// Copyright 2014 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef V8_S390_MACRO_ASSEMBLER_S390_H_
#define V8_S390_MACRO_ASSEMBLER_S390_H_
#include "src/assembler.h"
#include "src/bailout-reason.h"
#include "src/frames.h"
#include "src/globals.h"
namespace v8 {
namespace internal {
// Give alias names to registers for calling conventions.
const Register kReturnRegister0 = {Register::kCode_r2};
const Register kReturnRegister1 = {Register::kCode_r3};
const Register kReturnRegister2 = {Register::kCode_r4};
const Register kJSFunctionRegister = {Register::kCode_r3};
const Register kContextRegister = {Register::kCode_r13};
const Register kAllocateSizeRegister = {Register::kCode_r3};
const Register kInterpreterAccumulatorRegister = {Register::kCode_r2};
const Register kInterpreterBytecodeOffsetRegister = {Register::kCode_r6};
const Register kInterpreterBytecodeArrayRegister = {Register::kCode_r7};
const Register kInterpreterDispatchTableRegister = {Register::kCode_r8};
const Register kJavaScriptCallArgCountRegister = {Register::kCode_r2};
const Register kJavaScriptCallNewTargetRegister = {Register::kCode_r5};
const Register kRuntimeCallFunctionRegister = {Register::kCode_r3};
const Register kRuntimeCallArgCountRegister = {Register::kCode_r2};
// ----------------------------------------------------------------------------
// Static helper functions
// Generate a MemOperand for loading a field from an object.
inline MemOperand FieldMemOperand(Register object, int offset) {
return MemOperand(object, offset - kHeapObjectTag);
}
// Generate a MemOperand for loading a field from an object.
inline MemOperand FieldMemOperand(Register object, Register index, int offset) {
return MemOperand(object, index, offset - kHeapObjectTag);
}
// Generate a MemOperand for loading a field from Root register
inline MemOperand RootMemOperand(Heap::RootListIndex index) {
return MemOperand(kRootRegister, index << kPointerSizeLog2);
}
// Flags used for AllocateHeapNumber
enum TaggingMode {
// Tag the result.
TAG_RESULT,
// Don't tag
DONT_TAG_RESULT
};
enum RememberedSetAction { EMIT_REMEMBERED_SET, OMIT_REMEMBERED_SET };
enum SmiCheck { INLINE_SMI_CHECK, OMIT_SMI_CHECK };
enum PointersToHereCheck {
kPointersToHereMaybeInteresting,
kPointersToHereAreAlwaysInteresting
};
enum LinkRegisterStatus { kLRHasNotBeenSaved, kLRHasBeenSaved };
Register GetRegisterThatIsNotOneOf(Register reg1, Register reg2 = no_reg,
Register reg3 = no_reg,
Register reg4 = no_reg,
Register reg5 = no_reg,
Register reg6 = no_reg);
#ifdef DEBUG
bool AreAliased(Register reg1, Register reg2, Register reg3 = no_reg,
Register reg4 = no_reg, Register reg5 = no_reg,
Register reg6 = no_reg, Register reg7 = no_reg,
Register reg8 = no_reg, Register reg9 = no_reg,
Register reg10 = no_reg);
#endif
// These exist to provide portability between 32 and 64bit
#if V8_TARGET_ARCH_S390X
#define Div divd
// The length of the arithmetic operation is the length
// of the register.
// Length:
// H = halfword
// W = word
// arithmetics and bitwise
#define AddMI agsi
#define AddRR agr
#define SubRR sgr
#define AndRR ngr
#define OrRR ogr
#define XorRR xgr
#define LoadComplementRR lcgr
#define LoadNegativeRR lngr
// Distinct Operands
#define AddP_RRR agrk
#define AddPImm_RRI aghik
#define AddLogicalP_RRR algrk
#define SubP_RRR sgrk
#define SubLogicalP_RRR slgrk
#define AndP_RRR ngrk
#define OrP_RRR ogrk
#define XorP_RRR xgrk
// Load / Store
#define LoadRR lgr
#define LoadAndTestRR ltgr
#define LoadImmP lghi
// Compare
#define CmpPH cghi
#define CmpLogicalPW clgfi
// Shifts
#define ShiftLeftP sllg
#define ShiftRightP srlg
#define ShiftLeftArithP slag
#define ShiftRightArithP srag
#else
// arithmetics and bitwise
// Reg2Reg
#define AddMI asi
#define AddRR ar
#define SubRR sr
#define AndRR nr
#define OrRR or_z
#define XorRR xr
#define LoadComplementRR lcr
#define LoadNegativeRR lnr
// Distinct Operands
#define AddP_RRR ark
#define AddPImm_RRI ahik
#define AddLogicalP_RRR alrk
#define SubP_RRR srk
#define SubLogicalP_RRR slrk
#define AndP_RRR nrk
#define OrP_RRR ork
#define XorP_RRR xrk
// Load / Store
#define LoadRR lr
#define LoadAndTestRR ltr
#define LoadImmP lhi
// Compare
#define CmpPH chi
#define CmpLogicalPW clfi
// Shifts
#define ShiftLeftP ShiftLeft
#define ShiftRightP ShiftRight
#define ShiftLeftArithP ShiftLeftArith
#define ShiftRightArithP ShiftRightArith
#endif
// MacroAssembler implements a collection of frequently used macros.
class MacroAssembler : public Assembler {
public:
MacroAssembler(Isolate* isolate, void* buffer, int size,
CodeObjectRequired create_code_object);
// Returns the size of a call in instructions.
static int CallSize(Register target);
int CallSize(Address target, RelocInfo::Mode rmode, Condition cond = al);
static int CallSizeNotPredictableCodeSize(Address target,
RelocInfo::Mode rmode,
Condition cond = al);
// Jump, Call, and Ret pseudo instructions implementing inter-working.
void Jump(Register target);
void JumpToJSEntry(Register target);
void Jump(Address target, RelocInfo::Mode rmode, Condition cond = al,
CRegister cr = cr7);
void Jump(Handle<Code> code, RelocInfo::Mode rmode, Condition cond = al);
void Call(Register target);
void CallJSEntry(Register target);
void Call(Address target, RelocInfo::Mode rmode, Condition cond = al);
int CallSize(Handle<Code> code,
RelocInfo::Mode rmode = RelocInfo::CODE_TARGET,
TypeFeedbackId ast_id = TypeFeedbackId::None(),
Condition cond = al);
void Call(Handle<Code> code, RelocInfo::Mode rmode = RelocInfo::CODE_TARGET,
TypeFeedbackId ast_id = TypeFeedbackId::None(),
Condition cond = al);
void Ret() { b(r14); }
void Ret(Condition cond) { b(cond, r14); }
// Emit code that loads |parameter_index|'th parameter from the stack to
// the register according to the CallInterfaceDescriptor definition.
// |sp_to_caller_sp_offset_in_words| specifies the number of words pushed
// below the caller's sp.
template <class Descriptor>
void LoadParameterFromStack(
Register reg, typename Descriptor::ParameterIndices parameter_index,
int sp_to_ra_offset_in_words = 0) {
DCHECK(Descriptor::kPassLastArgsOnStack);
UNIMPLEMENTED();
}
// Emit code to discard a non-negative number of pointer-sized elements
// from the stack, clobbering only the sp register.
void Drop(int count);
void Drop(Register count, Register scratch = r0);
void Ret(int drop) {
Drop(drop);
Ret();
}
void Call(Label* target);
// Register move. May do nothing if the registers are identical.
void Move(Register dst, Smi* smi) { LoadSmiLiteral(dst, smi); }
void Move(Register dst, Handle<Object> value);
void Move(Register dst, Register src, Condition cond = al);
void Move(DoubleRegister dst, DoubleRegister src);
void MultiPush(RegList regs, Register location = sp);
void MultiPop(RegList regs, Register location = sp);
void MultiPushDoubles(RegList dregs, Register location = sp);
void MultiPopDoubles(RegList dregs, Register location = sp);
// Load an object from the root table.
void LoadRoot(Register destination, Heap::RootListIndex index,
Condition cond = al);
// Store an object to the root table.
