumulate(unsigned productions, bool merge_non_patterns = true) { DCHECK_NOT_NULL(classifier_); ExpressionClassifier* previous = classifier_->previous(); DCHECK_NOT_NULL(previous); previous->Accumulate(classifier_, productions, merge_non_patterns); classifier_ = previous; } // Pops and discards the classifier that is on top of the stack // without accumulating. V8_INLINE void Discard() { DCHECK_NOT_NULL(classifier_); classifier_->Discard(); classifier_ = classifier_->previous(); } // Accumulate errors that can be arbitrarily deep in an expression. // These correspond to the ECMAScript spec's 'Contains' operation // on productions. This includes: // // - YieldExpression is disallowed in arrow parameters in a generator. // - AwaitExpression is disallowed in arrow parameters in an async function. // - AwaitExpression is disallowed in async arrow parameters. // V8_INLINE void AccumulateFormalParameterContainmentErrors() { Accumulate(ExpressionClassifier::FormalParameterInitializerProduction | ExpressionClassifier::AsyncArrowFormalParametersProduction); } // Parser base's protected field members. ScopeState* scope_state_; // Scope stack. FunctionState* function_state_; // Function state stack. v8::Extension* extension_; FuncNameInferrer* fni_; AstValueFactory* ast_value_factory_; // Not owned. typename Types::Factory ast_node_factory_; RuntimeCallStats* runtime_call_stats_; bool parsing_module_; uintptr_t stack_limit_; // Parser base's private field members. private: Zone* zone_; ExpressionClassifier* classifier_; Scanner* scanner_; bool stack_overflow_; FunctionLiteral::EagerCompileHint default_eager_compile_hint_; bool allow_lazy_; bool allow_natives_; bool allow_tailcalls_; bool allow_harmony_do_expressions_; bool allow_harmony_function_sent_; bool allow_harmony_async_await_; bool allow_harmony_restrictive_generators_; bool allow_harmony_trailing_commas_; bool allow_harmony_class_fields_; friend class DiscardableZoneScope; }; template
ParserBase
::FunctionState::FunctionState( FunctionState** function_state_stack, ScopeState** scope_stack, DeclarationScope* scope) : ScopeState(scope_stack, scope), next_materialized_literal_index_(0), expected_property_count_(0), generator_object_variable_(nullptr), promise_variable_(nullptr), function_state_stack_(function_state_stack), outer_function_state_(*function_state_stack), destructuring_assignments_to_rewrite_(16, scope->zone()), tail_call_expressions_(scope->zone()), return_expr_context_(ReturnExprContext::kInsideValidBlock), non_patterns_to_rewrite_(0, scope->zone()), reported_errors_(16, scope->zone()), next_function_is_parenthesized_(false), this_function_is_parenthesized_(false) { *function_state_stack = this; if (outer_function_state_) { this_function_is_parenthesized_ = outer_function_state_->next_function_is_parenthesized_; outer_function_state_->next_function_is_parenthesized_ = false; } } template
ParserBase
::FunctionState::~FunctionState() { *function_state_stack_ = outer_function_state_; } template
void ParserBase
::GetUnexpectedTokenMessage( Token::Value token, MessageTemplate::Template* message, Scanner::Location* location, const char** arg, MessageTemplate::Template default_) { *arg = nullptr; switch (token) { case Token::EOS: *message = MessageTemplate::kUnexpectedEOS; break; case Token::SMI: case Token::NUMBER: *message = MessageTemplate::kUnexpectedTokenNumber; break; case Token::STRING: *message = MessageTemplate::kUnexpectedTokenString; break; case Token::IDENTIFIER: *message = MessageTemplate::kUnexpectedTokenIdentifier; break; case Token::AWAIT: case Token::ENUM: *message = MessageTemplate::kUnexpectedReserved; break; case Token::LET: case Token::STATIC: case Token::YIELD: case Token::FUTURE_STRICT_RESERVED_WORD: *message = is_strict(language_mode()) ? MessageTemplate::kUnexpectedStrictReserved : MessageTemplate::kUnexpectedTokenIdentifier; break; case Token::TEMPLATE_SPAN: case Token::TEMPLATE_TAIL: *message = MessageTemplate::kUnexpectedTemplateString; break; case Token::ESCAPED_STRICT_RESERVED_WORD: case Token::ESCAPED_KEYWORD: *message = MessageTemplate::kInvalidEscapedReservedWord; break; case Token::ILLEGAL: if (scanner()->has_error()) { *message = scanner()->error(); *location = scanner()->error_location(); } else { *message = MessageTemplate::kInvalidOrUnexpectedToken; } break; case Token::REGEXP_LITERAL: *message = MessageTemplate::kUnexpectedTokenRegExp; break; default: const char* name = Token::String(token); DCHECK(name != NULL); *arg = name; break; } } template
void ParserBase
::ReportUnexpectedToken(Token::Value token) { return ReportUnexpectedTokenAt(scanner_->location(), token); } template
void ParserBase
::ReportUnexpectedTokenAt( Scanner::Location source_location, Token::Value token, MessageTemplate::Template message) { const char* arg; GetUnexpectedTokenMessage(token, &message, &source_location, &arg); impl()->ReportMessageAt(source_location, message, arg); } template
typename ParserBase
::IdentifierT ParserBase
::ParseIdentifier( AllowRestrictedIdentifiers allow_restricted_identifiers, bool* ok) { ExpressionClassifier classifier(this); auto result = ParseAndClassifyIdentifier(CHECK_OK_CUSTOM(EmptyIdentifier)); if (allow_restricted_identifiers == kDontAllowRestrictedIdentifiers) { ValidateAssignmentPattern(CHECK_OK_CUSTOM(EmptyIdentifier)); ValidateBindingPattern(CHECK_OK_CUSTOM(EmptyIdentifier)); } return result; } template
typename ParserBase
::IdentifierT ParserBase
::ParseAndClassifyIdentifier(bool* ok) { Token::Value next = Next(); if (next == Token::IDENTIFIER || next == Token::ASYNC || (next == Token::AWAIT && !parsing_module_ && !is_async_function())) { IdentifierT name = impl()->GetSymbol(); // When this function is used to read a formal parameter, we don't always // know whether the function is going to be strict or sloppy. Indeed for // arrow functions we don't always know that the identifier we are reading // is actually a formal parameter. Therefore besides the errors that we // must detect because we know we're in strict mode, we also record any // error that we might make in the future once we know the language mode. if (impl()->IsEvalOrArguments(name)) { classifier()->RecordStrictModeFormalParameterError( scanner()->location(), MessageTemplate::kStrictEvalArguments); if (is_strict(language_mode())) { classifier()->RecordBindingPatternError( scanner()->location(), MessageTemplate::kStrictEvalArguments); } } else if (next == Token::AWAIT) { classifier()->RecordAsyncArrowFormalParametersError( scanner()->location(), MessageTemplate::kAwaitBindingIdentifier); } if (classifier()->duplicate_finder() != nullptr && scanner()->FindSymbol(classifier()->duplicate_finder(), 1) != 0) { classifier()->RecordDuplicateFormalParameterError(scanner()->location()); } return name; } else if (is_sloppy(language_mode()) && (next == Token::FUTURE_STRICT_RESERVED_WORD || next == Token::ESCAPED_STRICT_RESERVED_WORD || next == Token::LET || next == Token::STATIC || (next == Token::YIELD && !is_generator()))) { classifier()->RecordStrictModeFormalParameterError( scanner()->location(), MessageTemplate::kUnexpectedStrictReserved); if (next == Token::ESCAPED_STRICT_RESERVED_WORD && is_strict(language_mode())) { ReportUnexpectedToken(next); *ok = false; return impl()->EmptyIdentifier(); } if (next == Token::LET || (next == Token::ESCAPED_STRICT_RESERVED_WORD && scanner()->is_literal_contextual_keyword(CStrVector("let")))) { classifier()->RecordLetPatternError( scanner()->location(), MessageTemplate::kLetInLexicalBinding); } return impl()->GetSymbol(); } else { ReportUnexpectedToken(next); *ok = false; return impl()->EmptyIdentifier(); } } template
typename ParserBase
::IdentifierT ParserBase
::ParseIdentifierOrStrictReservedWord( FunctionKind function_kind, bool* is_strict_reserved, bool* ok) { Token::Value next = Next(); if (next == Token::IDENTIFIER || (next == Token::AWAIT && !parsing_module_ && !IsAsyncFunction(function_kind)) || next == Token::ASYNC) { *is_strict_reserved = false; } else if (next == Token::FUTURE_STRICT_RESERVED_WORD || next == Token::LET || next == Token::STATIC || (next == Token::YIELD && !IsGeneratorFunction(function_kind))) { *is_strict_reserved = true; } else { ReportUnexpectedToken(next); *ok = false; return impl()->EmptyIdentifier(); } return impl()->GetSymbol(); } template
typename ParserBase
::IdentifierT ParserBase
::ParseIdentifierName( bool* ok) { Token::Value next = Next(); if (next != Token::IDENTIFIER && next != Token::ASYNC && next != Token::ENUM && next != Token::AWAIT && next != Token::LET && next != Token::STATIC && next != Token::YIELD && next != Token::FUTURE_STRICT_RESERVED_WORD && next != Token::ESCAPED_KEYWORD && next != Token::ESCAPED_STRICT_RESERVED_WORD && !Token::IsKeyword(next)) { ReportUnexpectedToken(next); *ok = false; return impl()->EmptyIdentifier(); } return impl()->GetSymbol(); } template
typename ParserBase
::ExpressionT ParserBase
::ParseRegExpLiteral( bool* ok) { int pos = peek_position(); if (!scanner()->ScanRegExpPattern()) { Next(); ReportMessage(MessageTemplate::kUnterminatedRegExp); *ok = false; return impl()->EmptyExpression(); } int literal_index = function_state_->NextMaterializedLiteralIndex(); IdentifierT js_pattern = impl()->GetNextSymbol(); Maybe
flags = scanner()->ScanRegExpFlags(); if (flags.IsNothing()) { Next(); ReportMessage(MessageTemplate::kMalformedRegExpFlags); *ok = false; return impl()->EmptyExpression(); } int js_flags = flags.FromJust(); Next(); return factory()->NewRegExpLiteral(js_pattern, js_flags, literal_index, pos); } template
typename ParserBase
::ExpressionT ParserBase
::ParsePrimaryExpression( bool* is_async, bool* ok) { // PrimaryExpression :: // 'this' // 'null' // 'true' // 'false' // Identifier // Number // String // ArrayLiteral // ObjectLiteral // RegExpLiteral // ClassLiteral // '(' Expression ')' // TemplateLiteral // do Block // AsyncFunctionLiteral int beg_pos = peek_position(); switch (peek()) { case Token::THIS: { BindingPatternUnexpectedToken(); Consume(Token::THIS); return impl()->ThisExpression(beg_pos); } case Token::NULL_LITERAL: case Token::TRUE_LITERAL: case Token::FALSE_LITERAL: case Token::SMI: case Token::NUMBER: BindingPatternUnexpectedToken(); return impl()->ExpressionFromLiteral(Next(), beg_pos); case Token::ASYNC: if (allow_harmony_async_await() && !scanner()->HasAnyLineTerminatorAfterNext() && PeekAhead() == Token::FUNCTION) { Consume(Token::ASYNC); return ParseAsyncFunctionLiteral(CHECK_OK); } // CoverCallExpressionAndAsyncArrowHead *is_async = true; /* falls through */ case Token::IDENTIFIER: case Token::LET: case Token::STATIC: case Token::YIELD: case Token::AWAIT: case Token::ESCAPED_STRICT_RESERVED_WORD: case Token::FUTURE_STRICT_RESERVED_WORD: { // Using eval or arguments in this context is OK even in strict mode. IdentifierT name = ParseAndClassifyIdentifier(CHECK_OK); return impl()->ExpressionFromIdentifier(name, beg_pos); } case Token::STRING: { BindingPatternUnexpectedToken(); Consume(Token::STRING); return impl()->ExpressionFromString(beg_pos); } case Token::ASSIGN_DIV: case Token::DIV: classifier()->RecordBindingPatternError( scanner()->peek_location(), MessageTemplate::kUnexpectedTokenRegExp); return ParseRegExpLiteral(ok); case Token::LBRACK: return ParseArrayLiteral(ok); case Token::LBRACE: return ParseObjectLiteral(ok); case Token::LPAREN: { // Arrow function formal parameters are either a single identifier or a // list of BindingPattern productions enclosed in parentheses. // Parentheses are not valid on the LHS of a BindingPattern, so we use the // is_valid_binding_pattern() check to detect multiple levels of // parenthesization. bool pattern_error = !classifier()->is_valid_binding_pattern(); classifier()->RecordPatternError(scanner()->peek_location(), MessageTemplate::kUnexpectedToken, Token::String(Token::LPAREN)); if (pattern_error) ArrowFormalParametersUnexpectedToken(); Consume(Token::LPAREN); if (Check(Token::RPAREN)) { // ()=>x. The continuation that looks for the => is in // ParseAssignmentExpression. classifier()->RecordExpressionError(scanner()->location(), MessageTemplate::kUnexpectedToken, Token::String(Token::RPAREN)); return factory()->NewEmptyParentheses(beg_pos); } // Heuristically try to detect immediately called functions before // seeing the call parentheses. function_state_->set_next_function_is_parenthesized(peek() == Token::FUNCTION); ExpressionT expr = ParseExpressionCoverGrammar(true, CHECK_OK); Expect(Token::RPAREN, CHECK_OK); return expr; } case Token::CLASS: { BindingPatternUnexpectedToken(); Consume(Token::CLASS); int class_token_pos = position(); IdentifierT name = impl()->EmptyIdentifier(); bool is_strict_reserved_name = false; Scanner::Location class_name_location = Scanner::Location::invalid(); if (peek_any_identifier()) { name = ParseIdentifierOrStrictReservedWord(&is_strict_reserved_name, CHECK_OK); class_name_location = scanner()->location(); } return ParseClassLiteral(name, class_name_location, is_strict_reserved_name, class_token_pos, ok); } case Token::TEMPLATE_SPAN: case Token::TEMPLATE_TAIL: BindingPatternUnexpectedToken(); return ParseTemplateLiteral(impl()->NoTemplateTag(), beg_pos, ok); case Token::MOD: if (allow_natives() || extension_ != NULL) { BindingPatternUnexpectedToken(); return ParseV8Intrinsic(ok); } break; case Token::DO: if (allow_harmony_do_expressions()) { BindingPatternUnexpectedToken(); return ParseDoExpression(ok); } break; default: break; } ReportUnexpectedToken(Next()); *ok = false; return impl()->EmptyExpression(); } template
