C++程序  |  1589行  |  62.78 KB

/*
 * Copyright (c) 2015-2016 The Khronos Group Inc.
 * Copyright (c) 2015-2016 Valve Corporation
 * Copyright (c) 2015-2016 LunarG, Inc.
 * Copyright (c) 2015-2016 Google, Inc.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 *
 * Author: Courtney Goeltzenleuchter <courtney@LunarG.com>
 * Author: Tony Barbour <tony@LunarG.com>
 */

#include "vkrenderframework.h"

#define ARRAY_SIZE(a) (sizeof(a) / sizeof(a[0]))
#define GET_DEVICE_PROC_ADDR(dev, entrypoint)                                                                                      \
    {                                                                                                                              \
        fp##entrypoint = (PFN_vk##entrypoint)vkGetDeviceProcAddr(dev, "vk" #entrypoint);                                           \
        assert(fp##entrypoint != NULL);                                                                                            \
    }

// TODO : These functions are duplicated is vk_layer_utils.cpp, share code
// Return true if format contains depth and stencil information
bool vk_format_is_depth_and_stencil(VkFormat format) {
    bool is_ds = false;

    switch (format) {
    case VK_FORMAT_D16_UNORM_S8_UINT:
    case VK_FORMAT_D24_UNORM_S8_UINT:
    case VK_FORMAT_D32_SFLOAT_S8_UINT:
        is_ds = true;
        break;
    default:
        break;
    }
    return is_ds;
}

// Return true if format is a stencil-only format
bool vk_format_is_stencil_only(VkFormat format) { return (format == VK_FORMAT_S8_UINT); }

// Return true if format is a depth-only format
bool vk_format_is_depth_only(VkFormat format) {
    bool is_depth = false;

    switch (format) {
    case VK_FORMAT_D16_UNORM:
    case VK_FORMAT_X8_D24_UNORM_PACK32:
    case VK_FORMAT_D32_SFLOAT:
        is_depth = true;
        break;
    default:
        break;
    }

    return is_depth;
}

VkRenderFramework::VkRenderFramework()
    : inst(VK_NULL_HANDLE), m_device(NULL), m_commandPool(VK_NULL_HANDLE), m_commandBuffer(NULL), m_renderPass(VK_NULL_HANDLE),
      m_framebuffer(VK_NULL_HANDLE), m_width(256.0), // default window width
      m_height(256.0),                               // default window height
      m_render_target_fmt(VK_FORMAT_R8G8B8A8_UNORM), m_depth_stencil_fmt(VK_FORMAT_UNDEFINED), m_clear_via_load_op(true),
      m_depth_clear_color(1.0), m_stencil_clear_color(0), m_depthStencil(NULL), m_CreateDebugReportCallback(VK_NULL_HANDLE),
      m_DestroyDebugReportCallback(VK_NULL_HANDLE), m_globalMsgCallback(VK_NULL_HANDLE), m_devMsgCallback(VK_NULL_HANDLE) {

    memset(&m_renderPassBeginInfo, 0, sizeof(m_renderPassBeginInfo));
    m_renderPassBeginInfo.sType = VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO;

    // clear the back buffer to dark grey
    m_clear_color.float32[0] = 0.25f;
    m_clear_color.float32[1] = 0.25f;
    m_clear_color.float32[2] = 0.25f;
    m_clear_color.float32[3] = 0.0f;
}

VkRenderFramework::~VkRenderFramework() {}

void VkRenderFramework::InitFramework() {
    std::vector<const char *> instance_layer_names;
    std::vector<const char *> instance_extension_names;
    std::vector<const char *> device_extension_names;
    instance_extension_names.push_back(VK_KHR_SURFACE_EXTENSION_NAME);
    device_extension_names.push_back(VK_KHR_SWAPCHAIN_EXTENSION_NAME);
#ifdef _WIN32
    instance_extension_names.push_back(VK_KHR_WIN32_SURFACE_EXTENSION_NAME);
#endif
#ifdef VK_USE_PLATFORM_XCB_KHR
    instance_extension_names.push_back(VK_KHR_XCB_SURFACE_EXTENSION_NAME);
#endif
    InitFramework(instance_layer_names, instance_extension_names, device_extension_names);
}

void VkRenderFramework::InitFramework(std::vector<const char *> instance_layer_names,
                                      std::vector<const char *> instance_extension_names,
                                      std::vector<const char *> device_extension_names, PFN_vkDebugReportCallbackEXT dbgFunction,
                                      void *userData) {
    VkInstanceCreateInfo instInfo = {};
    std::vector<VkExtensionProperties> instance_extensions;
    std::vector<VkExtensionProperties> device_extensions;
    VkResult U_ASSERT_ONLY err;