void StoreRoot(Register source, Heap::RootListIndex index,
Condition cond = al);
//--------------------------------------------------------------------------
// S390 Macro Assemblers for Instructions
//--------------------------------------------------------------------------
// Arithmetic Operations
// Add (Register - Immediate)
void Add32(Register dst, const Operand& imm);
void AddP(Register dst, const Operand& imm);
void Add32(Register dst, Register src, const Operand& imm);
void AddP(Register dst, Register src, const Operand& imm);
// Add (Register - Register)
void Add32(Register dst, Register src);
void AddP(Register dst, Register src);
void AddP_ExtendSrc(Register dst, Register src);
void Add32(Register dst, Register src1, Register src2);
void AddP(Register dst, Register src1, Register src2);
void AddP_ExtendSrc(Register dst, Register src1, Register src2);
// Add (Register - Mem)
void Add32(Register dst, const MemOperand& opnd);
void AddP(Register dst, const MemOperand& opnd);
void AddP_ExtendSrc(Register dst, const MemOperand& opnd);
// Add (Mem - Immediate)
void Add32(const MemOperand& opnd, const Operand& imm);
void AddP(const MemOperand& opnd, const Operand& imm);
// Add Logical (Register - Register)
void AddLogical32(Register dst, Register src1, Register src2);
// Add Logical With Carry (Register - Register)
void AddLogicalWithCarry32(Register dst, Register src1, Register src2);
// Add Logical (Register - Immediate)
void AddLogical(Register dst, const Operand& imm);
void AddLogicalP(Register dst, const Operand& imm);
// Add Logical (Register - Mem)
void AddLogical(Register dst, const MemOperand& opnd);
void AddLogicalP(Register dst, const MemOperand& opnd);
// Subtract (Register - Immediate)
void Sub32(Register dst, const Operand& imm);
void SubP(Register dst, const Operand& imm);
void Sub32(Register dst, Register src, const Operand& imm);
void SubP(Register dst, Register src, const Operand& imm);
// Subtract (Register - Register)
void Sub32(Register dst, Register src);
void SubP(Register dst, Register src);
void SubP_ExtendSrc(Register dst, Register src);
void Sub32(Register dst, Register src1, Register src2);
void SubP(Register dst, Register src1, Register src2);
void SubP_ExtendSrc(Register dst, Register src1, Register src2);
// Subtract (Register - Mem)
void Sub32(Register dst, const MemOperand& opnd);
void SubP(Register dst, const MemOperand& opnd);
void SubP_ExtendSrc(Register dst, const MemOperand& opnd);
// Subtract Logical (Register - Mem)
void SubLogical(Register dst, const MemOperand& opnd);
void SubLogicalP(Register dst, const MemOperand& opnd);
void SubLogicalP_ExtendSrc(Register dst, const MemOperand& opnd);
// Subtract Logical 32-bit
void SubLogical32(Register dst, Register src1, Register src2);
// Subtract Logical With Borrow 32-bit
void SubLogicalWithBorrow32(Register dst, Register src1, Register src2);
// Multiply
void MulP(Register dst, const Operand& opnd);
void MulP(Register dst, Register src);
void MulP(Register dst, const MemOperand& opnd);
void Mul(Register dst, Register src1, Register src2);
void Mul32(Register dst, const MemOperand& src1);
void Mul32(Register dst, Register src1);
void Mul32(Register dst, const Operand& src1);
void Mul64(Register dst, const MemOperand& src1);
void Mul64(Register dst, Register src1);
void Mul64(Register dst, const Operand& src1);
// Divide
void DivP(Register dividend, Register divider);
// Compare
void Cmp32(Register src1, Register src2);
void CmpP(Register src1, Register src2);
void Cmp32(Register dst, const Operand& opnd);
void CmpP(Register dst, const Operand& opnd);
void Cmp32(Register dst, const MemOperand& opnd);
void CmpP(Register dst, const MemOperand& opnd);
// Compare Logical
void CmpLogical32(Register src1, Register src2);
void CmpLogicalP(Register src1, Register src2);
void CmpLogical32(Register src1, const Operand& opnd);
void CmpLogicalP(Register src1, const Operand& opnd);
void CmpLogical32(Register dst, const MemOperand& opnd);
void CmpLogicalP(Register dst, const MemOperand& opnd);
// Compare Logical Byte (CLI/CLIY)
void CmpLogicalByte(const MemOperand& mem, const Operand& imm);
// Load 32bit
void Load(Register dst, const MemOperand& opnd);
void Load(Register dst, const Operand& opnd);
void LoadW(Register dst, const MemOperand& opnd, Register scratch = no_reg);
void LoadW(Register dst, Register src);
void LoadlW(Register dst, const MemOperand& opnd, Register scratch = no_reg);
void LoadlW(Register dst, Register src);
void LoadLogicalHalfWordP(Register dst, const MemOperand& opnd);
void LoadLogicalHalfWordP(Register dst, Register src);
void LoadB(Register dst, const MemOperand& opnd);
void LoadB(Register dst, Register src);
void LoadlB(Register dst, const MemOperand& opnd);
void LoadLogicalReversedWordP(Register dst, const MemOperand& opnd);
void LoadLogicalReversedHalfWordP(Register dst, const MemOperand& opnd);
// Load And Test
void LoadAndTest32(Register dst, Register src);
void LoadAndTestP_ExtendSrc(Register dst, Register src);
void LoadAndTestP(Register dst, Register src);
void LoadAndTest32(Register dst, const MemOperand& opnd);
void LoadAndTestP(Register dst, const MemOperand& opnd);
// Load Floating Point
void LoadDouble(DoubleRegister dst, const MemOperand& opnd);
void LoadFloat32(DoubleRegister dst, const MemOperand& opnd);
void LoadFloat32ConvertToDouble(DoubleRegister dst, const MemOperand& mem);
// Load On Condition
void LoadOnConditionP(Condition cond, Register dst, Register src);
// Store Floating Point
void StoreDouble(DoubleRegister dst, const MemOperand& opnd);
void StoreFloat32(DoubleRegister dst, const MemOperand& opnd);
void StoreDoubleAsFloat32(DoubleRegister src, const MemOperand& mem,
DoubleRegister scratch);
void Branch(Condition c, const Operand& opnd);
void BranchOnCount(Register r1, Label* l);
// Shifts
void ShiftLeft(Register dst, Register src, Register val);
void ShiftLeft(Register dst, Register src, const Operand& val);
void ShiftRight(Register dst, Register src, Register val);
void ShiftRight(Register dst, Register src, const Operand& val);
void ShiftLeftArith(Register dst, Register src, Register shift);
void ShiftLeftArith(Register dst, Register src, const Operand& val);
void ShiftRightArith(Register dst, Register src, Register shift);
void ShiftRightArith(Register dst, Register src, const Operand& val);
void ClearRightImm(Register dst, Register src, const Operand& val);
// Bitwise operations
void And(Register dst, Register src);
void AndP(Register dst, Register src);
void And(Register dst, Register src1, Register src2);
void AndP(Register dst, Register src1, Register src2);
void And(Register dst, const MemOperand& opnd);
void AndP(Register dst, const MemOperand& opnd);
void And(Register dst, const Operand& opnd);
void AndP(Register dst, const Operand& opnd);
void And(Register dst, Register src, const Operand& opnd);
void AndP(Register dst, Register src, const Operand& opnd);
void Or(Register dst, Register src);
void OrP(Register dst, Register src);
void Or(Register dst, Register src1, Register src2);
void OrP(Register dst, Register src1, Register src2);
void Or(Register dst, const MemOperand& opnd);
void OrP(Register dst, const MemOperand& opnd);
void Or(Register dst, const Operand& opnd);
void OrP(Register dst, const Operand& opnd);
void Or(Register dst, Register src, const Operand& opnd);
void OrP(Register dst, Register src, const Operand& opnd);
void Xor(Register dst, Register src);
void XorP(Register dst, Register src);
void Xor(Register dst, Register src1, Register src2);
void XorP(Register dst, Register src1, Register src2);
void Xor(Register dst, const MemOperand& opnd);
void XorP(Register dst, const MemOperand& opnd);
void Xor(Register dst, const Operand& opnd);
void XorP(Register dst, const Operand& opnd);
void Xor(Register dst, Register src, const Operand& opnd);
void XorP(Register dst, Register src, const Operand& opnd);
void Popcnt32(Register dst, Register src);
void Not32(Register dst, Register src = no_reg);
void Not64(Register dst, Register src = no_reg);
void NotP(Register dst, Register src = no_reg);
#ifdef V8_TARGET_ARCH_S390X
void Popcnt64(Register dst, Register src);
#endif
void mov(Register dst, const Operand& src);
void CleanUInt32(Register x) {
#ifdef V8_TARGET_ARCH_S390X
llgfr(x, x);
#endif
}
// ---------------------------------------------------------------------------
// GC Support
void IncrementalMarkingRecordWriteHelper(Register object, Register value,
Register address);
enum RememberedSetFinalAction { kReturnAtEnd, kFallThroughAtEnd };
// Record in the remembered set the fact that we have a pointer to new space
// at the address pointed to by the addr register. Only works if addr is not
// in new space.
void RememberedSetHelper(Register object, // Used for debug code.
Register addr, Register scratch,
SaveFPRegsMode save_fp,
RememberedSetFinalAction and_then);
void CheckPageFlag(Register object, Register scratch, int mask, Condition cc,
Label* condition_met);
// Check if object is in new space. Jumps if the object is not in new space.
// The register scratch can be object itself, but scratch will be clobbered.
void JumpIfNotInNewSpace(Register object, Register scratch, Label* branch) {
InNewSpace(object, scratch, eq, branch);
}
// Check if object is in new space. Jumps if the object is in new space.
// The register scratch can be object itself, but it will be clobbered.
void JumpIfInNewSpace(Register object, Register scratch, Label* branch) {
InNewSpace(object, scratch, ne, branch);
}
// Check if an object has a given incremental marking color.
void HasColor(Register object, Register scratch0, Register scratch1,
Label* has_color, int first_bit, int second_bit);
void JumpIfBlack(Register object, Register scratch0, Register scratch1,
Label* on_black);
// Checks the color of an object. If the object is white we jump to the
// incremental marker.
void JumpIfWhite(Register value, Register scratch1, Register scratch2,
Register scratch3, Label* value_is_white);
// Notify the garbage collector that we wrote a pointer into an object.