typename ParserBase
::ExpressionT ParserBase
::ParseExpression( bool accept_IN, bool* ok) { ExpressionClassifier classifier(this); ExpressionT result = ParseExpressionCoverGrammar(accept_IN, CHECK_OK); impl()->RewriteNonPattern(CHECK_OK); return result; } template
typename ParserBase
::ExpressionT ParserBase
::ParseExpressionCoverGrammar(bool accept_IN, bool* ok) { // Expression :: // AssignmentExpression // Expression ',' AssignmentExpression ExpressionT result = impl()->EmptyExpression(); while (true) { int comma_pos = position(); ExpressionClassifier binding_classifier(this); ExpressionT right; if (Check(Token::ELLIPSIS)) { // 'x, y, ...z' in CoverParenthesizedExpressionAndArrowParameterList only // as the formal parameters of'(x, y, ...z) => foo', and is not itself a // valid expression. classifier()->RecordExpressionError(scanner()->location(), MessageTemplate::kUnexpectedToken, Token::String(Token::ELLIPSIS)); int ellipsis_pos = position(); int pattern_pos = peek_position(); ExpressionT pattern = ParsePrimaryExpression(CHECK_OK); ValidateBindingPattern(CHECK_OK); right = factory()->NewSpread(pattern, ellipsis_pos, pattern_pos); } else { right = ParseAssignmentExpression(accept_IN, CHECK_OK); } // No need to accumulate binding pattern-related errors, since // an Expression can't be a binding pattern anyway. impl()->Accumulate(ExpressionClassifier::AllProductions & ~(ExpressionClassifier::BindingPatternProduction | ExpressionClassifier::LetPatternProduction)); if (!impl()->IsIdentifier(right)) classifier()->RecordNonSimpleParameter(); if (impl()->IsEmptyExpression(result)) { // First time through the loop. result = right; } else { result = factory()->NewBinaryOperation(Token::COMMA, result, right, comma_pos); } if (!Check(Token::COMMA)) break; if (right->IsSpread()) { classifier()->RecordArrowFormalParametersError( scanner()->location(), MessageTemplate::kParamAfterRest); } if (allow_harmony_trailing_commas() && peek() == Token::RPAREN && PeekAhead() == Token::ARROW) { // a trailing comma is allowed at the end of an arrow parameter list break; } } return result; } template
typename ParserBase
::ExpressionT ParserBase
::ParseArrayLiteral( bool* ok) { // ArrayLiteral :: // '[' Expression? (',' Expression?)* ']' int pos = peek_position(); ExpressionListT values = impl()->NewExpressionList(4); int first_spread_index = -1; Expect(Token::LBRACK, CHECK_OK); while (peek() != Token::RBRACK) { ExpressionT elem; if (peek() == Token::COMMA) { elem = impl()->GetLiteralTheHole(peek_position()); } else if (peek() == Token::ELLIPSIS) { int start_pos = peek_position(); Consume(Token::ELLIPSIS); int expr_pos = peek_position(); ExpressionT argument = ParseAssignmentExpression(true, CHECK_OK); elem = factory()->NewSpread(argument, start_pos, expr_pos); if (first_spread_index < 0) { first_spread_index = values->length(); } if (argument->IsAssignment()) { classifier()->RecordPatternError( Scanner::Location(start_pos, scanner()->location().end_pos), MessageTemplate::kInvalidDestructuringTarget); } else { CheckDestructuringElement(argument, start_pos, scanner()->location().end_pos); } if (peek() == Token::COMMA) { classifier()->RecordPatternError( Scanner::Location(start_pos, scanner()->location().end_pos), MessageTemplate::kElementAfterRest); } } else { int beg_pos = peek_position(); elem = ParseAssignmentExpression(true, CHECK_OK); CheckDestructuringElement(elem, beg_pos, scanner()->location().end_pos); } values->Add(elem, zone_); if (peek() != Token::RBRACK) { Expect(Token::COMMA, CHECK_OK); } } Expect(Token::RBRACK, CHECK_OK); // Update the scope information before the pre-parsing bailout. int literal_index = function_state_->NextMaterializedLiteralIndex(); ExpressionT result = factory()->NewArrayLiteral(values, first_spread_index, literal_index, pos); if (first_spread_index >= 0) { result = factory()->NewRewritableExpression(result); impl()->QueueNonPatternForRewriting(result, ok); if (!*ok) { // If the non-pattern rewriting mechanism is used in the future for // rewriting other things than spreads, this error message will have // to change. Also, this error message will never appear while pre- // parsing (this is OK, as it is an implementation limitation). ReportMessage(MessageTemplate::kTooManySpreads); return impl()->EmptyExpression(); } } return result; } template
bool ParserBase
::SetPropertyKindFromToken(Token::Value token, PropertyKind* kind) { // This returns true, setting the property kind, iff the given token is one // which must occur after a property name, indicating that the previous token // was in fact a name and not a modifier (like the "get" in "get x"). switch (token) { case Token::COLON: *kind = PropertyKind::kValueProperty; return true; case Token::COMMA: case Token::RBRACE: case Token::ASSIGN: *kind = PropertyKind::kShorthandProperty; return true; case Token::LPAREN: *kind = PropertyKind::kMethodProperty; return true; case Token::MUL: case Token::SEMICOLON: *kind = PropertyKind::kClassField; return true; default: break; } return false; } template
typename ParserBase
::ExpressionT ParserBase
::ParsePropertyName( IdentifierT* name, PropertyKind* kind, bool* is_generator, bool* is_get, bool* is_set, bool* is_async, bool* is_computed_name, bool* ok) { DCHECK(*kind == PropertyKind::kNotSet); DCHECK(!*is_generator); DCHECK(!*is_get); DCHECK(!*is_set); DCHECK(!*is_async); DCHECK(!*is_computed_name); *is_generator = Check(Token::MUL); if (*is_generator) { *kind = PropertyKind::kMethodProperty; } Token::Value token = peek(); int pos = peek_position(); if (allow_harmony_async_await() && !*is_generator && token == Token::ASYNC && !scanner()->HasAnyLineTerminatorAfterNext()) { Consume(Token::ASYNC); token = peek(); if (SetPropertyKindFromToken(token, kind)) { *name = impl()->GetSymbol(); // TODO(bakkot) specialize on 'async' impl()->PushLiteralName(*name); return factory()->NewStringLiteral(*name, pos); } *kind = PropertyKind::kMethodProperty; *is_async = true; pos = peek_position(); } if (token == Token::IDENTIFIER && !*is_generator && !*is_async) { // This is checking for 'get' and 'set' in particular. Consume(Token::IDENTIFIER); token = peek(); if (SetPropertyKindFromToken(token, kind) || !scanner()->IsGetOrSet(is_get, is_set)) { *name = impl()->GetSymbol(); impl()->PushLiteralName(*name); return factory()->NewStringLiteral(*name, pos); } *kind = PropertyKind::kAccessorProperty; pos = peek_position(); } // For non computed property names we normalize the name a bit: // // "12" -> 12 // 12.3 -> "12.3" // 12.30 -> "12.3" // identifier -> "identifier" // // This is important because we use the property name as a key in a hash // table when we compute constant properties. ExpressionT expression = impl()->EmptyExpression(); switch (token) { case Token::STRING: Consume(Token::STRING); *name = impl()->GetSymbol(); break; case Token::SMI: Consume(Token::SMI); *name = impl()->GetNumberAsSymbol(); break; case Token::NUMBER: Consume(Token::NUMBER); *name = impl()->GetNumberAsSymbol(); break; case Token::LBRACK: { *name = impl()->EmptyIdentifier(); *is_computed_name = true; Consume(Token::LBRACK); ExpressionClassifier computed_name_classifier(this); expression = ParseAssignmentExpression(true, CHECK_OK); impl()->RewriteNonPattern(CHECK_OK); impl()->AccumulateFormalParameterContainmentErrors(); Expect(Token::RBRACK, CHECK_OK); break; } default: *name = ParseIdentifierName(CHECK_OK); break; } if (*kind == PropertyKind::kNotSet) { SetPropertyKindFromToken(peek(), kind); } if (*is_computed_name) { return expression; } impl()->PushLiteralName(*name); uint32_t index; return impl()->IsArrayIndex(*name, &index) ? factory()->NewNumberLiteral(index, pos) : factory()->NewStringLiteral(*name, pos); } template
typename ParserBase
::ClassLiteralPropertyT ParserBase
::ParseClassPropertyDefinition(ClassLiteralChecker* checker, bool has_extends, bool* is_computed_name, bool* has_seen_constructor, bool* ok) { DCHECK(has_seen_constructor != nullptr); bool is_get = false; bool is_set = false; bool is_generator = false; bool is_async = false; bool is_static = false; PropertyKind kind = PropertyKind::kNotSet; Token::Value name_token = peek(); IdentifierT name = impl()->EmptyIdentifier(); ExpressionT name_expression; if (name_token == Token::STATIC) { Consume(Token::STATIC); if (peek() == Token::LPAREN) { kind = PropertyKind::kMethodProperty; name = impl()->GetSymbol(); // TODO(bakkot) specialize on 'static' name_expression = factory()->NewStringLiteral(name, position()); } else if (peek() == Token::ASSIGN || peek() == Token::SEMICOLON || peek() == Token::RBRACE) { name = impl()->GetSymbol(); // TODO(bakkot) specialize on 'static' name_expression = factory()->NewStringLiteral(name, position()); } else { is_static = true; name_expression = ParsePropertyName( &name, &kind, &is_generator, &is_get, &is_set, &is_async, is_computed_name, CHECK_OK_CUSTOM(EmptyClassLiteralProperty)); } } else { name_expression = ParsePropertyName( &name, &kind, &is_generator, &is_get, &is_set, &is_async, is_computed_name, CHECK_OK_CUSTOM(EmptyClassLiteralProperty)); } switch (kind) { case PropertyKind::kClassField: case PropertyKind::kNotSet: // This case is a name followed by a name or // other property. Here we have to assume // that's an uninitialized field followed by a // linebreak followed by a property, with ASI // adding the semicolon. If not, there will be // a syntax error after parsing the first name // as an uninitialized field. case PropertyKind::kShorthandProperty: case PropertyKind::kValueProperty: if (allow_harmony_class_fields()) { bool has_initializer = Check(Token::ASSIGN); ExpressionT function_literal = ParseClassFieldForInitializer( has_initializer, CHECK_OK_CUSTOM(EmptyClassLiteralProperty)); ExpectSemicolon(CHECK_OK_CUSTOM(EmptyClassLiteralProperty)); return factory()->NewClassLiteralProperty( name_expression, function_literal, ClassLiteralProperty::FIELD, is_static, *is_computed_name); } else { ReportUnexpectedToken(Next()); *ok = false; return impl()->EmptyClassLiteralProperty(); } case PropertyKind::kMethodProperty: { DCHECK(!is_get && !is_set); // MethodDefinition // PropertyName '(' StrictFormalParameters ')' '{' FunctionBody '}' // '*' PropertyName '(' StrictFormalParameters ')' '{' FunctionBody '}' if (!*is_computed_name) { checker->CheckClassMethodName( name_token, PropertyKind::kMethodProperty, is_generator, is_async, is_static, CHECK_OK_CUSTOM(EmptyClassLiteralProperty)); } FunctionKind kind = is_generator ? FunctionKind::kConciseGeneratorMethod : is_async ? FunctionKind::kAsyncConciseMethod : FunctionKind::kConciseMethod; if (!is_static && impl()->IsConstructor(name)) { *has_seen_constructor = true; kind = has_extends ? FunctionKind::kSubclassConstructor : FunctionKind::kBaseConstructor; } ExpressionT value = impl()->ParseFunctionLiteral( name, scanner()->location(), kSkipFunctionNameCheck, kind, kNoSourcePosition, FunctionLiteral::kAccessorOrMethod, language_mode(), CHECK_OK_CUSTOM(EmptyClassLiteralProperty)); return factory()->NewClassLiteralProperty(name_expression, value, ClassLiteralProperty::METHOD, is_static, *is_computed_name); } case PropertyKind::kAccessorProperty: { DCHECK((is_get || is_set) && !is_generator && !is_async); if (!*is_computed_name) { checker->CheckClassMethodName( name_token, PropertyKind::kAccessorProperty, false, false, is_static, CHECK_OK_CUSTOM(EmptyClassLiteralProperty)); // Make sure the name expression is a string since we need a Name for // Runtime_DefineAccessorPropertyUnchecked and since we can determine // this statically we can skip the extra runtime check. name_expression = factory()->NewStringLiteral(name, name_expression->position()); } FunctionKind kind = is_get ? FunctionKind::kGetterFunction : FunctionKind::kSetterFunction; FunctionLiteralT value = impl()->ParseFunctionLiteral( name, scanner()->location(), kSkipFunctionNameCheck, kind, kNoSourcePosition, FunctionLiteral::kAccessorOrMethod, language_mode(), CHECK_OK_CUSTOM(EmptyClassLiteralProperty)); if (!*is_computed_name) { impl()->AddAccessorPrefixToFunctionName(is_get, value, name); } return factory()->NewClassLiteralProperty( name_expression, value, is_get ? ClassLiteralProperty::GETTER : ClassLiteralProperty::SETTER, is_static, *is_computed_name); } } UNREACHABLE(); return impl()->EmptyClassLiteralProperty(); } template
typename ParserBase
::FunctionLiteralT ParserBase