    /* TODO: Verify requested extensions are available */

    instInfo.sType = VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO;
    instInfo.pNext = NULL;
    instInfo.pApplicationInfo = &app_info;
    instInfo.enabledLayerCount = instance_layer_names.size();
    instInfo.ppEnabledLayerNames = instance_layer_names.data();
    instInfo.enabledExtensionCount = instance_extension_names.size();
    instInfo.ppEnabledExtensionNames = instance_extension_names.data();
    err = vkCreateInstance(&instInfo, NULL, &this->inst);
    ASSERT_VK_SUCCESS(err);

    err = vkEnumeratePhysicalDevices(inst, &this->gpu_count, NULL);
    ASSERT_LE(this->gpu_count, ARRAY_SIZE(objs)) << "Too many gpus";
    ASSERT_VK_SUCCESS(err);
    err = vkEnumeratePhysicalDevices(inst, &this->gpu_count, objs);
    ASSERT_VK_SUCCESS(err);
    ASSERT_GE(this->gpu_count, (uint32_t)1) << "No GPU available";
    if (dbgFunction) {
        m_CreateDebugReportCallback =
            (PFN_vkCreateDebugReportCallbackEXT)vkGetInstanceProcAddr(this->inst, "vkCreateDebugReportCallbackEXT");
        ASSERT_NE(m_CreateDebugReportCallback, (PFN_vkCreateDebugReportCallbackEXT)NULL)
            << "Did not get function pointer for CreateDebugReportCallback";
        if (m_CreateDebugReportCallback) {
            VkDebugReportCallbackCreateInfoEXT dbgCreateInfo;
            memset(&dbgCreateInfo, 0, sizeof(dbgCreateInfo));
            dbgCreateInfo.sType = VK_STRUCTURE_TYPE_DEBUG_REPORT_CREATE_INFO_EXT;
            dbgCreateInfo.flags =
                VK_DEBUG_REPORT_ERROR_BIT_EXT | VK_DEBUG_REPORT_WARNING_BIT_EXT | VK_DEBUG_REPORT_PERFORMANCE_WARNING_BIT_EXT;
            dbgCreateInfo.pfnCallback = dbgFunction;
            dbgCreateInfo.pUserData = userData;

            err = m_CreateDebugReportCallback(this->inst, &dbgCreateInfo, NULL, &m_globalMsgCallback);
            ASSERT_VK_SUCCESS(err);

            m_DestroyDebugReportCallback =
                (PFN_vkDestroyDebugReportCallbackEXT)vkGetInstanceProcAddr(this->inst, "vkDestroyDebugReportCallbackEXT");
            ASSERT_NE(m_DestroyDebugReportCallback, (PFN_vkDestroyDebugReportCallbackEXT)NULL)
                << "Did not get function pointer for "
                   "DestroyDebugReportCallback";
            m_DebugReportMessage = (PFN_vkDebugReportMessageEXT)vkGetInstanceProcAddr(this->inst, "vkDebugReportMessageEXT");
            ASSERT_NE(m_DebugReportMessage, (PFN_vkDebugReportMessageEXT)NULL)
                << "Did not get function pointer for DebugReportMessage";
        }
    }

    /* TODO: Verify requested physical device extensions are available */
    this->device_extension_names = device_extension_names;
}

void VkRenderFramework::ShutdownFramework() {
    delete m_commandBuffer;
    if (m_commandPool)
        vkDestroyCommandPool(device(), m_commandPool, NULL);
    if (m_framebuffer)
        vkDestroyFramebuffer(device(), m_framebuffer, NULL);
    if (m_renderPass)
        vkDestroyRenderPass(device(), m_renderPass, NULL);

    if (m_globalMsgCallback)
        m_DestroyDebugReportCallback(this->inst, m_globalMsgCallback, NULL);
    if (m_devMsgCallback)
        m_DestroyDebugReportCallback(this->inst, m_devMsgCallback, NULL);

    while (!m_renderTargets.empty()) {
        vkDestroyImageView(device(), m_renderTargets.back()->targetView(m_render_target_fmt), NULL);
        vkDestroyImage(device(), m_renderTargets.back()->image(), NULL);
        vkFreeMemory(device(), m_renderTargets.back()->memory(), NULL);
        m_renderTargets.pop_back();
    }

    delete m_depthStencil;