// |object| is the object being stored into, |value| is the object being
// stored. value and scratch registers are clobbered by the operation.
// The offset is the offset from the start of the object, not the offset from
// the tagged HeapObject pointer. For use with FieldMemOperand(reg, off).
void RecordWriteField(
Register object, int offset, Register value, Register scratch,
LinkRegisterStatus lr_status, SaveFPRegsMode save_fp,
RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
SmiCheck smi_check = INLINE_SMI_CHECK,
PointersToHereCheck pointers_to_here_check_for_value =
kPointersToHereMaybeInteresting);
// As above, but the offset has the tag presubtracted. For use with
// MemOperand(reg, off).
inline void RecordWriteContextSlot(
Register context, int offset, Register value, Register scratch,
LinkRegisterStatus lr_status, SaveFPRegsMode save_fp,
RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
SmiCheck smi_check = INLINE_SMI_CHECK,
PointersToHereCheck pointers_to_here_check_for_value =
kPointersToHereMaybeInteresting) {
RecordWriteField(context, offset + kHeapObjectTag, value, scratch,
lr_status, save_fp, remembered_set_action, smi_check,
pointers_to_here_check_for_value);
}
// Notify the garbage collector that we wrote a code entry into a
// JSFunction. Only scratch is clobbered by the operation.
void RecordWriteCodeEntryField(Register js_function, Register code_entry,
Register scratch);
void RecordWriteForMap(Register object, Register map, Register dst,
LinkRegisterStatus lr_status, SaveFPRegsMode save_fp);
// For a given |object| notify the garbage collector that the slot |address|
// has been written. |value| is the object being stored. The value and
// address registers are clobbered by the operation.
void RecordWrite(
Register object, Register address, Register value,
LinkRegisterStatus lr_status, SaveFPRegsMode save_fp,
RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
SmiCheck smi_check = INLINE_SMI_CHECK,
PointersToHereCheck pointers_to_here_check_for_value =
kPointersToHereMaybeInteresting);
void push(Register src) {
lay(sp, MemOperand(sp, -kPointerSize));
StoreP(src, MemOperand(sp));
}
void pop(Register dst) {
LoadP(dst, MemOperand(sp));
la(sp, MemOperand(sp, kPointerSize));
}
void pop() { la(sp, MemOperand(sp, kPointerSize)); }
void Push(Register src) { push(src); }
// Push a handle.
void Push(Handle<Object> handle);
void Push(Smi* smi) { Push(Handle<Smi>(smi, isolate())); }
// Push two registers. Pushes leftmost register first (to highest address).
void Push(Register src1, Register src2) {
lay(sp, MemOperand(sp, -kPointerSize * 2));
StoreP(src1, MemOperand(sp, kPointerSize));
StoreP(src2, MemOperand(sp, 0));
}
// Push three registers. Pushes leftmost register first (to highest address).
void Push(Register src1, Register src2, Register src3) {
lay(sp, MemOperand(sp, -kPointerSize * 3));
StoreP(src1, MemOperand(sp, kPointerSize * 2));
StoreP(src2, MemOperand(sp, kPointerSize));
StoreP(src3, MemOperand(sp, 0));
}
// Push four registers. Pushes leftmost register first (to highest address).
void Push(Register src1, Register src2, Register src3, Register src4) {
lay(sp, MemOperand(sp, -kPointerSize * 4));
StoreP(src1, MemOperand(sp, kPointerSize * 3));
StoreP(src2, MemOperand(sp, kPointerSize * 2));
StoreP(src3, MemOperand(sp, kPointerSize));
StoreP(src4, MemOperand(sp, 0));
}
// Push five registers. Pushes leftmost register first (to highest address).
void Push(Register src1, Register src2, Register src3, Register src4,
Register src5) {
DCHECK(!src1.is(src2));
DCHECK(!src1.is(src3));
DCHECK(!src2.is(src3));
DCHECK(!src1.is(src4));
DCHECK(!src2.is(src4));
DCHECK(!src3.is(src4));
DCHECK(!src1.is(src5));
DCHECK(!src2.is(src5));
DCHECK(!src3.is(src5));
DCHECK(!src4.is(src5));
lay(sp, MemOperand(sp, -kPointerSize * 5));
StoreP(src1, MemOperand(sp, kPointerSize * 4));
StoreP(src2, MemOperand(sp, kPointerSize * 3));
StoreP(src3, MemOperand(sp, kPointerSize * 2));
StoreP(src4, MemOperand(sp, kPointerSize));
StoreP(src5, MemOperand(sp, 0));
}
void Pop(Register dst) { pop(dst); }
// Pop two registers. Pops rightmost register first (from lower address).
void Pop(Register src1, Register src2) {
LoadP(src2, MemOperand(sp, 0));
LoadP(src1, MemOperand(sp, kPointerSize));
la(sp, MemOperand(sp, 2 * kPointerSize));
}
// Pop three registers. Pops rightmost register first (from lower address).
void Pop(Register src1, Register src2, Register src3) {
LoadP(src3, MemOperand(sp, 0));
LoadP(src2, MemOperand(sp, kPointerSize));
LoadP(src1, MemOperand(sp, 2 * kPointerSize));
la(sp, MemOperand(sp, 3 * kPointerSize));
}
// Pop four registers. Pops rightmost register first (from lower address).
void Pop(Register src1, Register src2, Register src3, Register src4) {
LoadP(src4, MemOperand(sp, 0));
LoadP(src3, MemOperand(sp, kPointerSize));
LoadP(src2, MemOperand(sp, 2 * kPointerSize));
LoadP(src1, MemOperand(sp, 3 * kPointerSize));
la(sp, MemOperand(sp, 4 * kPointerSize));
}
// Pop five registers. Pops rightmost register first (from lower address).
void Pop(Register src1, Register src2, Register src3, Register src4,
Register src5) {
LoadP(src5, MemOperand(sp, 0));
LoadP(src4, MemOperand(sp, kPointerSize));
LoadP(src3, MemOperand(sp, 2 * kPointerSize));
LoadP(src2, MemOperand(sp, 3 * kPointerSize));
LoadP(src1, MemOperand(sp, 4 * kPointerSize));
la(sp, MemOperand(sp, 5 * kPointerSize));
}
// Push a fixed frame, consisting of lr, fp, constant pool.
void PushCommonFrame(Register marker_reg = no_reg);
// Push a standard frame, consisting of lr, fp, constant pool,
// context and JS function
void PushStandardFrame(Register function_reg);
void PopCommonFrame(Register marker_reg = no_reg);
// Restore caller's frame pointer and return address prior to being
// overwritten by tail call stack preparation.
void RestoreFrameStateForTailCall();
// Push and pop the registers that can hold pointers, as defined by the
// RegList constant kSafepointSavedRegisters.
void PushSafepointRegisters();
void PopSafepointRegisters();
// Store value in register src in the safepoint stack slot for
// register dst.
void StoreToSafepointRegisterSlot(Register src, Register dst);
// Load the value of the src register from its safepoint stack slot
// into register dst.
void LoadFromSafepointRegisterSlot(Register dst, Register src);
// Flush the I-cache from asm code. You should use CpuFeatures::FlushICache
// from C.
// Does not handle errors.
void FlushICache(Register address, size_t size, Register scratch);
// If the value is a NaN, canonicalize the value else, do nothing.
void CanonicalizeNaN(const DoubleRegister dst, const DoubleRegister src);
void CanonicalizeNaN(const DoubleRegister value) {
CanonicalizeNaN(value, value);
}
// Converts the integer (untagged smi) in |src| to a double, storing
// the result to |dst|
void ConvertIntToDouble(Register src, DoubleRegister dst);
// Converts the unsigned integer (untagged smi) in |src| to
// a double, storing the result to |dst|
void ConvertUnsignedIntToDouble(Register src, DoubleRegister dst);
// Converts the integer (untagged smi) in |src| to
// a float, storing the result in |dst|
void ConvertIntToFloat(Register src, DoubleRegister dst);
// Converts the unsigned integer (untagged smi) in |src| to
// a float, storing the result in |dst|
void ConvertUnsignedIntToFloat(Register src, DoubleRegister dst);
#if V8_TARGET_ARCH_S390X
void ConvertInt64ToFloat(Register src, DoubleRegister double_dst);
void ConvertInt64ToDouble(Register src, DoubleRegister double_dst);
void ConvertUnsignedInt64ToFloat(Register src, DoubleRegister double_dst);
void ConvertUnsignedInt64ToDouble(Register src, DoubleRegister double_dst);
#endif
void MovIntToFloat(DoubleRegister dst, Register src);
void MovFloatToInt(Register dst, DoubleRegister src);
void MovDoubleToInt64(Register dst, DoubleRegister src);
void MovInt64ToDouble(DoubleRegister dst, Register src);
// Converts the double_input to an integer. Note that, upon return,
// the contents of double_dst will also hold the fixed point representation.