::ParseClassFieldForInitializer(bool has_initializer, bool* ok) { // Makes a concise method which evaluates and returns the initialized value // (or undefined if absent). FunctionKind kind = FunctionKind::kConciseMethod; DeclarationScope* initializer_scope = NewFunctionScope(kind); initializer_scope->set_start_position(scanner()->location().end_pos); FunctionState initializer_state(&function_state_, &scope_state_, initializer_scope); DCHECK(scope() == initializer_scope); scope()->SetLanguageMode(STRICT); ExpressionClassifier expression_classifier(this); ExpressionT value; if (has_initializer) { value = this->ParseAssignmentExpression( true, CHECK_OK_CUSTOM(EmptyFunctionLiteral)); impl()->RewriteNonPattern(CHECK_OK_CUSTOM(EmptyFunctionLiteral)); } else { value = factory()->NewUndefinedLiteral(kNoSourcePosition); } initializer_scope->set_end_position(scanner()->location().end_pos); typename Types::StatementList body = impl()->NewStatementList(1); body->Add(factory()->NewReturnStatement(value, kNoSourcePosition), zone()); FunctionLiteralT function_literal = factory()->NewFunctionLiteral( impl()->EmptyIdentifierString(), initializer_scope, body, initializer_state.materialized_literal_count(), initializer_state.expected_property_count(), 0, 0, FunctionLiteral::kNoDuplicateParameters, FunctionLiteral::kAnonymousExpression, default_eager_compile_hint_, initializer_scope->start_position(), true); function_literal->set_is_class_field_initializer(true); return function_literal; } template
typename ParserBase
::ObjectLiteralPropertyT ParserBase
::ParseObjectPropertyDefinition(ObjectLiteralChecker* checker, bool* is_computed_name, bool* ok) { bool is_get = false; bool is_set = false; bool is_generator = false; bool is_async = false; PropertyKind kind = PropertyKind::kNotSet; IdentifierT name = impl()->EmptyIdentifier(); Token::Value name_token = peek(); int next_beg_pos = scanner()->peek_location().beg_pos; int next_end_pos = scanner()->peek_location().end_pos; ExpressionT name_expression = ParsePropertyName( &name, &kind, &is_generator, &is_get, &is_set, &is_async, is_computed_name, CHECK_OK_CUSTOM(EmptyObjectLiteralProperty)); switch (kind) { case PropertyKind::kValueProperty: { DCHECK(!is_get && !is_set && !is_generator && !is_async); if (!*is_computed_name) { checker->CheckDuplicateProto(name_token); } Consume(Token::COLON); int beg_pos = peek_position(); ExpressionT value = ParseAssignmentExpression( true, CHECK_OK_CUSTOM(EmptyObjectLiteralProperty)); CheckDestructuringElement(value, beg_pos, scanner()->location().end_pos); ObjectLiteralPropertyT result = factory()->NewObjectLiteralProperty( name_expression, value, *is_computed_name); if (!*is_computed_name) { impl()->SetFunctionNameFromPropertyName(result, name); } return result; } case PropertyKind::kShorthandProperty: { // PropertyDefinition // IdentifierReference // CoverInitializedName // // CoverInitializedName // IdentifierReference Initializer? DCHECK(!is_get && !is_set && !is_generator && !is_async); if (!Token::IsIdentifier(name_token, language_mode(), this->is_generator(), parsing_module_ || is_async_function())) { ReportUnexpectedToken(Next()); *ok = false; return impl()->EmptyObjectLiteralProperty(); } DCHECK(!*is_computed_name); if (classifier()->duplicate_finder() != nullptr && scanner()->FindSymbol(classifier()->duplicate_finder(), 1) != 0) { classifier()->RecordDuplicateFormalParameterError( scanner()->location()); } if (impl()->IsEvalOrArguments(name) && is_strict(language_mode())) { classifier()->RecordBindingPatternError( scanner()->location(), MessageTemplate::kStrictEvalArguments); } if (name_token == Token::LET) { classifier()->RecordLetPatternError( scanner()->location(), MessageTemplate::kLetInLexicalBinding); } if (name_token == Token::AWAIT) { DCHECK(!is_async_function()); classifier()->RecordAsyncArrowFormalParametersError( Scanner::Location(next_beg_pos, next_end_pos), MessageTemplate::kAwaitBindingIdentifier); } ExpressionT lhs = impl()->ExpressionFromIdentifier(name, next_beg_pos); CheckDestructuringElement(lhs, next_beg_pos, next_end_pos); ExpressionT value; if (peek() == Token::ASSIGN) { Consume(Token::ASSIGN); ExpressionClassifier rhs_classifier(this); ExpressionT rhs = ParseAssignmentExpression( true, CHECK_OK_CUSTOM(EmptyObjectLiteralProperty)); impl()->RewriteNonPattern(CHECK_OK_CUSTOM(EmptyObjectLiteralProperty)); impl()->AccumulateFormalParameterContainmentErrors(); value = factory()->NewAssignment(Token::ASSIGN, lhs, rhs, kNoSourcePosition); classifier()->RecordExpressionError( Scanner::Location(next_beg_pos, scanner()->location().end_pos), MessageTemplate::kInvalidCoverInitializedName); impl()->SetFunctionNameFromIdentifierRef(rhs, lhs); } else { value = lhs; } return factory()->NewObjectLiteralProperty( name_expression, value, ObjectLiteralProperty::COMPUTED, false); } case PropertyKind::kMethodProperty: { DCHECK(!is_get && !is_set); // MethodDefinition // PropertyName '(' StrictFormalParameters ')' '{' FunctionBody '}' // '*' PropertyName '(' StrictFormalParameters ')' '{' FunctionBody '}' classifier()->RecordPatternError( Scanner::Location(next_beg_pos, scanner()->location().end_pos), MessageTemplate::kInvalidDestructuringTarget); FunctionKind kind = is_generator ? FunctionKind::kConciseGeneratorMethod : is_async ? FunctionKind::kAsyncConciseMethod : FunctionKind::kConciseMethod; ExpressionT value = impl()->ParseFunctionLiteral( name, scanner()->location(), kSkipFunctionNameCheck, kind, kNoSourcePosition, FunctionLiteral::kAccessorOrMethod, language_mode(), CHECK_OK_CUSTOM(EmptyObjectLiteralProperty)); return factory()->NewObjectLiteralProperty( name_expression, value, ObjectLiteralProperty::COMPUTED, *is_computed_name); } case PropertyKind::kAccessorProperty: { DCHECK((is_get || is_set) && !(is_set && is_get) && !is_generator && !is_async); classifier()->RecordPatternError( Scanner::Location(next_beg_pos, scanner()->location().end_pos), MessageTemplate::kInvalidDestructuringTarget); if (!*is_computed_name) { // Make sure the name expression is a string since we need a Name for // Runtime_DefineAccessorPropertyUnchecked and since we can determine // this statically we can skip the extra runtime check. name_expression = factory()->NewStringLiteral(name, name_expression->position()); } FunctionKind kind = is_get ? FunctionKind::kGetterFunction : FunctionKind::kSetterFunction; FunctionLiteralT value = impl()->ParseFunctionLiteral( name, scanner()->location(), kSkipFunctionNameCheck, kind, kNoSourcePosition, FunctionLiteral::kAccessorOrMethod, language_mode(), CHECK_OK_CUSTOM(EmptyObjectLiteralProperty)); if (!*is_computed_name) { impl()->AddAccessorPrefixToFunctionName(is_get, value, name); } return factory()->NewObjectLiteralProperty( name_expression, value, is_get ? ObjectLiteralProperty::GETTER : ObjectLiteralProperty::SETTER, *is_computed_name); } case PropertyKind::kClassField: case PropertyKind::kNotSet: ReportUnexpectedToken(Next()); *ok = false; return impl()->EmptyObjectLiteralProperty(); } UNREACHABLE(); return impl()->EmptyObjectLiteralProperty(); } template
typename ParserBase
::ExpressionT ParserBase
::ParseObjectLiteral( bool* ok) { // ObjectLiteral :: // '{' (PropertyDefinition (',' PropertyDefinition)* ','? )? '}' int pos = peek_position(); typename Types::ObjectPropertyList properties = impl()->NewObjectPropertyList(4); int number_of_boilerplate_properties = 0; bool has_computed_names = false; ObjectLiteralChecker checker(this); Expect(Token::LBRACE, CHECK_OK); while (peek() != Token::RBRACE) { FuncNameInferrer::State fni_state(fni_); bool is_computed_name = false; ObjectLiteralPropertyT property = ParseObjectPropertyDefinition(&checker, &is_computed_name, CHECK_OK); if (is_computed_name) { has_computed_names = true; } // Count CONSTANT or COMPUTED properties to maintain the enumeration order. if (!has_computed_names && impl()->IsBoilerplateProperty(property)) { number_of_boilerplate_properties++; } properties->Add(property, zone()); if (peek() != Token::RBRACE) { // Need {} because of the CHECK_OK macro. Expect(Token::COMMA, CHECK_OK); } if (fni_ != nullptr) fni_->Infer(); } Expect(Token::RBRACE, CHECK_OK); // Computation of literal_index must happen before pre parse bailout. int literal_index = function_state_->NextMaterializedLiteralIndex(); return factory()->NewObjectLiteral(properties, literal_index, number_of_boilerplate_properties, pos); } template
typename ParserBase
::ExpressionListT ParserBase
::ParseArguments( Scanner::Location* first_spread_arg_loc, bool maybe_arrow, bool* ok) { // Arguments :: // '(' (AssignmentExpression)*[','] ')' Scanner::Location spread_arg = Scanner::Location::invalid(); ExpressionListT result = impl()->NewExpressionList(4); Expect(Token::LPAREN, CHECK_OK_CUSTOM(NullExpressionList)); bool done = (peek() == Token::RPAREN); bool was_unspread = false; int unspread_sequences_count = 0; while (!done) { int start_pos = peek_position(); bool is_spread = Check(Token::ELLIPSIS); int expr_pos = peek_position(); ExpressionT argument = ParseAssignmentExpression(true, CHECK_OK_CUSTOM(NullExpressionList)); if (!maybe_arrow) { impl()->RewriteNonPattern(CHECK_OK_CUSTOM(NullExpressionList)); } if (is_spread) { if (!spread_arg.IsValid()) { spread_arg.beg_pos = start_pos; spread_arg.end_pos = peek_position(); } argument = factory()->NewSpread(argument, start_pos, expr_pos); } result->Add(argument, zone_); // unspread_sequences_count is the number of sequences of parameters which // are not prefixed with a spread '...' operator. if (is_spread) { was_unspread = false; } else if (!was_unspread) { was_unspread = true; unspread_sequences_count++; } if (result->length() > Code::kMaxArguments) { ReportMessage(MessageTemplate::kTooManyArguments); *ok = false; return impl()->NullExpressionList(); } done = (peek() != Token::COMMA); if (!done) { Next(); if (allow_harmony_trailing_commas() && peek() == Token::RPAREN) { // allow trailing comma done = true; } } } Scanner::Location location = scanner_->location(); if (Token::RPAREN != Next()) { impl()->ReportMessageAt(location, MessageTemplate::kUnterminatedArgList); *ok = false; return impl()->NullExpressionList(); } *first_spread_arg_loc = spread_arg; if (!maybe_arrow || peek() != Token::ARROW) { if (maybe_arrow) { impl()->RewriteNonPattern(CHECK_OK_CUSTOM(NullExpressionList)); } if (spread_arg.IsValid()) { // Unspread parameter sequences are translated into array literals in the // parser. Ensure that the number of materialized literals matches between // the parser and preparser impl()->MaterializeUnspreadArgumentsLiterals(unspread_sequences_count); } } return result; } // Precedence = 2 template
typename ParserBase
::ExpressionT ParserBase
::ParseAssignmentExpression(bool accept_IN, bool* ok) { // AssignmentExpression :: // ConditionalExpression // ArrowFunction // YieldExpression // LeftHandSideExpression AssignmentOperator AssignmentExpression int lhs_beg_pos = peek_position(); if (peek() == Token::YIELD && is_generator()) { return ParseYieldExpression(accept_IN, ok); } FuncNameInferrer::State fni_state(fni_); Checkpoint checkpoint(this); ExpressionClassifier arrow_formals_classifier( this, classifier()->duplicate_finder()); Scope::Snapshot scope_snapshot(scope()); bool is_async = allow_harmony_async_await() && peek() == Token::ASYNC && !scanner()->HasAnyLineTerminatorAfterNext() && IsValidArrowFormalParametersStart(PeekAhead()); bool parenthesized_formals = peek() == Token::LPAREN; if (!is_async && !parenthesized_formals) { ArrowFormalParametersUnexpectedToken(); } // Parse a simple, faster sub-grammar (primary expression) if it's evident // that we have only a trivial expression to parse. ExpressionT expression; if (IsTrivialExpression()) { expression = ParsePrimaryExpression(&is_async, CHECK_OK); } else { expression = ParseConditionalExpression(accept_IN, CHECK_OK); } if (is_async && impl()->IsIdentifier(expression) && peek_any_identifier() && PeekAhead() == Token::ARROW) { // async Identifier => AsyncConciseBody IdentifierT name = ParseAndClassifyIdentifier(CHECK_OK); expression = impl()->ExpressionFromIdentifier(name, position(), InferName::kNo); if (fni_) { // Remove `async` keyword from inferred name stack. fni_->RemoveAsyncKeywordFromEnd(); } } if (peek() == Token::ARROW) { Scanner::Location arrow_loc = scanner()->peek_location(); ValidateArrowFormalParameters(expression, parenthesized_formals, is_async, CHECK_OK); // This reads strangely, but is correct: it checks whether any // sub-expression of the parameter list failed to be a valid formal // parameter initializer. Since YieldExpressions are banned anywhere // in an arrow parameter list, this is correct. // TODO(adamk): Rename "FormalParameterInitializerError" to refer to // "YieldExpression", which is its only use. ValidateFormalParameterInitializer(ok); Scanner::Location loc(lhs_beg_pos, scanner()->location().end_pos); DeclarationScope* scope = NewFunctionScope(is_async ? FunctionKind::kAsyncArrowFunction : FunctionKind::kArrowFunction); // Because the arrow's parameters were parsed in the outer