    // reset the driver
    delete m_device;
    if (this->inst)
        vkDestroyInstance(this->inst, NULL);
}

void VkRenderFramework::InitState(VkPhysicalDeviceFeatures *features) {
    VkResult U_ASSERT_ONLY err;

    m_device = new VkDeviceObj(0, objs[0], device_extension_names, features);
    m_device->get_device_queue();

    m_depthStencil = new VkDepthStencilObj(m_device);

    m_render_target_fmt = VkTestFramework::GetFormat(inst, m_device);

    m_lineWidth = 1.0f;

    m_depthBiasConstantFactor = 0.0f;
    m_depthBiasClamp = 0.0f;
    m_depthBiasSlopeFactor = 0.0f;

    m_blendConstants[0] = 1.0f;
    m_blendConstants[1] = 1.0f;
    m_blendConstants[2] = 1.0f;
    m_blendConstants[3] = 1.0f;

    m_minDepthBounds = 0.f;
    m_maxDepthBounds = 1.f;

    m_compareMask = 0xff;
    m_writeMask = 0xff;
    m_reference = 0;

    VkCommandPoolCreateInfo cmd_pool_info;
    cmd_pool_info.sType = VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO, cmd_pool_info.pNext = NULL,
    cmd_pool_info.queueFamilyIndex = m_device->graphics_queue_node_index_;
    cmd_pool_info.flags = 0, err = vkCreateCommandPool(device(), &cmd_pool_info, NULL, &m_commandPool);
    assert(!err);

    m_commandBuffer = new VkCommandBufferObj(m_device, m_commandPool);
}

void VkRenderFramework::InitViewport(float width, float height) {
    VkViewport viewport;
    VkRect2D scissor;
    viewport.x = 0;
    viewport.y = 0;
    viewport.width = 1.f * width;
    viewport.height = 1.f * height;
    viewport.minDepth = 0.f;
    viewport.maxDepth = 1.f;
    m_viewports.push_back(viewport);

    scissor.extent.width = (int32_t)width;
    scissor.extent.height = (int32_t)height;
    scissor.offset.x = 0;
    scissor.offset.y = 0;
    m_scissors.push_back(scissor);

    m_width = width;
    m_height = height;
}

void VkRenderFramework::InitViewport() { InitViewport(m_width, m_height); }
void VkRenderFramework::InitRenderTarget() { InitRenderTarget(1); }

void VkRenderFramework::InitRenderTarget(uint32_t targets) { InitRenderTarget(targets, NULL); }

void VkRenderFramework::InitRenderTarget(VkImageView *dsBinding) { InitRenderTarget(1, dsBinding); }

void VkRenderFramework::InitRenderTarget(uint32_t targets, VkImageView *dsBinding) {
    std::vector<VkAttachmentDescription> attachments;
    std::vector<VkAttachmentReference> color_references;
    std::vector<VkImageView> bindings;
    attachments.reserve(targets + 1); // +1 for dsBinding
    color_references.reserve(targets);
    bindings.reserve(targets + 1); // +1 for dsBinding

    VkAttachmentDescription att = {};
    att.format = m_render_target_fmt;
    att.samples = VK_SAMPLE_COUNT_1_BIT;
    att.loadOp = (m_clear_via_load_op) ? VK_ATTACHMENT_LOAD_OP_CLEAR : VK_ATTACHMENT_LOAD_OP_LOAD;
    att.storeOp = VK_ATTACHMENT_STORE_OP_STORE;
    att.stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE;
    att.stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE;
    att.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
    att.finalLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;

    VkAttachmentReference ref = {};
    ref.layout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;

    m_renderPassClearValues.clear();
    VkClearValue clear = {};
    clear.color = m_clear_color;

    VkImageView bind = {};

    for (uint32_t i = 0; i < targets; i++) {
        attachments.push_back(att);

        ref.attachment = i;
        color_references.push_back(ref);

        m_renderPassClearValues.push_back(clear);

        VkImageObj *img = new VkImageObj(m_device);

        VkFormatProperties props;

        vkGetPhysicalDeviceFormatProperties(m_device->phy().handle(), m_render_target_fmt, &props);

        if (props.linearTilingFeatures & VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BIT) {
            img->init((uint32_t)m_width, (uint32_t)m_height, m_render_target_fmt,
                      VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT | VK_IMAGE_USAGE_TRANSFER_SRC_BIT, VK_IMAGE_TILING_LINEAR);
        } else if (props.optimalTilingFeatures & VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BIT) {
            img->init((uint32_t)m_width, (uint32_t)m_height, m_render_target_fmt,
                      VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT | VK_IMAGE_USAGE_TRANSFER_SRC_BIT, VK_IMAGE_TILING_OPTIMAL);
        } else {
            FAIL() << "Neither Linear nor Optimal allowed for render target";
        }

        m_renderTargets.push_back(img);
        bind = img->targetView(m_render_target_fmt);
        bindings.push_back(bind);
    }

    VkSubpassDescription subpass = {};
    subpass.pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS;
    subpass.flags = 0;
    subpass.inputAttachmentCount = 0;
    subpass.pInputAttachments = NULL;
    subpass.colorAttachmentCount = targets;
    subpass.pColorAttachments = color_references.data();
    subpass.pResolveAttachments = NULL;