void ConvertFloat32ToInt64(const DoubleRegister double_input,
#if !V8_TARGET_ARCH_S390X
const Register dst_hi,
#endif
const Register dst,
const DoubleRegister double_dst,
FPRoundingMode rounding_mode = kRoundToZero);
// Converts the double_input to an integer. Note that, upon return,
// the contents of double_dst will also hold the fixed point representation.
void ConvertDoubleToInt64(const DoubleRegister double_input,
#if !V8_TARGET_ARCH_S390X
const Register dst_hi,
#endif
const Register dst, const DoubleRegister double_dst,
FPRoundingMode rounding_mode = kRoundToZero);
void ConvertFloat32ToInt32(const DoubleRegister double_input,
const Register dst,
const DoubleRegister double_dst,
FPRoundingMode rounding_mode);
void ConvertFloat32ToUnsignedInt32(
const DoubleRegister double_input, const Register dst,
const DoubleRegister double_dst,
FPRoundingMode rounding_mode = kRoundToZero);
#if V8_TARGET_ARCH_S390X
// Converts the double_input to an unsigned integer. Note that, upon return,
// the contents of double_dst will also hold the fixed point representation.
void ConvertDoubleToUnsignedInt64(
const DoubleRegister double_input, const Register dst,
const DoubleRegister double_dst,
FPRoundingMode rounding_mode = kRoundToZero);
void ConvertFloat32ToUnsignedInt64(
const DoubleRegister double_input, const Register dst,
const DoubleRegister double_dst,
FPRoundingMode rounding_mode = kRoundToZero);
#endif
#if !V8_TARGET_ARCH_S390X
void ShiftLeftPair(Register dst_low, Register dst_high, Register src_low,
Register src_high, Register scratch, Register shift);
void ShiftLeftPair(Register dst_low, Register dst_high, Register src_low,
Register src_high, uint32_t shift);
void ShiftRightPair(Register dst_low, Register dst_high, Register src_low,
Register src_high, Register scratch, Register shift);
void ShiftRightPair(Register dst_low, Register dst_high, Register src_low,
Register src_high, uint32_t shift);
void ShiftRightArithPair(Register dst_low, Register dst_high,
Register src_low, Register src_high,
Register scratch, Register shift);
void ShiftRightArithPair(Register dst_low, Register dst_high,
Register src_low, Register src_high, uint32_t shift);
#endif
// Generates function and stub prologue code.
void StubPrologue(StackFrame::Type type, Register base = no_reg,
int prologue_offset = 0);
void Prologue(bool code_pre_aging, Register base, int prologue_offset = 0);
// Enter exit frame.
// stack_space - extra stack space, used for parameters before call to C.
// At least one slot (for the return address) should be provided.
void EnterExitFrame(bool save_doubles, int stack_space = 1,
StackFrame::Type frame_type = StackFrame::EXIT);
// Leave the current exit frame. Expects the return value in r0.
// Expect the number of values, pushed prior to the exit frame, to
// remove in a register (or no_reg, if there is nothing to remove).
void LeaveExitFrame(bool save_doubles, Register argument_count,
bool restore_context,
bool argument_count_is_length = false);
// Get the actual activation frame alignment for target environment.
static int ActivationFrameAlignment();
void LoadContext(Register dst, int context_chain_length);
// Load the global object from the current context.
void LoadGlobalObject(Register dst) {
LoadNativeContextSlot(Context::EXTENSION_INDEX, dst);
}
// Load the global proxy from the current context.
void LoadGlobalProxy(Register dst) {
LoadNativeContextSlot(Context::GLOBAL_PROXY_INDEX, dst);
}
// Conditionally load the cached Array transitioned map of type
// transitioned_kind from the native context if the map in register
// map_in_out is the cached Array map in the native context of
// expected_kind.
void LoadTransitionedArrayMapConditional(ElementsKind expected_kind,
ElementsKind transitioned_kind,
Register map_in_out,
Register scratch,
Label* no_map_match);
void LoadNativeContextSlot(int index, Register dst);
// Load the initial map from the global function. The registers
// function and map can be the same, function is then overwritten.
void LoadGlobalFunctionInitialMap(Register function, Register map,
Register scratch);
void InitializeRootRegister() {
ExternalReference roots_array_start =
ExternalReference::roots_array_start(isolate());
mov(kRootRegister, Operand(roots_array_start));
}
// ----------------------------------------------------------------
// new S390 macro-assembler interfaces that are slightly higher level
// than assembler-s390 and may generate variable length sequences
// load a literal signed int value <value> to GPR <dst>
void LoadIntLiteral(Register dst, int value);
// load an SMI value <value> to GPR <dst>
void LoadSmiLiteral(Register dst, Smi* smi);
// load a literal double value <value> to FPR <result>
void LoadDoubleLiteral(DoubleRegister result, double value, Register scratch);
void LoadDoubleLiteral(DoubleRegister result, uint64_t value,
Register scratch);
void LoadFloat32Literal(DoubleRegister result, float value, Register scratch);
void StoreW(Register src, const MemOperand& mem, Register scratch = no_reg);
void LoadHalfWordP(Register dst, const MemOperand& mem,
Register scratch = no_reg);
void StoreHalfWord(Register src, const MemOperand& mem,
Register scratch = r0);
void StoreByte(Register src, const MemOperand& mem, Register scratch = r0);
void LoadRepresentation(Register dst, const MemOperand& mem, Representation r,
Register scratch = no_reg);
void StoreRepresentation(Register src, const MemOperand& mem,
Representation r, Register scratch = no_reg);
void AddSmiLiteral(Register dst, Register src, Smi* smi, Register scratch);
void SubSmiLiteral(Register dst, Register src, Smi* smi, Register scratch);
void CmpSmiLiteral(Register src1, Smi* smi, Register scratch);
void CmpLogicalSmiLiteral(Register src1, Smi* smi, Register scratch);
void AndSmiLiteral(Register dst, Register src, Smi* smi);
// Set new rounding mode RN to FPSCR
void SetRoundingMode(FPRoundingMode RN);
// reset rounding mode to default (kRoundToNearest)
void ResetRoundingMode();
// These exist to provide portability between 32 and 64bit
void LoadP(Register dst, const MemOperand& mem, Register scratch = no_reg);
void StoreP(Register src, const MemOperand& mem, Register scratch = no_reg);
void StoreP(const MemOperand& mem, const Operand& opnd,
Register scratch = no_reg);
void LoadMultipleP(Register dst1, Register dst2, const MemOperand& mem);
void StoreMultipleP(Register dst1, Register dst2, const MemOperand& mem);
void LoadMultipleW(Register dst1, Register dst2, const MemOperand& mem);
void StoreMultipleW(Register dst1, Register dst2, const MemOperand& mem);
// Cleanse pointer address on 31bit by zero out top bit.
// This is a NOP on 64-bit.
void CleanseP(Register src) {
#if (V8_HOST_ARCH_S390 && !(V8_TARGET_ARCH_S390X))
nilh(src, Operand(0x7FFF));
#endif
}
// ---------------------------------------------------------------------------
// JavaScript invokes
// Set up call kind marking in ecx. The method takes ecx as an
// explicit first parameter to make the code more readable at the
// call sites.
// void SetCallKind(Register dst, CallKind kind);
// Removes current frame and its arguments from the stack preserving
// the arguments and a return address pushed to the stack for the next call.
// Both |callee_args_count| and |caller_args_count_reg| do not include
// receiver. |callee_args_count| is not modified, |caller_args_count_reg|
// is trashed.
void PrepareForTailCall(const ParameterCount& callee_args_count,
Register caller_args_count_reg, Register scratch0,
Register scratch1);
// Invoke the JavaScript function code by either calling or jumping.
void InvokeFunctionCode(Register function, Register new_target,
const ParameterCount& expected,
const ParameterCount& actual, InvokeFlag flag,
const CallWrapper& call_wrapper);
void FloodFunctionIfStepping(Register fun, Register new_target,
const ParameterCount& expected,
const ParameterCount& actual);
// Invoke the JavaScript function in the given register. Changes the
// current context to the context in the function before invoking.
void InvokeFunction(Register function, Register new_target,
const ParameterCount& actual, InvokeFlag flag,
const CallWrapper& call_wrapper);
void InvokeFunction(Register function, const ParameterCount& expected,
const ParameterCount& actual, InvokeFlag flag,
const CallWrapper& call_wrapper);
void InvokeFunction(Handle<JSFunction> function,
const ParameterCount& expected,
const ParameterCount& actual, InvokeFlag flag,
const CallWrapper& call_wrapper);
void IsObjectJSStringType(Register object, Register scratch, Label* fail);
void IsObjectNameType(Register object, Register scratch, Label* fail);
// ---------------------------------------------------------------------------
// Debugger Support
void DebugBreak();
// ---------------------------------------------------------------------------
// Exception handling
// Push a new stack handler and link into stack handler chain.
void PushStackHandler();
// Unlink the stack handler on top of the stack from the stack handler chain.