scope, any // usage flags that might have been triggered there need to be copied // to the arrow scope. this->scope()->PropagateUsageFlagsToScope(scope); scope_snapshot.Reparent(scope); FormalParametersT parameters(scope); if (!classifier()->is_simple_parameter_list()) { scope->SetHasNonSimpleParameters(); parameters.is_simple = false; } checkpoint.Restore(¶meters.materialized_literals_count); scope->set_start_position(lhs_beg_pos); Scanner::Location duplicate_loc = Scanner::Location::invalid(); impl()->DeclareArrowFunctionFormalParameters(¶meters, expression, loc, &duplicate_loc, CHECK_OK); if (duplicate_loc.IsValid()) { classifier()->RecordDuplicateFormalParameterError(duplicate_loc); } expression = ParseArrowFunctionLiteral(accept_IN, parameters, CHECK_OK); impl()->Discard(); classifier()->RecordPatternError(arrow_loc, MessageTemplate::kUnexpectedToken, Token::String(Token::ARROW)); if (fni_ != nullptr) fni_->Infer(); return expression; } // "expression" was not itself an arrow function parameter list, but it might // form part of one. Propagate speculative formal parameter error locations // (including those for binding patterns, since formal parameters can // themselves contain binding patterns). unsigned productions = ExpressionClassifier::AllProductions & ~ExpressionClassifier::ArrowFormalParametersProduction; // Parenthesized identifiers and property references are allowed as part // of a larger assignment pattern, even though parenthesized patterns // themselves are not allowed, e.g., "[(x)] = []". Only accumulate // assignment pattern errors if the parsed expression is more complex. if (IsValidReferenceExpression(expression)) { productions &= ~ExpressionClassifier::AssignmentPatternProduction; } const bool is_destructuring_assignment = IsValidPattern(expression) && peek() == Token::ASSIGN; if (is_destructuring_assignment) { // This is definitely not an expression so don't accumulate // expression-related errors. productions &= ~ExpressionClassifier::ExpressionProduction; } if (!Token::IsAssignmentOp(peek())) { // Parsed conditional expression only (no assignment). // Pending non-pattern expressions must be merged. impl()->Accumulate(productions); return expression; } else { // Pending non-pattern expressions must be discarded. impl()->Accumulate(productions, false); } if (is_destructuring_assignment) { ValidateAssignmentPattern(CHECK_OK); } else { expression = CheckAndRewriteReferenceExpression( expression, lhs_beg_pos, scanner()->location().end_pos, MessageTemplate::kInvalidLhsInAssignment, CHECK_OK); } expression = impl()->MarkExpressionAsAssigned(expression); Token::Value op = Next(); // Get assignment operator. if (op != Token::ASSIGN) { classifier()->RecordPatternError(scanner()->location(), MessageTemplate::kUnexpectedToken, Token::String(op)); } int pos = position(); ExpressionClassifier rhs_classifier(this); ExpressionT right = ParseAssignmentExpression(accept_IN, CHECK_OK); impl()->RewriteNonPattern(CHECK_OK); impl()->AccumulateFormalParameterContainmentErrors(); // TODO(1231235): We try to estimate the set of properties set by // constructors. We define a new property whenever there is an // assignment to a property of 'this'. We should probably only add // properties if we haven't seen them before. Otherwise we'll // probably overestimate the number of properties. if (op == Token::ASSIGN && impl()->IsThisProperty(expression)) { function_state_->AddProperty(); } impl()->CheckAssigningFunctionLiteralToProperty(expression, right); if (fni_ != NULL) { // Check if the right hand side is a call to avoid inferring a // name if we're dealing with "a = function(){...}();"-like // expression. if ((op == Token::INIT || op == Token::ASSIGN) && (!right->IsCall() && !right->IsCallNew())) { fni_->Infer(); } else { fni_->RemoveLastFunction(); } } if (op == Token::ASSIGN) { impl()->SetFunctionNameFromIdentifierRef(right, expression); } if (op == Token::ASSIGN_EXP) { DCHECK(!is_destructuring_assignment); return impl()->RewriteAssignExponentiation(expression, right, pos); } ExpressionT result = factory()->NewAssignment(op, expression, right, pos); if (is_destructuring_assignment) { result = factory()->NewRewritableExpression(result); impl()->QueueDestructuringAssignmentForRewriting(result); } return result; } template
typename ParserBase
::ExpressionT ParserBase
::ParseYieldExpression( bool accept_IN, bool* ok) { // YieldExpression :: // 'yield' ([no line terminator] '*'? AssignmentExpression)? int pos = peek_position(); classifier()->RecordPatternError( scanner()->peek_location(), MessageTemplate::kInvalidDestructuringTarget); classifier()->RecordFormalParameterInitializerError( scanner()->peek_location(), MessageTemplate::kYieldInParameter); Expect(Token::YIELD, CHECK_OK); ExpressionT generator_object = factory()->NewVariableProxy(function_state_->generator_object_variable()); // The following initialization is necessary. ExpressionT expression = impl()->EmptyExpression(); bool delegating = false; // yield* if (!scanner()->HasAnyLineTerminatorBeforeNext()) { if (Check(Token::MUL)) delegating = true; switch (peek()) { case Token::EOS: case Token::SEMICOLON: case Token::RBRACE: case Token::RBRACK: case Token::RPAREN: case Token::COLON: case Token::COMMA: // The above set of tokens is the complete set of tokens that can appear // after an AssignmentExpression, and none of them can start an // AssignmentExpression. This allows us to avoid looking for an RHS for // a regular yield, given only one look-ahead token. if (!delegating) break; // Delegating yields require an RHS; fall through. default: expression = ParseAssignmentExpression(accept_IN, CHECK_OK); impl()->RewriteNonPattern(CHECK_OK); break; } } if (delegating) { return impl()->RewriteYieldStar(generator_object, expression, pos); } expression = impl()->BuildIteratorResult(expression, false); // Hackily disambiguate o from o.next and o [Symbol.iterator](). // TODO(verwaest): Come up with a better solution. ExpressionT yield = factory()->NewYield(generator_object, expression, pos, Yield::kOnExceptionThrow); return yield; } // Precedence = 3 template
typename ParserBase
::ExpressionT ParserBase
::ParseConditionalExpression(bool accept_IN, bool* ok) { // ConditionalExpression :: // LogicalOrExpression // LogicalOrExpression '?' AssignmentExpression ':' AssignmentExpression int pos = peek_position(); // We start using the binary expression parser for prec >= 4 only! ExpressionT expression = ParseBinaryExpression(4, accept_IN, CHECK_OK); if (peek() != Token::CONDITIONAL) return expression; impl()->RewriteNonPattern(CHECK_OK); BindingPatternUnexpectedToken(); ArrowFormalParametersUnexpectedToken(); Consume(Token::CONDITIONAL); // In parsing the first assignment expression in conditional // expressions we always accept the 'in' keyword; see ECMA-262, // section 11.12, page 58. ExpressionT left = ParseAssignmentExpression(true, CHECK_OK); impl()->RewriteNonPattern(CHECK_OK); Expect(Token::COLON, CHECK_OK); ExpressionT right = ParseAssignmentExpression(accept_IN, CHECK_OK); impl()->RewriteNonPattern(CHECK_OK); return factory()->NewConditional(expression, left, right, pos); } // Precedence >= 4 template
typename ParserBase
::ExpressionT ParserBase
::ParseBinaryExpression( int prec, bool accept_IN, bool* ok) { DCHECK(prec >= 4); ExpressionT x = ParseUnaryExpression(CHECK_OK); for (int prec1 = Precedence(peek(), accept_IN); prec1 >= prec; prec1--) { // prec1 >= 4 while (Precedence(peek(), accept_IN) == prec1) { impl()->RewriteNonPattern(CHECK_OK); BindingPatternUnexpectedToken(); ArrowFormalParametersUnexpectedToken(); Token::Value op = Next(); int pos = position(); const bool is_right_associative = op == Token::EXP; const int next_prec = is_right_associative ? prec1 : prec1 + 1; ExpressionT y = ParseBinaryExpression(next_prec, accept_IN, CHECK_OK); impl()->RewriteNonPattern(CHECK_OK); if (impl()->ShortcutNumericLiteralBinaryExpression(&x, y, op, pos)) { continue; } // For now we distinguish between comparisons and other binary // operations. (We could combine the two and get rid of this // code and AST node eventually.) if (Token::IsCompareOp(op)) { // We have a comparison. Token::Value cmp = op; switch (op) { case Token::NE: cmp = Token::EQ; break; case Token::NE_STRICT: cmp = Token::EQ_STRICT; break; default: break; } x = factory()->NewCompareOperation(cmp, x, y, pos); if (cmp != op) { // The comparison was negated - add a NOT. x = factory()->NewUnaryOperation(Token::NOT, x, pos); } } else if (op == Token::EXP) { x = impl()->RewriteExponentiation(x, y, pos); } else { // We have a "normal" binary operation. x = factory()->NewBinaryOperation(op, x, y, pos); } } } return x; } template
typename ParserBase
::ExpressionT ParserBase
::ParseUnaryExpression( bool* ok) { // UnaryExpression :: // PostfixExpression // 'delete' UnaryExpression // 'void' UnaryExpression // 'typeof' UnaryExpression // '++' UnaryExpression // '--' UnaryExpression // '+' UnaryExpression // '-' UnaryExpression // '~' UnaryExpression // '!' UnaryExpression // [+Await] AwaitExpression[?Yield] Token::Value op = peek(); if (Token::IsUnaryOp(op)) { BindingPatternUnexpectedToken(); ArrowFormalParametersUnexpectedToken(); op = Next(); int pos = position(); ExpressionT expression = ParseUnaryExpression(CHECK_OK); impl()->RewriteNonPattern(CHECK_OK); if (op == Token::DELETE && is_strict(language_mode())) { if (impl()->IsIdentifier(expression)) { // "delete identifier" is a syntax error in strict mode. ReportMessage(MessageTemplate::kStrictDelete); *ok = false; return impl()->EmptyExpression(); } } if (peek() == Token::EXP) { ReportUnexpectedToken(Next()); *ok = false; return impl()->EmptyExpression(); } // Allow the parser's implementation to rewrite the expression. return impl()->BuildUnaryExpression(expression, op, pos); } else if (Token::IsCountOp(op)) { BindingPatternUnexpectedToken(); ArrowFormalParametersUnexpectedToken(); op = Next(); int beg_pos = peek_position(); ExpressionT expression = ParseUnaryExpression(CHECK_OK); expression = CheckAndRewriteReferenceExpression( expression, beg_pos, scanner()->location().end_pos, MessageTemplate::kInvalidLhsInPrefixOp, CHECK_OK); expression = impl()->MarkExpressionAsAssigned(expression); impl()->RewriteNonPattern(CHECK_OK); return factory()->NewCountOperation(op, true /* prefix */, expression, position()); } else if (is_async_function() && peek() == Token::AWAIT) { classifier()->RecordFormalParameterInitializerError( scanner()->peek_location(), MessageTemplate::kAwaitExpressionFormalParameter); int await_pos = peek_position(); Consume(Token::AWAIT); ExpressionT value = ParseUnaryExpression(CHECK_OK); return impl()->RewriteAwaitExpression(value, await_pos); } else { return ParsePostfixExpression(ok); } } template
typename ParserBase
::ExpressionT ParserBase
::ParsePostfixExpression( bool* ok) { // PostfixExpression :: // LeftHandSideExpression ('++' | '--')? int lhs_beg_pos = peek_position(); ExpressionT expression = ParseLeftHandSideExpression(CHECK_OK); if (!scanner()->HasAnyLineTerminatorBeforeNext() && Token::IsCountOp(peek())) { BindingPatternUnexpectedToken(); ArrowFormalParametersUnexpectedToken(); expression = CheckAndRewriteReferenceExpression( expression, lhs_beg_pos, scanner()->location().end_pos, MessageTemplate::kInvalidLhsInPostfixOp, CHECK_OK); expression = impl()->MarkExpressionAsAssigned(expression); impl()->RewriteNonPattern(CHECK_OK); Token::Value next = Next(); expression = factory()->NewCountOperation(next, false /* postfix */, expression, position()); } return expression; } template
typename ParserBase
::ExpressionT ParserBase
::ParseLeftHandSideExpression(bool* ok) { // LeftHandSideExpression :: // (NewExpression | MemberExpression) ... bool is_async = false; ExpressionT result = ParseMemberWithNewPrefixesExpression(&is_async, CHECK_OK); while (true) { switch (peek()) { case Token::LBRACK: { impl()->RewriteNonPattern(CHECK_OK); BindingPatternUnexpectedToken(); ArrowFormalParametersUnexpectedToken(); Consume(Token::LBRACK); int pos = position(); ExpressionT index = ParseExpressionCoverGrammar(true, CHECK_OK); impl()->RewriteNonPattern(CHECK_OK); result = factory()->NewProperty(result, index, pos); Expect(Token::RBRACK, CHECK_OK); break; } case Token::LPAREN: { int pos; impl()->RewriteNonPattern(CHECK_OK); BindingPatternUnexpectedToken(); if (scanner()->current_token() == Token::IDENTIFIER || scanner()->current_token() == Token::SUPER || scanner()->current_token() == Token::ASYNC) { // For call of an identifier we want to report position of // the identifier as position of the call in the stack trace. pos = position(); } else { // For other kinds of calls we record position of the parenthesis as // position of the call. Note that this is extremely important for // expressions of the form function(){...}() for which call position // should not point to the closing brace otherwise it will intersect // with positions recorded for function literal and confuse debugger. pos = peek_position(); // Also the trailing parenthesis are a hint that the function will // be called immediately. If we happen to have parsed a preceding // function literal eagerly, we can also compile it eagerly. if (result->IsFunctionLiteral()) { result->AsFunctionLiteral()->SetShouldEagerCompile(); } } Scanner::Location spread_pos; ExpressionListT args; if (V8_UNLIKELY(is_async && impl()->IsIdentifier(result))) { ExpressionClassifier async_classifier(this); args = ParseArguments(&spread_pos, true, CHECK_OK); if (peek() == Token::ARROW) { if (fni_) { fni_->RemoveAsyncKeywordFromEnd(); } ValidateBindingPattern(CHECK_OK); ValidateFormalParameterInitializer(CHECK_OK); if (!classifier()->is_valid_async_arrow_formal_parameters()) { ReportClassifierError( classifier()->async_arrow_formal_parameters_error()); *ok = false; return impl()->EmptyExpression(); } if (args->length()) { // async ( Arguments ) => ... return impl()->ExpressionListToExpression(args); } // async () => ... return factory()->NewEmptyParentheses(pos); } else { impl()->AccumulateFormalParameterContainmentErrors(); } } else { args = ParseArguments(&spread_pos, false, CHECK_OK); } ArrowFormalParametersUnexpectedToken(); // Keep track of eval() calls since they disable all local variable // optimizations. // The calls that need special treatment are the // direct eval calls. These calls are all of the form eval(...), with // no explicit receiver. // These calls are marked as potentially direct eval calls. Whether // they are actually direct calls to eval is determined at run time. Call::PossiblyEval is_possibly_eval = CheckPossibleEvalCall(result, scope()); bool is_super_call = result->IsSuperCallReference(); if (spread_pos.IsValid()) { args = impl()->PrepareSpreadArguments(args); result = impl()->SpreadCall(result, args, pos); } else { result = factory()->NewCall(result, args, pos, is_possibly_eval); } // Explicit calls to the super constructor using super() perform an // implicit binding assignment to the 'this' variable. if (is_super_call) { result = impl()->RewriteSuperCall(result); ExpressionT this_expr = impl()->ThisExpression(pos); result = factory()->NewAssignment(Token::INIT, this_expr, result, pos); } if (fni_ != NULL) fni_->RemoveLastFunction(); break; } case Token::PERIOD: { impl()->RewriteNonPattern(CHECK_OK); BindingPatternUnexpectedToken(); ArrowFormalParametersUnexpectedToken(); Consume(Token::PERIOD); int pos = position(); IdentifierT name = ParseIdentifierName(CHECK_OK); result = factory()->NewProperty( result, factory()->NewStringLiteral(name, pos), pos); impl()->PushLiteralName(name); break; } case Token::TEMPLATE_SPAN: case Token::TEMPLATE_TAIL: { impl()->RewriteNonPattern(CHECK_OK); BindingPatternUnexpectedToken(); ArrowFormalParametersUnexpectedToken(); result = ParseTemplateLiteral(result, position(), CHECK_OK); break; } default: return result; } } } template
typename ParserBase
::ExpressionT ParserBase
::ParseMemberWithNewPrefixesExpression(bool* is_async, bool* ok) { // NewExpression :: // ('new')+ MemberExpression // // NewTarget :: // 'new' '.' 'target' // The grammar for new expressions is pretty warped. We can have several 'new' // keywords following each other, and then a MemberExpression. When we see '(' // after the MemberExpression, it's associated with the rightmost unassociated // 'new' to create a NewExpression with arguments. However, a NewExpression // can also occur without arguments. // Examples of new expression: // new foo.bar().baz means (new (foo.bar)()).baz // new foo()() means (new foo())() // new new foo()() means (new (new foo())()) // new new foo means new (new foo) // new new foo() means new (new foo()) // new new foo().bar().baz means (new (new foo()).bar()).baz if (peek() == Token::NEW) { BindingPatternUnexpectedToken(); ArrowFormalParametersUnexpectedToken(); Consume(Token::NEW); int new_pos = position(); ExpressionT result; if (peek() == Token::SUPER) { const bool is_new = true; result = ParseSuperExpression(is_new, CHECK_OK); } else if (peek() == Token::PERIOD) { return ParseNewTargetExpression(CHECK_OK); } else { result = ParseMemberWithNewPrefixesExpression(is_async, CHECK_OK); } impl()->RewriteNonPattern(CHECK_OK); if (peek() == Token::LPAREN) { // NewExpression with arguments. Scanner::Location spread_pos; ExpressionListT args = ParseArguments(&spread_pos, CHECK_OK); if (spread_pos.IsValid()) { args = impl()->PrepareSpreadArguments(args); result = impl()->SpreadCallNew(result, args, new_pos); } else { result = factory()->NewCallNew(result, args, new_pos); } // The expression can still continue with . or [ after the arguments. result = ParseMemberExpressionContinuation(result, is_async, CHECK_OK); return result; } // NewExpression without arguments. return factory()->NewCallNew(result, impl()->NewExpressionList(0), new_pos); } // No 'new' or 'super' keyword. return ParseMemberExpression(is_async, ok); } template
typename ParserBase
::ExpressionT ParserBase
::ParseMemberExpression( bool* is_async, bool* ok) { // MemberExpression :: // (PrimaryExpression | FunctionLiteral | ClassLiteral) // ('[' Expression ']' | '.' Identifier | Arguments | TemplateLiteral)* // The '[' Expression ']' and '.' Identifier parts are parsed by // ParseMemberExpressionContinuation, and the Arguments part is parsed by the // caller. // Parse the initial primary or function expression. ExpressionT result; if (peek() == Token::FUNCTION) { BindingPatternUnexpectedToken(); ArrowFormalParametersUnexpectedToken(); Consume(Token::FUNCTION); int function_token_position = position(); if (allow_harmony_function_sent() && peek() == Token::PERIOD) { // function.sent int pos = position(); ExpectMetaProperty(CStrVector("sent"), "function.sent", pos, CHECK_OK); if (!is_generator()) { // TODO(neis): allow escaping into closures? impl()->ReportMessageAt(scanner()->location(), MessageTemplate::kUnexpectedFunctionSent); *ok = false; return impl()->EmptyExpression(); } return impl()->FunctionSentExpression(pos); } FunctionKind function_kind = Check(Token::MUL) ? FunctionKind::kGeneratorFunction : FunctionKind::kNormalFunction; IdentifierT name = impl()->EmptyIdentifier(); bool is_strict_reserved_name = false; Scanner::Location function_name_location = Scanner::Location::invalid(); FunctionLiteral::FunctionType function_type = FunctionLiteral::kAnonymousExpression; if (peek_any_identifier()) { name = ParseIdentifierOrStrictReservedWord( function_kind, &is_strict_reserved_name, CHECK_OK); function_name_location = scanner()->location(); function_type = FunctionLiteral::kNamedExpression; } result = impl()->ParseFunctionLiteral( name, function_name_location, is_strict_reserved_name ? kFunctionNameIsStrictReserved : kFunctionNameValidityUnknown, function_kind, function_token_position, function_type, language_mode(), CHECK_OK); } else if (peek() == Token::SUPER) { const bool is_new = false; result = ParseSuperExpression(is_new, CHECK_OK); } else { result = ParsePrimaryExpression(is_async, CHECK_OK); } result = ParseMemberExpressionContinuation(result, is_async, CHECK_OK); return result; } template
typename ParserBase
::ExpressionT ParserBase
::ParseSuperExpression( bool is_new, bool* ok) { Expect(Token::SUPER, CHECK_OK); int pos = position(); DeclarationScope* scope = GetReceiverScope(); FunctionKind kind = scope->function_kind(); if (IsConciseMethod(kind) || IsAccessorFunction(kind) || IsClassConstructor(kind)) { if (peek() == Token::PERIOD || peek() == Token::LBRACK) { scope->RecordSuperPropertyUsage(); return impl()->NewSuperPropertyReference(pos); } // new super() is never allowed. // super() is only allowed in derived constructor if (!is_new && peek() == Token::LPAREN && IsSubclassConstructor(kind)) { // TODO(rossberg): This might not be the correct FunctionState for the // method here. return impl()->NewSuperCallReference(pos); } } impl()->ReportMessageAt(scanner()->location(), MessageTemplate::kUnexpectedSuper); *ok = false; return impl()->EmptyExpression(); } template
void ParserBase
::ExpectMetaProperty(Vector
property_name, const char* full_name, int pos, bool* ok) { Consume(Token::PERIOD); ExpectContextualKeyword(property_name, CHECK_OK_CUSTOM(Void)); if (scanner()->literal_contains_escapes()) { impl()->ReportMessageAt( Scanner::Location(pos, scanner()->location().end_pos), MessageTemplate::kInvalidEscapedMetaProperty, full_name); *ok = false; } } template
typename ParserBase
::ExpressionT ParserBase
::ParseNewTargetExpression(bool* ok) { int pos = position(); ExpectMetaProperty(CStrVector("target"), "new.target", pos, CHECK_OK); if (!GetReceiverScope()->is_function_scope()) { impl()->ReportMessageAt(scanner()->location(), MessageTemplate::kUnexpectedNewTarget); *ok = false; return impl()->EmptyExpression(); } return impl()->NewTargetExpression(pos); } template
typename ParserBase
::ExpressionT ParserBase
::ParseMemberExpressionContinuation(ExpressionT expression, bool* is_async, bool* ok) { // Parses this part of MemberExpression: // ('[' Expression ']' | '.' Identifier | TemplateLiteral)* while (true) { switch (peek()) { case Token::LBRACK: { *is_async = false; impl()->RewriteNonPattern(CHECK_OK); BindingPatternUnexpectedToken(); ArrowFormalParametersUnexpectedToken(); Consume(Token::LBRACK); int pos = position(); ExpressionT index = ParseExpressionCoverGrammar(true, CHECK_OK); impl()->RewriteNonPattern(CHECK_OK); expression = factory()->NewProperty(expression, index, pos); impl()->PushPropertyName(index); Expect(Token::RBRACK, CHECK_OK); break; } case Token::PERIOD: { *is_async = false; impl()->RewriteNonPattern(CHECK_OK); BindingPatternUnexpectedToken(); ArrowFormalParametersUnexpectedToken(); Consume(Token::PERIOD); int pos = position(); IdentifierT name = ParseIdentifierName(CHECK_OK); expression = factory()->NewProperty( expression, factory()->NewStringLiteral(name, pos), pos); impl()->PushLiteralName(name); break; } case Token::TEMPLATE_SPAN: case Token::TEMPLATE_TAIL: { *is_async = false; impl()->RewriteNonPattern(CHECK_OK); BindingPatternUnexpectedToken(); ArrowFormalParametersUnexpectedToken(); int pos; if (scanner()->current_token() == Token::IDENTIFIER) { pos = position(); } else { pos = peek_position(); if (expression->IsFunctionLiteral()) { // If the tag function looks like an IIFE, set_parenthesized() to // force eager compilation. expression->AsFunctionLiteral()->SetShouldEagerCompile(); } } expression = ParseTemplateLiteral(expression, pos, CHECK_OK); break; } case Token::ILLEGAL: { ReportUnexpectedTokenAt(scanner()->peek_location(), Token::ILLEGAL); *ok = false; return impl()->EmptyExpression(); } default: return expression; } } DCHECK(false); return impl()->EmptyExpression(); } template
void ParserBase
::ParseFormalParameter(FormalParametersT* parameters, bool* ok) { // FormalParameter[Yield,GeneratorParameter] : // BindingElement[?Yield, ?GeneratorParameter] bool is_rest = parameters->has_rest; ExpressionT pattern = ParsePrimaryExpression(CHECK_OK_CUSTOM(Void)); ValidateBindingPattern(CHECK_OK_CUSTOM(Void)); if (!impl()->IsIdentifier(pattern)) { parameters->is_simple = false; ValidateFormalParameterInitializer(CHECK_OK_CUSTOM(Void)); classifier()->RecordNonSimpleParameter(); } ExpressionT initializer = impl()->EmptyExpression(); if (!is_rest && Check(Token::ASSIGN)) { ExpressionClassifier init_classifier(this); initializer = ParseAssignmentExpression(true, CHECK_OK_CUSTOM(Void)); impl()->RewriteNonPattern(CHECK_OK_CUSTOM(Void)); ValidateFormalParameterInitializer(CHECK_OK_CUSTOM(Void)); parameters->is_simple = false; impl()->Discard(); classifier()->RecordNonSimpleParameter(); impl()->SetFunctionNameFromIdentifierRef(initializer, pattern); } impl()->AddFormalParameter(parameters, pattern, initializer, scanner()->location().end_pos, is_rest); } template
void ParserBase
::ParseFormalParameterList(FormalParametersT* parameters, bool* ok) { // FormalParameters[Yield] : // [empty] // FunctionRestParameter[?Yield] // FormalParameterList[?Yield] // FormalParameterList[?Yield] , // FormalParameterList[?Yield] , FunctionRestParameter[?Yield] // // FormalParameterList[Yield] : // FormalParameter[?Yield] // FormalParameterList[?Yield] , FormalParameter[?Yield] DCHECK_EQ(0, parameters->arity); if (peek() != Token::RPAREN) { while (true) { if (parameters->arity > Code::kMaxArguments) { ReportMessage(MessageTemplate::kTooManyParameters); *ok = false; return; } parameters->has_rest = Check(Token::ELLIPSIS); ParseFormalParameter(parameters, CHECK_OK_CUSTOM(Void)); if (parameters->has_rest) { parameters->is_simple = false; classifier()->RecordNonSimpleParameter(); if (peek() == Token::COMMA) { impl()->ReportMessageAt(scanner()->peek_location(), MessageTemplate::kParamAfterRest); *ok = false; return; } break; } if (!Check(Token::COMMA)) break; if (allow_harmony_trailing_commas() && peek() == Token::RPAREN) { // allow the trailing comma break; } } } for (int i = 0; i < parameters->arity; ++i) { auto parameter = parameters->at(i); impl()->DeclareFormalParameter(parameters->scope, parameter); } } template