// Must preserve the result register.
void PopStackHandler();
// ---------------------------------------------------------------------------
// Inline caching support
void GetNumberHash(Register t0, Register scratch);
inline void MarkCode(NopMarkerTypes type) { nop(type); }
// Check if the given instruction is a 'type' marker.
// i.e. check if is is a mov r<type>, r<type> (referenced as nop(type))
// These instructions are generated to mark special location in the code,
// like some special IC code.
static inline bool IsMarkedCode(Instr instr, int type) {
DCHECK((FIRST_IC_MARKER <= type) && (type < LAST_CODE_MARKER));
return IsNop(instr, type);
}
static inline int GetCodeMarker(Instr instr) {
int dst_reg_offset = 12;
int dst_mask = 0xf << dst_reg_offset;
int src_mask = 0xf;
int dst_reg = (instr & dst_mask) >> dst_reg_offset;
int src_reg = instr & src_mask;
uint32_t non_register_mask = ~(dst_mask | src_mask);
uint32_t mov_mask = al | 13 << 21;
// Return <n> if we have a mov rn rn, else return -1.
int type = ((instr & non_register_mask) == mov_mask) &&
(dst_reg == src_reg) && (FIRST_IC_MARKER <= dst_reg) &&
(dst_reg < LAST_CODE_MARKER)
? src_reg
: -1;
DCHECK((type == -1) ||
((FIRST_IC_MARKER <= type) && (type < LAST_CODE_MARKER)));
return type;
}
// ---------------------------------------------------------------------------
// Allocation support
// Allocate an object in new space or old pointer space. The object_size is
// specified either in bytes or in words if the allocation flag SIZE_IN_WORDS
// is passed. If the space is exhausted control continues at the gc_required
// label. The allocated object is returned in result. If the flag
// tag_allocated_object is true the result is tagged as as a heap object.
// All registers are clobbered also when control continues at the gc_required
// label.
void Allocate(int object_size, Register result, Register scratch1,
Register scratch2, Label* gc_required, AllocationFlags flags);
void Allocate(Register object_size, Register result, Register result_end,
Register scratch, Label* gc_required, AllocationFlags flags);
// FastAllocate is right now only used for folded allocations. It just
// increments the top pointer without checking against limit. This can only
// be done if it was proved earlier that the allocation will succeed.
void FastAllocate(int object_size, Register result, Register scratch1,
Register scratch2, AllocationFlags flags);
void FastAllocate(Register object_size, Register result, Register result_end,
Register scratch, AllocationFlags flags);
void AllocateTwoByteString(Register result, Register length,
Register scratch1, Register scratch2,
Register scratch3, Label* gc_required);
void AllocateOneByteString(Register result, Register length,
Register scratch1, Register scratch2,
Register scratch3, Label* gc_required);
void AllocateTwoByteConsString(Register result, Register length,
Register scratch1, Register scratch2,
Label* gc_required);
void AllocateOneByteConsString(Register result, Register length,
Register scratch1, Register scratch2,
Label* gc_required);
void AllocateTwoByteSlicedString(Register result, Register length,
Register scratch1, Register scratch2,
Label* gc_required);
void AllocateOneByteSlicedString(Register result, Register length,
Register scratch1, Register scratch2,
Label* gc_required);
// Allocates a heap number or jumps to the gc_required label if the young
// space is full and a scavenge is needed. All registers are clobbered also
// when control continues at the gc_required label.
void AllocateHeapNumber(Register result, Register scratch1, Register scratch2,
Register heap_number_map, Label* gc_required,
MutableMode mode = IMMUTABLE);
void AllocateHeapNumberWithValue(Register result, DoubleRegister value,
Register scratch1, Register scratch2,
Register heap_number_map,
Label* gc_required);
// Allocate and initialize a JSValue wrapper with the specified {constructor}
// and {value}.
void AllocateJSValue(Register result, Register constructor, Register value,
Register scratch1, Register scratch2,
Label* gc_required);
// Initialize fields with filler values. |count| fields starting at
// |current_address| are overwritten with the value in |filler|. At the end
// the loop, |current_address| points at the next uninitialized field.
// |count| is assumed to be non-zero.
void InitializeNFieldsWithFiller(Register current_address, Register count,
Register filler);
// Initialize fields with filler values. Fields starting at |current_address|
// not including |end_address| are overwritten with the value in |filler|. At
// the end the loop, |current_address| takes the value of |end_address|.
void InitializeFieldsWithFiller(Register current_address,
Register end_address, Register filler);
// ---------------------------------------------------------------------------
// Support functions.
// Machine code version of Map::GetConstructor().
// |temp| holds |result|'s map when done, and |temp2| its instance type.
void GetMapConstructor(Register result, Register map, Register temp,
Register temp2);
// Try to get function prototype of a function and puts the value in
// the result register. Checks that the function really is a
// function and jumps to the miss label if the fast checks fail. The
// function register will be untouched; the other registers may be
// clobbered.
void TryGetFunctionPrototype(Register function, Register result,
Register scratch, Label* miss);
// Compare object type for heap object. heap_object contains a non-Smi
// whose object type should be compared with the given type. This both
// sets the flags and leaves the object type in the type_reg register.
// It leaves the map in the map register (unless the type_reg and map register
// are the same register). It leaves the heap object in the heap_object
// register unless the heap_object register is the same register as one of the
// other registers.
// Type_reg can be no_reg. In that case ip is used.
void CompareObjectType(Register heap_object, Register map, Register type_reg,
InstanceType type);
// Compare instance type in a map. map contains a valid map object whose
// object type should be compared with the given type. This both
// sets the flags and leaves the object type in the type_reg register.
void CompareInstanceType(Register map, Register type_reg, InstanceType type);
// Check if a map for a JSObject indicates that the object can have both smi
// and HeapObject elements. Jump to the specified label if it does not.
void CheckFastObjectElements(Register map, Register scratch, Label* fail);
// Check if a map for a JSObject indicates that the object has fast smi only
// elements. Jump to the specified label if it does not.
void CheckFastSmiElements(Register map, Register scratch, Label* fail);
// Check to see if maybe_number can be stored as a double in
// FastDoubleElements. If it can, store it at the index specified by key in
// the FastDoubleElements array elements. Otherwise jump to fail.
void StoreNumberToDoubleElements(Register value_reg, Register key_reg,
Register elements_reg, Register scratch1,
DoubleRegister double_scratch, Label* fail,
int elements_offset = 0);
// Compare an object's map with the specified map and its transitioned
// elements maps if mode is ALLOW_ELEMENT_TRANSITION_MAPS. Condition flags are
// set with result of map compare. If multiple map compares are required, the
// compare sequences branches to early_success.
void CompareMap(Register obj, Register scratch, Handle<Map> map,
Label* early_success);
// As above, but the map of the object is already loaded into the register
// which is preserved by the code generated.
void CompareMap(Register obj_map, Handle<Map> map, Label* early_success);
// Check if the map of an object is equal to a specified map and branch to
// label if not. Skip the smi check if not required (object is known to be a
// heap object). If mode is ALLOW_ELEMENT_TRANSITION_MAPS, then also match
// against maps that are ElementsKind transition maps of the specified map.
void CheckMap(Register obj, Register scratch, Handle<Map> map, Label* fail,
SmiCheckType smi_check_type);
void CheckMap(Register obj, Register scratch, Heap::RootListIndex index,
Label* fail, SmiCheckType smi_check_type);
// Check if the map of an object is equal to a specified weak map and branch
// to a specified target if equal. Skip the smi check if not required
// (object is known to be a heap object)
void DispatchWeakMap(Register obj, Register scratch1, Register scratch2,
Handle<WeakCell> cell, Handle<Code> success,
SmiCheckType smi_check_type);
// Compare the given value and the value of weak cell.
void CmpWeakValue(Register value, Handle<WeakCell> cell, Register scratch,
CRegister cr = cr7);
void GetWeakValue(Register value, Handle<WeakCell> cell);
// Load the value of the weak cell in the value register. Branch to the given
// miss label if the weak cell was cleared.
void LoadWeakValue(Register value, Handle<WeakCell> cell, Label* miss);
// Compare the object in a register to a value from the root list.
// Uses the ip register as scratch.
void CompareRoot(Register obj, Heap::RootListIndex index);
void PushRoot(Heap::RootListIndex index) {
LoadRoot(r0, index);
Push(r0);
}
// Compare the object in a register to a value and jump if they are equal.
void JumpIfRoot(Register with, Heap::RootListIndex index, Label* if_equal) {
CompareRoot(with, index);
beq(if_equal);
}
// Compare the object in a register to a value and jump if they are not equal.
void JumpIfNotRoot(Register with, Heap::RootListIndex index,
Label* if_not_equal) {
CompareRoot(with, index);
bne(if_not_equal);
}
// Load and check the instance type of an object for being a string.
// Loads the type into the second argument register.
// Returns a condition that will be enabled if the object was a string.