typename ParserBase
::BlockT ParserBase
::ParseVariableDeclarations( VariableDeclarationContext var_context, DeclarationParsingResult* parsing_result, ZoneList
* names, bool* ok) { // VariableDeclarations :: // ('var' | 'const' | 'let') (Identifier ('=' AssignmentExpression)?)+[','] // // ES6: // FIXME(marja, nikolaos): Add an up-to-date comment about ES6 variable // declaration syntax. DCHECK_NOT_NULL(parsing_result); parsing_result->descriptor.declaration_kind = DeclarationDescriptor::NORMAL; parsing_result->descriptor.declaration_pos = peek_position(); parsing_result->descriptor.initialization_pos = peek_position(); BlockT init_block = impl()->NullBlock(); if (var_context != kForStatement) { init_block = factory()->NewBlock( nullptr, 1, true, parsing_result->descriptor.declaration_pos); } switch (peek()) { case Token::VAR: parsing_result->descriptor.mode = VAR; Consume(Token::VAR); break; case Token::CONST: Consume(Token::CONST); DCHECK(var_context != kStatement); parsing_result->descriptor.mode = CONST; break; case Token::LET: Consume(Token::LET); DCHECK(var_context != kStatement); parsing_result->descriptor.mode = LET; break; default: UNREACHABLE(); // by current callers break; } parsing_result->descriptor.scope = scope(); parsing_result->descriptor.hoist_scope = nullptr; // The scope of a var/const declared variable anywhere inside a function // is the entire function (ECMA-262, 3rd, 10.1.3, and 12.2). The scope // of a let declared variable is the scope of the immediately enclosing // block. int bindings_start = peek_position(); do { // Parse binding pattern. FuncNameInferrer::State fni_state(fni_); ExpressionT pattern = impl()->EmptyExpression(); int decl_pos = peek_position(); { ExpressionClassifier pattern_classifier(this); pattern = ParsePrimaryExpression(CHECK_OK_CUSTOM(NullBlock)); ValidateBindingPattern(CHECK_OK_CUSTOM(NullBlock)); if (IsLexicalVariableMode(parsing_result->descriptor.mode)) { ValidateLetPattern(CHECK_OK_CUSTOM(NullBlock)); } } Scanner::Location variable_loc = scanner()->location(); bool single_name = impl()->IsIdentifier(pattern); if (single_name) { impl()->PushVariableName(impl()->AsIdentifier(pattern)); } ExpressionT value = impl()->EmptyExpression(); int initializer_position = kNoSourcePosition; if (Check(Token::ASSIGN)) { ExpressionClassifier classifier(this); value = ParseAssignmentExpression(var_context != kForStatement, CHECK_OK_CUSTOM(NullBlock)); impl()->RewriteNonPattern(CHECK_OK_CUSTOM(NullBlock)); variable_loc.end_pos = scanner()->location().end_pos; if (!parsing_result->first_initializer_loc.IsValid()) { parsing_result->first_initializer_loc = variable_loc; } // Don't infer if it is "a = function(){...}();"-like expression. if (single_name && fni_ != nullptr) { if (!value->IsCall() && !value->IsCallNew()) { fni_->Infer(); } else { fni_->RemoveLastFunction(); } } impl()->SetFunctionNameFromIdentifierRef(value, pattern); // End position of the initializer is after the assignment expression. initializer_position = scanner()->location().end_pos; } else { if (var_context != kForStatement || !PeekInOrOf()) { // ES6 'const' and binding patterns require initializers. if (parsing_result->descriptor.mode == CONST || !impl()->IsIdentifier(pattern)) { impl()->ReportMessageAt( Scanner::Location(decl_pos, scanner()->location().end_pos), MessageTemplate::kDeclarationMissingInitializer, !impl()->IsIdentifier(pattern) ? "destructuring" : "const"); *ok = false; return impl()->NullBlock(); } // 'let x' initializes 'x' to undefined. if (parsing_result->descriptor.mode == LET) { value = impl()->GetLiteralUndefined(position()); } } // End position of the initializer is after the variable. initializer_position = position(); } typename DeclarationParsingResult::Declaration decl( pattern, initializer_position, value); if (var_context == kForStatement) { // Save the declaration for further handling in ParseForStatement. parsing_result->declarations.Add(decl); } else { // Immediately declare the variable otherwise. This avoids O(N^2) // behavior (where N is the number of variables in a single // declaration) in the PatternRewriter having to do with removing // and adding VariableProxies to the Scope (see bug 4699). impl()->DeclareAndInitializeVariables(init_block, &parsing_result->descriptor, &decl, names, CHECK_OK_CUSTOM(NullBlock)); } } while (Check(Token::COMMA)); parsing_result->bindings_loc = Scanner::Location(bindings_start, scanner()->location().end_pos); DCHECK(*ok); return init_block; } template
typename ParserBase
::StatementT ParserBase
::ParseFunctionDeclaration(bool* ok) { Consume(Token::FUNCTION); int pos = position(); ParseFunctionFlags flags = ParseFunctionFlags::kIsNormal; if (Check(Token::MUL)) { impl()->ReportMessageAt(scanner()->location(), MessageTemplate::kGeneratorInLegacyContext); *ok = false; return impl()->NullStatement(); } return ParseHoistableDeclaration(pos, flags, nullptr, false, ok); } template
typename ParserBase
::StatementT ParserBase
::ParseHoistableDeclaration( ZoneList
* names, bool default_export, bool* ok) { Expect(Token::FUNCTION, CHECK_OK_CUSTOM(NullStatement)); int pos = position(); ParseFunctionFlags flags = ParseFunctionFlags::kIsNormal; if (Check(Token::MUL)) { flags |= ParseFunctionFlags::kIsGenerator; } return ParseHoistableDeclaration(pos, flags, names, default_export, ok); } template
typename ParserBase
::StatementT ParserBase
::ParseHoistableDeclaration( int pos, ParseFunctionFlags flags, ZoneList
* names, bool default_export, bool* ok) { // FunctionDeclaration :: // 'function' Identifier '(' FormalParameters ')' '{' FunctionBody '}' // 'function' '(' FormalParameters ')' '{' FunctionBody '}' // GeneratorDeclaration :: // 'function' '*' Identifier '(' FormalParameters ')' '{' FunctionBody '}' // 'function' '*' '(' FormalParameters ')' '{' FunctionBody '}' // // The anonymous forms are allowed iff [default_export] is true. // // 'function' and '*' (if present) have been consumed by the caller. const bool is_generator = flags & ParseFunctionFlags::kIsGenerator; const bool is_async = flags & ParseFunctionFlags::kIsAsync; DCHECK(!is_generator || !is_async); IdentifierT name; FunctionNameValidity name_validity; IdentifierT variable_name; if (default_export && peek() == Token::LPAREN) { impl()->GetDefaultStrings(&name, &variable_name); name_validity = kSkipFunctionNameCheck; } else { bool is_strict_reserved; name = ParseIdentifierOrStrictReservedWord(&is_strict_reserved, CHECK_OK_CUSTOM(NullStatement)); name_validity = is_strict_reserved ? kFunctionNameIsStrictReserved : kFunctionNameValidityUnknown; variable_name = name; } FuncNameInferrer::State fni_state(fni_); impl()->PushEnclosingName(name); FunctionLiteralT function = impl()->ParseFunctionLiteral( name, scanner()->location(), name_validity, is_generator ? FunctionKind::kGeneratorFunction : is_async ? FunctionKind::kAsyncFunction : FunctionKind::kNormalFunction, pos, FunctionLiteral::kDeclaration, language_mode(), CHECK_OK_CUSTOM(NullStatement)); return impl()->DeclareFunction(variable_name, function, pos, is_generator, is_async, names, ok); } template
typename ParserBase
::StatementT ParserBase
::ParseClassDeclaration( ZoneList
* names, bool default_export, bool* ok) { // ClassDeclaration :: // 'class' Identifier ('extends' LeftHandExpression)? '{' ClassBody '}' // 'class' ('extends' LeftHandExpression)? '{' ClassBody '}' // // The anonymous form is allowed iff [default_export] is true. // // 'class' is expected to be consumed by the caller. // // A ClassDeclaration // // class C { ... } // // has the same semantics as: // // let C = class C { ... }; // // so rewrite it as such. int class_token_pos = position(); IdentifierT name = impl()->EmptyIdentifier(); bool is_strict_reserved = false; IdentifierT variable_name = impl()->EmptyIdentifier(); if (default_export && (peek() == Token::EXTENDS || peek() == Token::LBRACE)) { impl()->GetDefaultStrings(&name, &variable_name); } else { name = ParseIdentifierOrStrictReservedWord(&is_strict_reserved, CHECK_OK_CUSTOM(NullStatement)); variable_name = name; } ExpressionClassifier no_classifier(this); ExpressionT value = ParseClassLiteral(name, scanner()->location(), is_strict_reserved, class_token_pos, CHECK_OK_CUSTOM(NullStatement)); int end_pos = position(); return impl()->DeclareClass(variable_name, value, names, class_token_pos, end_pos, ok); } // Language extension which is only enabled for source files loaded // through the API's extension mechanism. A native function // declaration is resolved by looking up the function through a // callback provided by the extension. template
typename ParserBase
::StatementT ParserBase
::ParseNativeDeclaration( bool* ok) { int pos = peek_position(); Expect(Token::FUNCTION, CHECK_OK_CUSTOM(NullStatement)); // Allow "eval" or "arguments" for backward compatibility. IdentifierT name = ParseIdentifier(kAllowRestrictedIdentifiers, CHECK_OK_CUSTOM(NullStatement)); Expect(Token::LPAREN, CHECK_OK_CUSTOM(NullStatement)); if (peek() != Token::RPAREN) { do { ParseIdentifier(kAllowRestrictedIdentifiers, CHECK_OK_CUSTOM(NullStatement)); } while (Check(Token::COMMA)); } Expect(Token::RPAREN, CHECK_OK_CUSTOM(NullStatement)); Expect(Token::SEMICOLON, CHECK_OK_CUSTOM(NullStatement)); return impl()->DeclareNative(name, pos, ok); } template
typename ParserBase
::StatementT ParserBase
::ParseAsyncFunctionDeclaration( ZoneList
* names, bool default_export, bool* ok) { // AsyncFunctionDeclaration :: // async [no LineTerminator here] function BindingIdentifier[Await] // ( FormalParameters[Await] ) { AsyncFunctionBody } DCHECK_EQ(scanner()->current_token(), Token::ASYNC); int pos = position(); if (scanner()->HasAnyLineTerminatorBeforeNext()) { *ok = false; impl()->ReportUnexpectedToken(scanner()->current_token()); return impl()->NullStatement(); } Expect(Token::FUNCTION, CHECK_OK_CUSTOM(NullStatement)); ParseFunctionFlags flags = ParseFunctionFlags::kIsAsync; return ParseHoistableDeclaration(pos, flags, names, default_export, ok); } template
void ParserBase
::CheckArityRestrictions(int param_count, FunctionKind function_kind, bool has_rest, int formals_start_pos, int formals_end_pos, bool* ok) { if (IsGetterFunction(function_kind)) { if (param_count != 0) { impl()->ReportMessageAt( Scanner::Location(formals_start_pos, formals_end_pos), MessageTemplate::kBadGetterArity); *ok = false; } } else if (IsSetterFunction(function_kind)) { if (param_count != 1) { impl()->ReportMessageAt( Scanner::Location(formals_start_pos, formals_end_pos), MessageTemplate::kBadSetterArity); *ok = false; } if (has_rest) { impl()->ReportMessageAt( Scanner::Location(formals_start_pos, formals_end_pos), MessageTemplate::kBadSetterRestParameter); *ok = false; } } } template
bool ParserBase
::IsNextLetKeyword() { DCHECK(peek() == Token::LET); Token::Value next_next = PeekAhead(); switch (next_next) { case Token::LBRACE: case Token::LBRACK: case Token::IDENTIFIER: case Token::STATIC: case Token::LET: // `let let;` is disallowed by static semantics, but the // token must be first interpreted as a keyword in order // for those semantics to apply. This ensures that ASI is // not honored when a LineTerminator separates the // tokens. case Token::YIELD: case Token::AWAIT: case Token::ASYNC: return true; case Token::FUTURE_STRICT_RESERVED_WORD: return is_sloppy(language_mode()); default: return false; } } template
bool ParserBase
::IsTrivialExpression() { Token::Value peek_token = peek(); if (peek_token == Token::SMI || peek_token == Token::NUMBER || peek_token == Token::NULL_LITERAL || peek_token == Token::TRUE_LITERAL || peek_token == Token::FALSE_LITERAL || peek_token == Token::STRING || peek_token == Token::IDENTIFIER || peek_token == Token::THIS) { // PeekAhead() is expensive & may not always be called, so we only call it // after checking peek(). Token::Value peek_ahead = PeekAhead(); if (peek_ahead == Token::COMMA || peek_ahead == Token::RPAREN || peek_ahead == Token::SEMICOLON || peek_ahead == Token::RBRACK) { return true; } } return false; } template
typename ParserBase
::ExpressionT ParserBase