Condition IsObjectStringType(Register obj, Register type) {
LoadP(type, FieldMemOperand(obj, HeapObject::kMapOffset));
LoadlB(type, FieldMemOperand(type, Map::kInstanceTypeOffset));
mov(r0, Operand(kIsNotStringMask));
AndP(r0, type);
DCHECK_EQ(0u, kStringTag);
return eq;
}
// Get the number of least significant bits from a register
void GetLeastBitsFromSmi(Register dst, Register src, int num_least_bits);
void GetLeastBitsFromInt32(Register dst, Register src, int mun_least_bits);
// Load the value of a smi object into a FP double register. The register
// scratch1 can be the same register as smi in which case smi will hold the
// untagged value afterwards.
void SmiToDouble(DoubleRegister value, Register smi);
// Check if a double can be exactly represented as a signed 32-bit integer.
// CR_EQ in cr7 is set if true.
void TestDoubleIsInt32(DoubleRegister double_input, Register scratch1,
Register scratch2, DoubleRegister double_scratch);
// Check if a double is equal to -0.0.
// CR_EQ in cr7 holds the result.
void TestDoubleIsMinusZero(DoubleRegister input, Register scratch1,
Register scratch2);
// Check the sign of a double.
// CR_LT in cr7 holds the result.
void TestDoubleSign(DoubleRegister input, Register scratch);
void TestHeapNumberSign(Register input, Register scratch);
// Try to convert a double to a signed 32-bit integer.
// CR_EQ in cr7 is set and result assigned if the conversion is exact.
void TryDoubleToInt32Exact(Register result, DoubleRegister double_input,
Register scratch, DoubleRegister double_scratch);
// Floor a double and writes the value to the result register.
// Go to exact if the conversion is exact (to be able to test -0),
// fall through calling code if an overflow occurred, else go to done.
// In return, input_high is loaded with high bits of input.
void TryInt32Floor(Register result, DoubleRegister double_input,
Register input_high, Register scratch,
DoubleRegister double_scratch, Label* done, Label* exact);
// Performs a truncating conversion of a floating point number as used by
// the JS bitwise operations. See ECMA-262 9.5: ToInt32. Goes to 'done' if it
// succeeds, otherwise falls through if result is saturated. On return
// 'result' either holds answer, or is clobbered on fall through.
//
// Only public for the test code in test-code-stubs-arm.cc.
void TryInlineTruncateDoubleToI(Register result, DoubleRegister input,
Label* done);
// Performs a truncating conversion of a floating point number as used by
// the JS bitwise operations. See ECMA-262 9.5: ToInt32.
// Exits with 'result' holding the answer.
void TruncateDoubleToI(Register result, DoubleRegister double_input);
// Performs a truncating conversion of a heap number as used by
// the JS bitwise operations. See ECMA-262 9.5: ToInt32. 'result' and 'input'
// must be different registers. Exits with 'result' holding the answer.
void TruncateHeapNumberToI(Register result, Register object);
// Converts the smi or heap number in object to an int32 using the rules
// for ToInt32 as described in ECMAScript 9.5.: the value is truncated
// and brought into the range -2^31 .. +2^31 - 1. 'result' and 'input' must be
// different registers.
void TruncateNumberToI(Register object, Register result,
Register heap_number_map, Register scratch1,
Label* not_int32);
// ---------------------------------------------------------------------------
// Runtime calls
// Call a code stub.
void CallStub(CodeStub* stub, TypeFeedbackId ast_id = TypeFeedbackId::None(),
Condition cond = al);
// Call a code stub.
void TailCallStub(CodeStub* stub, Condition cond = al);
// Call a runtime routine.
void CallRuntime(const Runtime::Function* f, int num_arguments,
SaveFPRegsMode save_doubles = kDontSaveFPRegs);
void CallRuntimeSaveDoubles(Runtime::FunctionId fid) {
const Runtime::Function* function = Runtime::FunctionForId(fid);
CallRuntime(function, function->nargs, kSaveFPRegs);
}
// Convenience function: Same as above, but takes the fid instead.
void CallRuntime(Runtime::FunctionId fid,
SaveFPRegsMode save_doubles = kDontSaveFPRegs) {
const Runtime::Function* function = Runtime::FunctionForId(fid);
CallRuntime(function, function->nargs, save_doubles);
}
// Convenience function: Same as above, but takes the fid instead.
void CallRuntime(Runtime::FunctionId fid, int num_arguments,
SaveFPRegsMode save_doubles = kDontSaveFPRegs) {
CallRuntime(Runtime::FunctionForId(fid), num_arguments, save_doubles);
}
// Convenience function: call an external reference.
void CallExternalReference(const ExternalReference& ext, int num_arguments);
// Convenience function: tail call a runtime routine (jump).
void TailCallRuntime(Runtime::FunctionId fid);
int CalculateStackPassedWords(int num_reg_arguments,
int num_double_arguments);
// Before calling a C-function from generated code, align arguments on stack.
// After aligning the frame, non-register arguments must be stored in
// sp[0], sp[4], etc., not pushed. The argument count assumes all arguments
// are word sized. If double arguments are used, this function assumes that
// all double arguments are stored before core registers; otherwise the
// correct alignment of the double values is not guaranteed.
// Some compilers/platforms require the stack to be aligned when calling
// C++ code.
// Needs a scratch register to do some arithmetic. This register will be
// trashed.
void PrepareCallCFunction(int num_reg_arguments, int num_double_registers,
Register scratch);
void PrepareCallCFunction(int num_reg_arguments, Register scratch);
// There are two ways of passing double arguments on ARM, depending on
// whether soft or hard floating point ABI is used. These functions
// abstract parameter passing for the three different ways we call
// C functions from generated code.
void MovToFloatParameter(DoubleRegister src);
void MovToFloatParameters(DoubleRegister src1, DoubleRegister src2);
void MovToFloatResult(DoubleRegister src);
// Calls a C function and cleans up the space for arguments allocated
// by PrepareCallCFunction. The called function is not allowed to trigger a
// garbage collection, since that might move the code and invalidate the
// return address (unless this is somehow accounted for by the called
// function).
void CallCFunction(ExternalReference function, int num_arguments);
void CallCFunction(Register function, int num_arguments);
void CallCFunction(ExternalReference function, int num_reg_arguments,
int num_double_arguments);
void CallCFunction(Register function, int num_reg_arguments,
int num_double_arguments);
void MovFromFloatParameter(DoubleRegister dst);
void MovFromFloatResult(DoubleRegister dst);
// Jump to a runtime routine.
void JumpToExternalReference(const ExternalReference& builtin,
bool builtin_exit_frame = false);
Handle<Object> CodeObject() {
DCHECK(!code_object_.is_null());
return code_object_;
}
// Emit code for a truncating division by a constant. The dividend register is
// unchanged and ip gets clobbered. Dividend and result must be different.
void TruncatingDiv(Register result, Register dividend, int32_t divisor);
// ---------------------------------------------------------------------------
// StatsCounter support
void SetCounter(StatsCounter* counter, int value, Register scratch1,
Register scratch2);
void IncrementCounter(StatsCounter* counter, int value, Register scratch1,
Register scratch2);
void DecrementCounter(StatsCounter* counter, int value, Register scratch1,
Register scratch2);
// ---------------------------------------------------------------------------
// Debugging
// Calls Abort(msg) if the condition cond is not satisfied.
// Use --debug_code to enable.
void Assert(Condition cond, BailoutReason reason, CRegister cr = cr7);
void AssertFastElements(Register elements);
// Like Assert(), but always enabled.
void Check(Condition cond, BailoutReason reason, CRegister cr = cr7);
// Print a message to stdout and abort execution.
void Abort(BailoutReason reason);
// Verify restrictions about code generated in stubs.
void set_generating_stub(bool value) { generating_stub_ = value; }
bool generating_stub() { return generating_stub_; }
void set_has_frame(bool value) { has_frame_ = value; }
bool has_frame() { return has_frame_; }
inline bool AllowThisStubCall(CodeStub* stub);
// ---------------------------------------------------------------------------
// Number utilities
// Check whether the value of reg is a power of two and not zero. If not
// control continues at the label not_power_of_two. If reg is a power of two
// the register scratch contains the value of (reg - 1) when control falls
// through.
void JumpIfNotPowerOfTwoOrZero(Register reg, Register scratch,
Label* not_power_of_two_or_zero);
// Check whether the value of reg is a power of two and not zero.
// Control falls through if it is, with scratch containing the mask
// value (reg - 1).
// Otherwise control jumps to the 'zero_and_neg' label if the value of reg is
// zero or negative, or jumps to the 'not_power_of_two' label if the value is
// strictly positive but not a power of two.
void JumpIfNotPowerOfTwoOrZeroAndNeg(Register reg, Register scratch,
Label* zero_and_neg,
Label* not_power_of_two);
// ---------------------------------------------------------------------------
// Bit testing/extraction
//
// Bit numbering is such that the least significant bit is bit 0
// (for consistency between 32/64-bit).
// Extract consecutive bits (defined by rangeStart - rangeEnd) from src
// and place them into the least significant bits of dst.
inline void ExtractBitRange(Register dst, Register src, int rangeStart,
int rangeEnd) {
DCHECK(rangeStart >= rangeEnd && rangeStart < kBitsPerPointer);
// Try to use RISBG if possible.
if (CpuFeatures::IsSupported(GENERAL_INSTR_EXT)) {
int shiftAmount = (64 - rangeEnd) % 64; // Convert to shift left.
int endBit = 63; // End is always LSB after shifting.
int startBit = 63 - rangeStart + rangeEnd;
risbg(dst, src, Operand(startBit), Operand(endBit), Operand(shiftAmount),
true);
} else {
if (rangeEnd > 0) // Don't need to shift if rangeEnd is zero.