::ParseArrowFunctionLiteral( bool accept_IN, const FormalParametersT& formal_parameters, bool* ok) { RuntimeCallTimerScope runtime_timer( runtime_call_stats_, Impl::IsPreParser() ? &RuntimeCallStats::ParseArrowFunctionLiteral : &RuntimeCallStats::PreParseArrowFunctionLiteral); if (peek() == Token::ARROW && scanner_->HasAnyLineTerminatorBeforeNext()) { // ASI inserts `;` after arrow parameters if a line terminator is found. // `=> ...` is never a valid expression, so report as syntax error. // If next token is not `=>`, it's a syntax error anyways. ReportUnexpectedTokenAt(scanner_->peek_location(), Token::ARROW); *ok = false; return impl()->EmptyExpression(); } StatementListT body = impl()->NullStatementList(); int materialized_literal_count = -1; int expected_property_count = -1; FunctionKind kind = formal_parameters.scope->function_kind(); FunctionLiteral::EagerCompileHint eager_compile_hint = default_eager_compile_hint_; bool can_preparse = impl()->parse_lazily() && eager_compile_hint == FunctionLiteral::kShouldLazyCompile; // TODO(marja): consider lazy-parsing inner arrow functions too. is_this // handling in Scope::ResolveVariable needs to change. bool is_lazy_top_level_function = can_preparse && impl()->AllowsLazyParsingWithoutUnresolvedVariables(); bool should_be_used_once_hint = false; bool has_braces = true; { FunctionState function_state(&function_state_, &scope_state_, formal_parameters.scope); function_state.SkipMaterializedLiterals( formal_parameters.materialized_literals_count); impl()->ReindexLiterals(formal_parameters); Expect(Token::ARROW, CHECK_OK); if (peek() == Token::LBRACE) { // Multiple statement body DCHECK_EQ(scope(), formal_parameters.scope); if (is_lazy_top_level_function) { // FIXME(marja): Arrow function parameters will be parsed even if the // body is preparsed; move relevant parts of parameter handling to // simulate consistent parameter handling. Scanner::BookmarkScope bookmark(scanner()); bookmark.Set(); // For arrow functions, we don't need to retrieve data about function // parameters. int dummy_num_parameters = -1; int dummy_function_length = -1; bool dummy_has_duplicate_parameters = false; DCHECK((kind & FunctionKind::kArrowFunction) != 0); LazyParsingResult result = impl()->SkipFunction( kind, formal_parameters.scope, &dummy_num_parameters, &dummy_function_length, &dummy_has_duplicate_parameters, &materialized_literal_count, &expected_property_count, false, true, CHECK_OK); formal_parameters.scope->ResetAfterPreparsing( ast_value_factory_, result == kLazyParsingAborted); if (formal_parameters.materialized_literals_count > 0) { materialized_literal_count += formal_parameters.materialized_literals_count; } if (result == kLazyParsingAborted) { bookmark.Apply(); // Trigger eager (re-)parsing, just below this block. is_lazy_top_level_function = false; // This is probably an initialization function. Inform the compiler it // should also eager-compile this function, and that we expect it to // be used once. eager_compile_hint = FunctionLiteral::kShouldEagerCompile; should_be_used_once_hint = true; } } if (!is_lazy_top_level_function) { Consume(Token::LBRACE); body = impl()->ParseEagerFunctionBody( impl()->EmptyIdentifier(), kNoSourcePosition, formal_parameters, kind, FunctionLiteral::kAnonymousExpression, CHECK_OK); materialized_literal_count = function_state.materialized_literal_count(); expected_property_count = function_state.expected_property_count(); } } else { // Single-expression body has_braces = false; int pos = position(); DCHECK(ReturnExprContext::kInsideValidBlock == function_state_->return_expr_context()); ReturnExprScope allow_tail_calls( function_state_, ReturnExprContext::kInsideValidReturnStatement); body = impl()->NewStatementList(1); impl()->AddParameterInitializationBlock( formal_parameters, body, kind == kAsyncArrowFunction, CHECK_OK); ExpressionClassifier classifier(this); if (kind == kAsyncArrowFunction) { ParseAsyncFunctionBody(scope(), body, kAsyncArrowFunction, FunctionBodyType::kSingleExpression, accept_IN, pos, CHECK_OK); impl()->RewriteNonPattern(CHECK_OK); } else { ExpressionT expression = ParseAssignmentExpression(accept_IN, CHECK_OK); impl()->RewriteNonPattern(CHECK_OK); body->Add( factory()->NewReturnStatement(expression, expression->position()), zone()); if (allow_tailcalls() && !is_sloppy(language_mode())) { // ES6 14.6.1 Static Semantics: IsInTailPosition impl()->MarkTailPosition(expression); } } materialized_literal_count = function_state.materialized_literal_count(); expected_property_count = function_state.expected_property_count(); impl()->MarkCollectedTailCallExpressions(); } formal_parameters.scope->set_end_position(scanner()->location().end_pos); // Arrow function formal parameters are parsed as StrictFormalParameterList, // which is not the same as "parameters of a strict function"; it only means // that duplicates are not allowed. Of course, the arrow function may // itself be strict as well. const bool allow_duplicate_parameters = false; ValidateFormalParameters(language_mode(), allow_duplicate_parameters, CHECK_OK); // Validate strict mode. if (is_strict(language_mode())) { CheckStrictOctalLiteral(formal_parameters.scope->start_position(), scanner()->location().end_pos, CHECK_OK); } impl()->CheckConflictingVarDeclarations(formal_parameters.scope, CHECK_OK); impl()->RewriteDestructuringAssignments(); } if (FLAG_trace_preparse) { Scope* scope = formal_parameters.scope; PrintF(" [%s]: %i-%i (arrow function)\n", is_lazy_top_level_function ? "Preparse no-resolution" : "Full parse", scope->start_position(), scope->end_position()); } FunctionLiteralT function_literal = factory()->NewFunctionLiteral( impl()->EmptyIdentifierString(), formal_parameters.scope, body, materialized_literal_count, expected_property_count, formal_parameters.num_parameters(), formal_parameters.function_length, FunctionLiteral::kNoDuplicateParameters, FunctionLiteral::kAnonymousExpression, eager_compile_hint, formal_parameters.scope->start_position(), has_braces); function_literal->set_function_token_position( formal_parameters.scope->start_position()); if (should_be_used_once_hint) { function_literal->set_should_be_used_once_hint(); } impl()->AddFunctionForNameInference(function_literal); return function_literal; } template
typename ParserBase
::ExpressionT ParserBase
::ParseClassLiteral( IdentifierT name, Scanner::Location class_name_location, bool name_is_strict_reserved, int class_token_pos, bool* ok) { // All parts of a ClassDeclaration and ClassExpression are strict code. if (name_is_strict_reserved) { impl()->ReportMessageAt(class_name_location, MessageTemplate::kUnexpectedStrictReserved); *ok = false; return impl()->EmptyExpression(); } if (impl()->IsEvalOrArguments(name)) { impl()->ReportMessageAt(class_name_location, MessageTemplate::kStrictEvalArguments); *ok = false; return impl()->EmptyExpression(); } BlockState block_state(zone(), &scope_state_); RaiseLanguageMode(STRICT); ClassInfo class_info(this); impl()->DeclareClassVariable(name, block_state.scope(), &class_info, class_token_pos, CHECK_OK); if (Check(Token::EXTENDS)) { block_state.set_start_position(scanner()->location().end_pos); ExpressionClassifier extends_classifier(this); class_info.extends = ParseLeftHandSideExpression(CHECK_OK); impl()->RewriteNonPattern(CHECK_OK); impl()->AccumulateFormalParameterContainmentErrors(); } else { block_state.set_start_position(scanner()->location().end_pos); } ClassLiteralChecker checker(this); Expect(Token::LBRACE, CHECK_OK); const bool has_extends = !impl()->IsEmptyExpression(class_info.extends); while (peek() != Token::RBRACE) { if (Check(Token::SEMICOLON)) continue; FuncNameInferrer::State fni_state(fni_); bool is_computed_name = false; // Classes do not care about computed // property names here. ExpressionClassifier property_classifier(this); ClassLiteralPropertyT property = ParseClassPropertyDefinition( &checker, has_extends, &is_computed_name, &class_info.has_seen_constructor, CHECK_OK); impl()->RewriteNonPattern(CHECK_OK); impl()->AccumulateFormalParameterContainmentErrors(); impl()->DeclareClassProperty(name, property, &class_info, CHECK_OK); impl()->InferFunctionName(); } Expect(Token::RBRACE, CHECK_OK); return impl()->RewriteClassLiteral(name, &class_info, class_token_pos, ok); } template
void ParserBase
::ParseAsyncFunctionBody(Scope* scope, StatementListT body, FunctionKind kind, FunctionBodyType body_type, bool accept_IN, int pos, bool* ok) { scope->ForceContextAllocation(); impl()->PrepareAsyncFunctionBody(body, kind, pos); BlockT block = factory()->NewBlock(nullptr, 8, true, kNoSourcePosition); ExpressionT return_value = impl()->EmptyExpression(); if (body_type == FunctionBodyType::kNormal) { ParseStatementList(block->statements(), Token::RBRACE, CHECK_OK_CUSTOM(Void)); return_value = factory()->NewUndefinedLiteral(kNoSourcePosition); } else { return_value = ParseAssignmentExpression(accept_IN, CHECK_OK_CUSTOM(Void)); impl()->RewriteNonPattern(CHECK_OK_CUSTOM(Void)); } impl()->RewriteAsyncFunctionBody(body, block, return_value, CHECK_OK_CUSTOM(Void)); scope->set_end_position(scanner()->location().end_pos); } template
typename ParserBase
::ExpressionT ParserBase
::ParseAsyncFunctionLiteral(bool* ok) { // AsyncFunctionLiteral :: // async [no LineTerminator here] function ( FormalParameters[Await] ) // { AsyncFunctionBody } // // async [no LineTerminator here] function BindingIdentifier[Await] // ( FormalParameters[Await] ) { AsyncFunctionBody } DCHECK_EQ(scanner()->current_token(), Token::ASYNC); int pos = position(); Expect(Token::FUNCTION, CHECK_OK); bool is_strict_reserved = false; IdentifierT name = impl()->EmptyIdentifier(); FunctionLiteral::FunctionType type = FunctionLiteral::kAnonymousExpression; if (peek_any_identifier()) { type = FunctionLiteral::kNamedExpression; name = ParseIdentifierOrStrictReservedWord(FunctionKind::kAsyncFunction, &is_strict_reserved, CHECK_OK); } return impl()->ParseFunctionLiteral( name, scanner()->location(), is_strict_reserved ? kFunctionNameIsStrictReserved : kFunctionNameValidityUnknown, FunctionKind::kAsyncFunction, pos, type, language_mode(), CHECK_OK); } template
typename ParserBase
::ExpressionT ParserBase
::ParseTemplateLiteral( ExpressionT tag, int start, bool* ok) { // A TemplateLiteral is made up of 0 or more TEMPLATE_SPAN tokens (literal // text followed by a substitution expression), finalized by a single // TEMPLATE_TAIL. // // In terms of draft language, TEMPLATE_SPAN may be either the TemplateHead or // TemplateMiddle productions, while TEMPLATE_TAIL is either TemplateTail, or // NoSubstitutionTemplate. // // When parsing a TemplateLiteral, we must have scanned either an initial // TEMPLATE_SPAN, or a TEMPLATE_TAIL. CHECK(peek() == Token::TEMPLATE_SPAN || peek() == Token::TEMPLATE_TAIL); // If we reach a TEMPLATE_TAIL first, we are parsing a NoSubstitutionTemplate. // In this case we may simply consume the token and build a template with a // single TEMPLATE_SPAN and no expressions. if (peek() == Token::TEMPLATE_TAIL) { Consume(Token::TEMPLATE_TAIL); int pos = position(); CheckTemplateOctalLiteral(pos, peek_position(), CHECK_OK); typename Impl::TemplateLiteralState ts = impl()->OpenTemplateLiteral(pos); impl()->AddTemplateSpan(&ts, true); return impl()->CloseTemplateLiteral(&ts, start, tag); } Consume(Token::TEMPLATE_SPAN); int pos = position(); typename Impl::TemplateLiteralState ts = impl()->OpenTemplateLiteral(pos); impl()->AddTemplateSpan(&ts, false); Token::Value next; // If we open with a TEMPLATE_SPAN, we must scan the subsequent expression, // and repeat if the following token is a TEMPLATE_SPAN as well (in this // case, representing a TemplateMiddle). do { CheckTemplateOctalLiteral(pos, peek_position(), CHECK_OK); next = peek(); if (next == Token::EOS) { impl()->ReportMessageAt(Scanner::Location(start, peek_position()), MessageTemplate::kUnterminatedTemplate); *ok = false; return impl()->EmptyExpression(); } else if (next == Token::ILLEGAL) { impl()->ReportMessageAt( Scanner::Location(position() + 1, peek_position()), MessageTemplate::kUnexpectedToken, "ILLEGAL", kSyntaxError); *ok = false; return impl()->EmptyExpression(); } int expr_pos = peek_position(); ExpressionT expression = ParseExpressionCoverGrammar(true, CHECK_OK); impl()->RewriteNonPattern(CHECK_OK); impl()->AddTemplateExpression(&ts, expression); if (peek() != Token::RBRACE) { impl()->ReportMessageAt(Scanner::Location(expr_pos, peek_position()), MessageTemplate::kUnterminatedTemplateExpr); *ok = false; return impl()->EmptyExpression(); } // If we didn't die parsing that expression, our next token should be a // TEMPLATE_SPAN or TEMPLATE_TAIL. next = scanner()->ScanTemplateContinuation(); Next(); pos = position(); if (next == Token::EOS) { impl()->ReportMessageAt(Scanner::Location(start, pos), MessageTemplate::kUnterminatedTemplate); *ok = false; return impl()->EmptyExpression(); } else if (next == Token::ILLEGAL) { impl()->ReportMessageAt( Scanner::Location(position() + 1, peek_position()), MessageTemplate::kUnexpectedToken, "ILLEGAL", kSyntaxError); *ok = false; return impl()->EmptyExpression(); } impl()->AddTemplateSpan(&ts, next == Token::TEMPLATE_TAIL); } while (next == Token::TEMPLATE_SPAN); DCHECK_EQ(next, Token::TEMPLATE_TAIL); CheckTemplateOctalLiteral(pos, peek_position(), CHECK_OK); // Once we've reached a TEMPLATE_TAIL, we can close the TemplateLiteral. return impl()->CloseTemplateLiteral(&ts, start, tag); } template
typename ParserBase
::ExpressionT ParserBase
::CheckAndRewriteReferenceExpression( ExpressionT expression, int beg_pos, int end_pos, MessageTemplate::Template message, bool* ok) { return CheckAndRewriteReferenceExpression(expression, beg_pos, end_pos, message, kReferenceError, ok); } template
typename ParserBase
::ExpressionT ParserBase