ShiftRightP(dst, src, Operand(rangeEnd));
else if (!dst.is(src)) // If we didn't shift, we might need to copy
LoadRR(dst, src);
int width = rangeStart - rangeEnd + 1;
#if V8_TARGET_ARCH_S390X
uint64_t mask = (static_cast<uint64_t>(1) << width) - 1;
nihf(dst, Operand(mask >> 32));
nilf(dst, Operand(mask & 0xFFFFFFFF));
ltgr(dst, dst);
#else
uint32_t mask = (1 << width) - 1;
AndP(dst, Operand(mask));
#endif
}
}
inline void ExtractBit(Register dst, Register src, uint32_t bitNumber) {
ExtractBitRange(dst, src, bitNumber, bitNumber);
}
// Extract consecutive bits (defined by mask) from src and place them
// into the least significant bits of dst.
inline void ExtractBitMask(Register dst, Register src, uintptr_t mask,
RCBit rc = LeaveRC) {
int start = kBitsPerPointer - 1;
int end;
uintptr_t bit = (1L << start);
while (bit && (mask & bit) == 0) {
start--;
bit >>= 1;
}
end = start;
bit >>= 1;
while (bit && (mask & bit)) {
end--;
bit >>= 1;
}
// 1-bits in mask must be contiguous
DCHECK(bit == 0 || (mask & ((bit << 1) - 1)) == 0);
ExtractBitRange(dst, src, start, end);
}
// Test single bit in value.
inline void TestBit(Register value, int bitNumber, Register scratch = r0) {
ExtractBitRange(scratch, value, bitNumber, bitNumber);
}
// Test consecutive bit range in value. Range is defined by
// rangeStart - rangeEnd.
inline void TestBitRange(Register value, int rangeStart, int rangeEnd,
Register scratch = r0) {
ExtractBitRange(scratch, value, rangeStart, rangeEnd);
}
// Test consecutive bit range in value. Range is defined by mask.
inline void TestBitMask(Register value, uintptr_t mask,
Register scratch = r0) {
ExtractBitMask(scratch, value, mask, SetRC);
}
// ---------------------------------------------------------------------------
// Smi utilities
// Shift left by kSmiShift
void SmiTag(Register reg) { SmiTag(reg, reg); }
void SmiTag(Register dst, Register src) {
ShiftLeftP(dst, src, Operand(kSmiShift));
}
#if !V8_TARGET_ARCH_S390X
// Test for overflow < 0: use BranchOnOverflow() or BranchOnNoOverflow().
void SmiTagCheckOverflow(Register reg, Register overflow);
void SmiTagCheckOverflow(Register dst, Register src, Register overflow);
inline void JumpIfNotSmiCandidate(Register value, Register scratch,
Label* not_smi_label) {
// High bits must be identical to fit into an Smi
STATIC_ASSERT(kSmiShift == 1);
AddP(scratch, value, Operand(0x40000000u));
CmpP(scratch, Operand::Zero());
blt(not_smi_label);
}
#endif
inline void TestUnsignedSmiCandidate(Register value, Register scratch) {
// The test is different for unsigned int values. Since we need
// the value to be in the range of a positive smi, we can't
// handle any of the high bits being set in the value.
TestBitRange(value, kBitsPerPointer - 1, kBitsPerPointer - 1 - kSmiShift,
scratch);
}
inline void JumpIfNotUnsignedSmiCandidate(Register value, Register scratch,
Label* not_smi_label) {
TestUnsignedSmiCandidate(value, scratch);
bne(not_smi_label /*, cr0*/);
}
void SmiUntag(Register reg) { SmiUntag(reg, reg); }
void SmiUntag(Register dst, Register src) {
ShiftRightArithP(dst, src, Operand(kSmiShift));
}
void SmiToPtrArrayOffset(Register dst, Register src) {
#if V8_TARGET_ARCH_S390X
STATIC_ASSERT(kSmiTag == 0 && kSmiShift > kPointerSizeLog2);
ShiftRightArithP(dst, src, Operand(kSmiShift - kPointerSizeLog2));
#else
STATIC_ASSERT(kSmiTag == 0 && kSmiShift < kPointerSizeLog2);
ShiftLeftP(dst, src, Operand(kPointerSizeLog2 - kSmiShift));
#endif
}
void SmiToByteArrayOffset(Register dst, Register src) { SmiUntag(dst, src); }
void SmiToShortArrayOffset(Register dst, Register src) {
#if V8_TARGET_ARCH_S390X
STATIC_ASSERT(kSmiTag == 0 && kSmiShift > 1);
ShiftRightArithP(dst, src, Operand(kSmiShift - 1));
#else
STATIC_ASSERT(kSmiTag == 0 && kSmiShift == 1);
if (!dst.is(src)) {
LoadRR(dst, src);
}
#endif
}
void SmiToIntArrayOffset(Register dst, Register src) {
#if V8_TARGET_ARCH_S390X
STATIC_ASSERT(kSmiTag == 0 && kSmiShift > 2);
ShiftRightArithP(dst, src, Operand(kSmiShift - 2));
#else
STATIC_ASSERT(kSmiTag == 0 && kSmiShift < 2);
ShiftLeftP(dst, src, Operand(2 - kSmiShift));
#endif
}
#define SmiToFloatArrayOffset SmiToIntArrayOffset
void SmiToDoubleArrayOffset(Register dst, Register src) {
#if V8_TARGET_ARCH_S390X
STATIC_ASSERT(kSmiTag == 0 && kSmiShift > kDoubleSizeLog2);
ShiftRightArithP(dst, src, Operand(kSmiShift - kDoubleSizeLog2));
#else
STATIC_ASSERT(kSmiTag == 0 && kSmiShift < kDoubleSizeLog2);
ShiftLeftP(dst, src, Operand(kDoubleSizeLog2 - kSmiShift));
#endif
}
void SmiToArrayOffset(Register dst, Register src, int elementSizeLog2) {
if (kSmiShift < elementSizeLog2) {
ShiftLeftP(dst, src, Operand(elementSizeLog2 - kSmiShift));
} else if (kSmiShift > elementSizeLog2) {
ShiftRightArithP(dst, src, Operand(kSmiShift - elementSizeLog2));
} else if (!dst.is(src)) {
LoadRR(dst, src);
}
}
void IndexToArrayOffset(Register dst, Register src, int elementSizeLog2,
bool isSmi, bool keyMaybeNegative) {
if (isSmi) {
SmiToArrayOffset(dst, src, elementSizeLog2);
} else if (keyMaybeNegative ||
!CpuFeatures::IsSupported(GENERAL_INSTR_EXT)) {
#if V8_TARGET_ARCH_S390X
// If array access is dehoisted, the key, being an int32, can contain
// a negative value, as needs to be sign-extended to 64-bit for
// memory access.
//
// src (key) is a 32-bit integer. Sign extension ensures
// upper 32-bit does not contain garbage before being used to
// reference memory.
lgfr(src, src);
#endif
ShiftLeftP(dst, src, Operand(elementSizeLog2));
} else {
// Small optimization to reduce pathlength. After Bounds Check,
// the key is guaranteed to be non-negative. Leverage RISBG,
// which also performs zero-extension.
risbg(dst, src, Operand(32 - elementSizeLog2),
Operand(63 - elementSizeLog2), Operand(elementSizeLog2),
true);
}
}
// Untag the source value into destination and jump if source is a smi.
// Souce and destination can be the same register.
void UntagAndJumpIfSmi(Register dst, Register src, Label* smi_case);
// Untag the source value into destination and jump if source is not a smi.
// Souce and destination can be the same register.
void UntagAndJumpIfNotSmi(Register dst, Register src, Label* non_smi_case);
inline void TestIfSmi(Register value) { tmll(value, Operand(1)); }
inline void TestIfPositiveSmi(Register value, Register scratch) {
STATIC_ASSERT((kSmiTagMask | kSmiSignMask) ==
(intptr_t)(1UL << (kBitsPerPointer - 1) | 1));
mov(scratch, Operand(kIntptrSignBit | kSmiTagMask));
AndP(scratch, value);
}
// Jump the register contains a smi.
inline void JumpIfSmi(Register value, Label* smi_label) {
TestIfSmi(value);
beq(smi_label /*, cr0*/); // branch if SMI
}
// Jump if either of the registers contain a non-smi.
inline void JumpIfNotSmi(Register value, Label* not_smi_label) {
TestIfSmi(value);
bne(not_smi_label /*, cr0*/);
}
// Jump if either of the registers contain a non-smi.
void JumpIfNotBothSmi(Register reg1, Register reg2, Label* on_not_both_smi);
// Jump if either of the registers contain a smi.
void JumpIfEitherSmi(Register reg1, Register reg2, Label* on_either_smi);
// Abort execution if argument is a number, enabled via --debug-code.
void AssertNotNumber(Register object);
// Abort execution if argument is a smi, enabled via --debug-code.
void AssertNotSmi(Register object);
void AssertSmi(Register object);
#if V8_TARGET_ARCH_S390X
inline void TestIfInt32(Register value, Register scratch) {
// High bits must be identical to fit into an 32-bit integer
lgfr(scratch, value);
CmpP(scratch, value);
}
#else
inline void TestIfInt32(Register hi_word, Register lo_word,
Register scratch) {
// High bits must be identical to fit into an 32-bit integer
ShiftRightArith(scratch, lo_word, Operand(31));
CmpP(scratch, hi_word);
}
#endif
#if V8_TARGET_ARCH_S390X
// Ensure it is permissable to read/write int value directly from
// upper half of the smi.