::CheckAndRewriteReferenceExpression( ExpressionT expression, int beg_pos, int end_pos, MessageTemplate::Template message, ParseErrorType type, bool* ok) { if (impl()->IsIdentifier(expression) && is_strict(language_mode()) && impl()->IsEvalOrArguments(impl()->AsIdentifier(expression))) { ReportMessageAt(Scanner::Location(beg_pos, end_pos), MessageTemplate::kStrictEvalArguments, kSyntaxError); *ok = false; return impl()->EmptyExpression(); } if (expression->IsValidReferenceExpression()) { return expression; } if (expression->IsCall()) { // If it is a call, make it a runtime error for legacy web compatibility. // Rewrite `expr' to `expr[throw ReferenceError]'. ExpressionT error = impl()->NewThrowReferenceError(message, beg_pos); return factory()->NewProperty(expression, error, beg_pos); } ReportMessageAt(Scanner::Location(beg_pos, end_pos), message, type); *ok = false; return impl()->EmptyExpression(); } template
bool ParserBase
::IsValidReferenceExpression(ExpressionT expression) { return IsAssignableIdentifier(expression) || expression->IsProperty(); } template
void ParserBase
::CheckDestructuringElement(ExpressionT expression, int begin, int end) { if (!IsValidPattern(expression) && !expression->IsAssignment() && !IsValidReferenceExpression(expression)) { classifier()->RecordAssignmentPatternError( Scanner::Location(begin, end), MessageTemplate::kInvalidDestructuringTarget); } } template
typename ParserBase
::ExpressionT ParserBase
::ParseV8Intrinsic( bool* ok) { // CallRuntime :: // '%' Identifier Arguments int pos = peek_position(); Expect(Token::MOD, CHECK_OK); // Allow "eval" or "arguments" for backward compatibility. IdentifierT name = ParseIdentifier(kAllowRestrictedIdentifiers, CHECK_OK); Scanner::Location spread_pos; ExpressionClassifier classifier(this); ExpressionListT args = ParseArguments(&spread_pos, CHECK_OK); DCHECK(!spread_pos.IsValid()); return impl()->NewV8Intrinsic(name, args, pos, ok); } template
typename ParserBase
::ExpressionT ParserBase
::ParseDoExpression( bool* ok) { // AssignmentExpression :: // do '{' StatementList '}' int pos = peek_position(); Expect(Token::DO, CHECK_OK); BlockT block = ParseBlock(nullptr, CHECK_OK); return impl()->RewriteDoExpression(block, pos, ok); } // Redefinition of CHECK_OK for parsing statements. #undef CHECK_OK #define CHECK_OK CHECK_OK_CUSTOM(NullStatement) template
typename ParserBase
::LazyParsingResult ParserBase
::ParseStatementList(StatementListT body, int end_token, bool may_abort, bool* ok) { // StatementList :: // (StatementListItem)*
// Allocate a target stack to use for this set of source // elements. This way, all scripts and functions get their own // target stack thus avoiding illegal breaks and continues across // functions. typename Types::TargetScope target_scope(this); int count_statements = 0; DCHECK(!impl()->IsNullStatementList(body)); bool directive_prologue = true; // Parsing directive prologue. while (peek() != end_token) { if (directive_prologue && peek() != Token::STRING) { directive_prologue = false; } bool starts_with_identifier = peek() == Token::IDENTIFIER; Scanner::Location token_loc = scanner()->peek_location(); StatementT stat = ParseStatementListItem(CHECK_OK_CUSTOM(Return, kLazyParsingComplete)); if (impl()->IsNullStatement(stat) || impl()->IsEmptyStatement(stat)) { directive_prologue = false; // End of directive prologue. continue; } if (directive_prologue) { // The length of the token is used to distinguish between strings literals // that evaluate equal to directives but contain either escape sequences // (e.g., "use \x73trict") or line continuations (e.g., "use \(newline) // strict"). if (impl()->IsUseStrictDirective(stat) && token_loc.end_pos - token_loc.beg_pos == sizeof("use strict") + 1) { // Directive "use strict" (ES5 14.1). RaiseLanguageMode(STRICT); if (!scope()->HasSimpleParameters()) { // TC39 deemed "use strict" directives to be an error when occurring // in the body of a function with non-simple parameter list, on // 29/7/2015. https://goo.gl/ueA7Ln impl()->ReportMessageAt( token_loc, MessageTemplate::kIllegalLanguageModeDirective, "use strict"); *ok = false; return kLazyParsingComplete; } } else if (impl()->IsUseAsmDirective(stat) && token_loc.end_pos - token_loc.beg_pos == sizeof("use asm") + 1) { // Directive "use asm". impl()->SetAsmModule(); } else if (impl()->IsStringLiteral(stat)) { // Possibly an unknown directive. // Should not change mode, but will increment usage counters // as appropriate. Ditto usages below. RaiseLanguageMode(SLOPPY); } else { // End of the directive prologue. directive_prologue = false; RaiseLanguageMode(SLOPPY); } } else { RaiseLanguageMode(SLOPPY); } // If we're allowed to abort, we will do so when we see a "long and // trivial" function. Our current definition of "long and trivial" is: // - over kLazyParseTrialLimit statements // - all starting with an identifier (i.e., no if, for, while, etc.) if (may_abort) { if (!starts_with_identifier) { may_abort = false; } else if (++count_statements > kLazyParseTrialLimit) { return kLazyParsingAborted; } } body->Add(stat, zone()); } return kLazyParsingComplete; } template
typename ParserBase
::StatementT ParserBase
::ParseStatementListItem( bool* ok) { // ECMA 262 6th Edition // StatementListItem[Yield, Return] : // Statement[?Yield, ?Return] // Declaration[?Yield] // // Declaration[Yield] : // HoistableDeclaration[?Yield] // ClassDeclaration[?Yield] // LexicalDeclaration[In, ?Yield] // // HoistableDeclaration[Yield, Default] : // FunctionDeclaration[?Yield, ?Default] // GeneratorDeclaration[?Yield, ?Default] // // LexicalDeclaration[In, Yield] : // LetOrConst BindingList[?In, ?Yield] ; switch (peek()) { case Token::FUNCTION: return ParseHoistableDeclaration(nullptr, false, ok); case Token::CLASS: Consume(Token::CLASS); return ParseClassDeclaration(nullptr, false, ok); case Token::VAR: case Token::CONST: return ParseVariableStatement(kStatementListItem, nullptr, ok); case Token::LET: if (IsNextLetKeyword()) { return ParseVariableStatement(kStatementListItem, nullptr, ok); } break; case Token::ASYNC: if (allow_harmony_async_await() && PeekAhead() == Token::FUNCTION && !scanner()->HasAnyLineTerminatorAfterNext()) { Consume(Token::ASYNC); return ParseAsyncFunctionDeclaration(nullptr, false, ok); } /* falls through */ default: break; } return ParseStatement(nullptr, kAllowLabelledFunctionStatement, ok); } template
typename ParserBase
::StatementT ParserBase
::ParseStatement( ZoneList
* labels, AllowLabelledFunctionStatement allow_function, bool* ok) { // Statement :: // Block // VariableStatement // EmptyStatement // ExpressionStatement // IfStatement // IterationStatement // ContinueStatement // BreakStatement // ReturnStatement // WithStatement // LabelledStatement // SwitchStatement // ThrowStatement // TryStatement // DebuggerStatement // Note: Since labels can only be used by 'break' and 'continue' // statements, which themselves are only valid within blocks, // iterations or 'switch' statements (i.e., BreakableStatements), // labels can be simply ignored in all other cases; except for // trivial labeled break statements 'label: break label' which is // parsed into an empty statement. switch (peek()) { case Token::LBRACE: return ParseBlock(labels, ok); case Token::SEMICOLON: Next(); return factory()->NewEmptyStatement(kNoSourcePosition); case Token::IF: return ParseIfStatement(labels, ok); case Token::DO: return ParseDoWhileStatement(labels, ok); case Token::WHILE: return ParseWhileStatement(labels, ok); case Token::FOR: return ParseForStatement(labels, ok); case Token::CONTINUE: case Token::BREAK: case Token::RETURN: case Token::THROW: case Token::TRY: { // These statements must have their labels preserved in an enclosing // block, as the corresponding AST nodes do not currently store their // labels. // TODO(nikolaos, marja): Consider adding the labels to the AST nodes. if (labels == nullptr) { return ParseStatementAsUnlabelled(labels, ok); } else { BlockT result = factory()->NewBlock(labels, 1, false, kNoSourcePosition); typename Types::Target target(this, result); StatementT statement = ParseStatementAsUnlabelled(labels, CHECK_OK); result->statements()->Add(statement, zone()); return result; } } case Token::WITH: return ParseWithStatement(labels, ok); case Token::SWITCH: return ParseSwitchStatement(labels, ok); case Token::FUNCTION: // FunctionDeclaration only allowed as a StatementListItem, not in // an arbitrary Statement position. Exceptions such as // ES#sec-functiondeclarations-in-ifstatement-statement-clauses // are handled by calling ParseScopedStatement rather than // ParseStatement directly. impl()->ReportMessageAt(scanner()->peek_location(), is_strict(language_mode()) ? MessageTemplate::kStrictFunction : MessageTemplate::kSloppyFunction); *ok = false; return impl()->NullStatement(); case Token::DEBUGGER: return ParseDebuggerStatement(ok); case Token::VAR: return ParseVariableStatement(kStatement, nullptr, ok); default: return ParseExpressionOrLabelledStatement(labels, allow_function, ok); } } // This method parses a subset of statements (break, continue, return, throw, // try) which are to be grouped because they all require their labeles to be // preserved in an enclosing block. template
typename ParserBase
::StatementT ParserBase
::ParseStatementAsUnlabelled( ZoneList
* labels, bool* ok) { switch (peek()) { case Token::CONTINUE: return ParseContinueStatement(ok); case Token::BREAK: return ParseBreakStatement(labels, ok); case Token::RETURN: return ParseReturnStatement(ok); case Token::THROW: return ParseThrowStatement(ok); case Token::TRY: return ParseTryStatement(ok); default: UNREACHABLE(); return impl()->NullStatement(); } } template
typename ParserBase
::BlockT ParserBase
::ParseBlock( ZoneList
* labels, bool* ok) { // Block :: // '{' StatementList '}' // Construct block expecting 16 statements. BlockT body = factory()->NewBlock(labels, 16, false, kNoSourcePosition); // Parse the statements and collect escaping labels. Expect(Token::LBRACE, CHECK_OK_CUSTOM(NullBlock)); { BlockState block_state(zone(), &scope_state_); block_state.set_start_position(scanner()->location().beg_pos); typename Types::Target target(this, body); while (peek() != Token::RBRACE) { StatementT stat = ParseStatementListItem(CHECK_OK_CUSTOM(NullBlock)); if (!impl()->IsNullStatement(stat) && !impl()->IsEmptyStatement(stat)) { body->statements()->Add(stat, zone()); } } Expect(Token::RBRACE, CHECK_OK_CUSTOM(NullBlock)); block_state.set_end_position(scanner()->location().end_pos); body->set_scope(block_state.FinalizedBlockScope()); } return body; } template
typename ParserBase
::StatementT ParserBase
::ParseScopedStatement( ZoneList
* labels, bool legacy, bool* ok) { if (is_strict(language_mode()) || peek() != Token::FUNCTION || legacy) { return ParseStatement(labels, kDisallowLabelledFunctionStatement, ok); } else { if (legacy) { impl()->CountUsage(v8::Isolate::kLegacyFunctionDeclaration); } // Make a block around the statement for a lexical binding // is introduced by a FunctionDeclaration. BlockState block_state(zone(), &scope_state_); block_state.set_start_position(scanner()->location().beg_pos); BlockT block = factory()->NewBlock(NULL, 1, false, kNoSourcePosition); StatementT body = ParseFunctionDeclaration(CHECK_OK); block->statements()->Add(body, zone()); block_state.set_end_position(scanner()->location().end_pos); block->set_scope(block_state.FinalizedBlockScope()); return block; } } template
typename ParserBase
::StatementT ParserBase
::ParseVariableStatement( VariableDeclarationContext var_context, ZoneList
* names, bool* ok) { // VariableStatement :: // VariableDeclarations ';' // The scope of a var declared variable anywhere inside a function // is the entire function (ECMA-262, 3rd, 10.1.3, and 12.2). Thus we can // transform a source-level var declaration into a (Function) Scope // declaration, and rewrite the source-level initialization into an assignment // statement. We use a block to collect multiple assignments. // // We mark the block as initializer block because we don't want the // rewriter to add a '.result' assignment to such a block (to get compliant // behavior for code such as print(eval('var x = 7')), and for cosmetic // reasons when pretty-printing. Also, unless an assignment (initialization) // is inside an initializer block, it is ignored. DeclarationParsingResult parsing_result; StatementT result = ParseVariableDeclarations(var_context, &parsing_result, names, CHECK_OK); ExpectSemicolon(CHECK_OK); return result; } template
typename ParserBase
::StatementT ParserBase
::ParseDebuggerStatement( bool* ok) { // In ECMA-262 'debugger' is defined as a reserved keyword. In some browser // contexts this is used as a statement which invokes the debugger as i a // break point is present. // DebuggerStatement :: // 'debugger' ';' int pos = peek_position(); Expect(Token::DEBUGGER, CHECK_OK); ExpectSemicolon(CHECK_OK); return factory()->NewDebuggerStatement(pos); } template
typename ParserBase
::StatementT ParserBase
::ParseExpressionOrLabelledStatement( ZoneList