STATIC_ASSERT(kSmiTag == 0);
STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 32);
#endif
#if V8_TARGET_LITTLE_ENDIAN
#define SmiWordOffset(offset) (offset + kPointerSize / 2)
#else
#define SmiWordOffset(offset) offset
#endif
// Abort execution if argument is not a string, enabled via --debug-code.
void AssertString(Register object);
// Abort execution if argument is not a name, enabled via --debug-code.
void AssertName(Register object);
void AssertFunction(Register object);
// Abort execution if argument is not a JSBoundFunction,
// enabled via --debug-code.
void AssertBoundFunction(Register object);
// Abort execution if argument is not a JSGeneratorObject,
// enabled via --debug-code.
void AssertGeneratorObject(Register object);
// Abort execution if argument is not a JSReceiver, enabled via --debug-code.
void AssertReceiver(Register object);
// Abort execution if argument is not undefined or an AllocationSite, enabled
// via --debug-code.
void AssertUndefinedOrAllocationSite(Register object, Register scratch);
// Abort execution if reg is not the root value with the given index,
// enabled via --debug-code.
void AssertIsRoot(Register reg, Heap::RootListIndex index);
// ---------------------------------------------------------------------------
// HeapNumber utilities
void JumpIfNotHeapNumber(Register object, Register heap_number_map,
Register scratch, Label* on_not_heap_number);
// ---------------------------------------------------------------------------
// String utilities
// Checks if both objects are sequential one-byte strings and jumps to label
// if either is not. Assumes that neither object is a smi.
void JumpIfNonSmisNotBothSequentialOneByteStrings(Register object1,
Register object2,
Register scratch1,
Register scratch2,
Label* failure);
// Checks if both objects are sequential one-byte strings and jumps to label
// if either is not.
void JumpIfNotBothSequentialOneByteStrings(Register first, Register second,
Register scratch1,
Register scratch2,
Label* not_flat_one_byte_strings);
// Checks if both instance types are sequential one-byte strings and jumps to
// label if either is not.
void JumpIfBothInstanceTypesAreNotSequentialOneByte(
Register first_object_instance_type, Register second_object_instance_type,
Register scratch1, Register scratch2, Label* failure);
// Check if instance type is sequential one-byte string and jump to label if
// it is not.
void JumpIfInstanceTypeIsNotSequentialOneByte(Register type, Register scratch,
Label* failure);
void JumpIfNotUniqueNameInstanceType(Register reg, Label* not_unique_name);
void EmitSeqStringSetCharCheck(Register string, Register index,
Register value, uint32_t encoding_mask);
// ---------------------------------------------------------------------------
// Patching helpers.
void ClampUint8(Register output_reg, Register input_reg);
// Saturate a value into 8-bit unsigned integer
// if input_value < 0, output_value is 0
// if input_value > 255, output_value is 255
// otherwise output_value is the (int)input_value (round to nearest)
void ClampDoubleToUint8(Register result_reg, DoubleRegister input_reg,
DoubleRegister temp_double_reg);
void LoadInstanceDescriptors(Register map, Register descriptors);
void EnumLength(Register dst, Register map);
void NumberOfOwnDescriptors(Register dst, Register map);
void LoadAccessor(Register dst, Register holder, int accessor_index,
AccessorComponent accessor);
template <typename Field>
void DecodeField(Register dst, Register src) {
ExtractBitRange(dst, src, Field::kShift + Field::kSize - 1, Field::kShift);
}
template <typename Field>
void DecodeField(Register reg) {
DecodeField<Field>(reg, reg);
}
template <typename Field>
void DecodeFieldToSmi(Register dst, Register src) {
// TODO(joransiu): Optimize into single instruction
DecodeField<Field>(dst, src);
SmiTag(dst);
}
template <typename Field>
void DecodeFieldToSmi(Register reg) {
DecodeFieldToSmi<Field>(reg, reg);
}
// Load the type feedback vector from a JavaScript frame.
void EmitLoadTypeFeedbackVector(Register vector);
// Activation support.
void EnterFrame(StackFrame::Type type,
bool load_constant_pool_pointer_reg = false);
// Returns the pc offset at which the frame ends.
int LeaveFrame(StackFrame::Type type, int stack_adjustment = 0);
void EnterBuiltinFrame(Register context, Register target, Register argc);
void LeaveBuiltinFrame(Register context, Register target, Register argc);
// Expects object in r2 and returns map with validated enum cache
// in r2. Assumes that any other register can be used as a scratch.
void CheckEnumCache(Label* call_runtime);
// AllocationMemento support. Arrays may have an associated
// AllocationMemento object that can be checked for in order to pretransition
// to another type.
// On entry, receiver_reg should point to the array object.
// scratch_reg gets clobbered.
// If allocation info is present, condition flags are set to eq.
void TestJSArrayForAllocationMemento(Register receiver_reg,
Register scratch_reg,
Register scratch2_reg,
Label* no_memento_found);
void JumpIfJSArrayHasAllocationMemento(Register receiver_reg,
Register scratch_reg,
Register scratch2_reg,
Label* memento_found) {
Label no_memento_found;
TestJSArrayForAllocationMemento(receiver_reg, scratch_reg, scratch2_reg,
&no_memento_found);
beq(memento_found);
bind(&no_memento_found);
}
// Jumps to found label if a prototype map has dictionary elements.
void JumpIfDictionaryInPrototypeChain(Register object, Register scratch0,
Register scratch1, Label* found);
private:
static const int kSmiShift = kSmiTagSize + kSmiShiftSize;
void CallCFunctionHelper(Register function, int num_reg_arguments,
int num_double_arguments);
void Jump(intptr_t target, RelocInfo::Mode rmode, Condition cond = al,
CRegister cr = cr7);
// Helper functions for generating invokes.
void InvokePrologue(const ParameterCount& expected,
const ParameterCount& actual, Label* done,
bool* definitely_mismatches, InvokeFlag flag,
const CallWrapper& call_wrapper);
void InitializeNewString(Register string, Register length,
Heap::RootListIndex map_index, Register scratch1,
Register scratch2);
// Helper for implementing JumpIfNotInNewSpace and JumpIfInNewSpace.
void InNewSpace(Register object, Register scratch,
Condition cond, // eq for new space, ne otherwise.
Label* branch);
// Helper for finding the mark bits for an address. Afterwards, the
// bitmap register points at the word with the mark bits and the mask
// the position of the first bit. Leaves addr_reg unchanged.
inline void GetMarkBits(Register addr_reg, Register bitmap_reg,
Register mask_reg);
static const RegList kSafepointSavedRegisters;
static const int kNumSafepointSavedRegisters;
// Compute memory operands for safepoint stack slots.
static int SafepointRegisterStackIndex(int reg_code);
MemOperand SafepointRegisterSlot(Register reg);
MemOperand SafepointRegistersAndDoublesSlot(Register reg);
bool generating_stub_;
bool has_frame_;
// This handle will be patched with the code object on installation.
Handle<Object> code_object_;
// Needs access to SafepointRegisterStackIndex for compiled frame
// traversal.
friend class StandardFrame;
};
// The code patcher is used to patch (typically) small parts of code e.g. for
// debugging and other types of instrumentation. When using the code patcher
// the exact number of bytes specified must be emitted. It is not legal to emit
// relocation information. If any of these constraints are violated it causes
// an assertion to fail.
class CodePatcher {
public:
enum FlushICache { FLUSH, DONT_FLUSH };
CodePatcher(Isolate* isolate, byte* address, int instructions,
FlushICache flush_cache = FLUSH);
~CodePatcher();
// Macro assembler to emit code.
MacroAssembler* masm() { return &masm_; }
private:
byte* address_; // The address of the code being patched.
int size_; // Number of bytes of the expected patch size.
MacroAssembler masm_; // Macro assembler used to generate the code.
FlushICache flush_cache_; // Whether to flush the I cache after patching.
};
// -----------------------------------------------------------------------------
// Static helper functions.
inline MemOperand ContextMemOperand(Register context, int index = 0) {
return MemOperand(context, Context::SlotOffset(index));
}
inline MemOperand NativeContextMemOperand() {
return ContextMemOperand(cp, Context::NATIVE_CONTEXT_INDEX);
}
#define ACCESS_MASM(masm) masm->
} // namespace internal
} // namespace v8
#endif // V8_S390_MACRO_ASSEMBLER_S390_H_