    VkAttachmentReference ds_reference;
    if (dsBinding) {
        att.format = m_depth_stencil_fmt;
        att.loadOp = (m_clear_via_load_op) ? VK_ATTACHMENT_LOAD_OP_CLEAR : VK_ATTACHMENT_LOAD_OP_LOAD;
        ;
        att.storeOp = VK_ATTACHMENT_STORE_OP_STORE;
        att.stencilLoadOp = VK_ATTACHMENT_LOAD_OP_LOAD;
        att.stencilStoreOp = VK_ATTACHMENT_STORE_OP_STORE;
        att.initialLayout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL;
        att.finalLayout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL;
        attachments.push_back(att);

        clear.depthStencil.depth = m_depth_clear_color;
        clear.depthStencil.stencil = m_stencil_clear_color;
        m_renderPassClearValues.push_back(clear);

        bindings.push_back(*dsBinding);

        ds_reference.attachment = targets;
        ds_reference.layout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL;
        subpass.pDepthStencilAttachment = &ds_reference;
    } else {
        subpass.pDepthStencilAttachment = NULL;
    }

    subpass.preserveAttachmentCount = 0;
    subpass.pPreserveAttachments = NULL;

    VkRenderPassCreateInfo rp_info = {};
    rp_info.sType = VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO;
    rp_info.attachmentCount = attachments.size();
    rp_info.pAttachments = attachments.data();
    rp_info.subpassCount = 1;
    rp_info.pSubpasses = &subpass;

    vkCreateRenderPass(device(), &rp_info, NULL, &m_renderPass);

    // Create Framebuffer and RenderPass with color attachments and any
    // depth/stencil attachment
    VkFramebufferCreateInfo fb_info = {};
    fb_info.sType = VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO;
    fb_info.pNext = NULL;
    fb_info.renderPass = m_renderPass;
    fb_info.attachmentCount = bindings.size();
    fb_info.pAttachments = bindings.data();
    fb_info.width = (uint32_t)m_width;
    fb_info.height = (uint32_t)m_height;
    fb_info.layers = 1;

    vkCreateFramebuffer(device(), &fb_info, NULL, &m_framebuffer);

    m_renderPassBeginInfo.renderPass = m_renderPass;
    m_renderPassBeginInfo.framebuffer = m_framebuffer;
    m_renderPassBeginInfo.renderArea.extent.width = (int32_t)m_width;
    m_renderPassBeginInfo.renderArea.extent.height = (int32_t)m_height;
    m_renderPassBeginInfo.clearValueCount = m_renderPassClearValues.size();
    m_renderPassBeginInfo.pClearValues = m_renderPassClearValues.data();
}

VkDeviceObj::VkDeviceObj(uint32_t id, VkPhysicalDevice obj) : vk_testing::Device(obj), id(id) {
    init();

    props = phy().properties();
    queue_props = phy().queue_properties();
}

VkDeviceObj::VkDeviceObj(uint32_t id, VkPhysicalDevice obj, std::vector<const char *> &extension_names,
                         VkPhysicalDeviceFeatures *features)
    : vk_testing::Device(obj), id(id) {
    init(extension_names, features);

    props = phy().properties();
    queue_props = phy().queue_properties();
}

void VkDeviceObj::get_device_queue() {
    ASSERT_NE(true, graphics_queues().empty());
    m_queue = graphics_queues()[0]->handle();
}

VkDescriptorSetObj::VkDescriptorSetObj(VkDeviceObj *device) : m_device(device), m_nextSlot(0) {}

VkDescriptorSetObj::~VkDescriptorSetObj() {
    if (m_set) {
        delete m_set;
    }
}

int VkDescriptorSetObj::AppendDummy() {
    /* request a descriptor but do not update it */
    VkDescriptorSetLayoutBinding binding = {};
    binding.descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_BUFFER;
    binding.descriptorCount = 1;
    binding.binding = m_layout_bindings.size();
    binding.stageFlags = VK_SHADER_STAGE_ALL;
    binding.pImmutableSamplers = NULL;

    m_layout_bindings.push_back(binding);
    m_type_counts[VK_DESCRIPTOR_TYPE_STORAGE_BUFFER] += binding.descriptorCount;

    return m_nextSlot++;
}

int VkDescriptorSetObj::AppendBuffer(VkDescriptorType type, VkConstantBufferObj &constantBuffer) {
    assert(type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER || type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC ||
           type == VK_DESCRIPTOR_TYPE_STORAGE_BUFFER || type == VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC);
    VkDescriptorSetLayoutBinding binding = {};
    binding.descriptorType = type;
    binding.descriptorCount = 1;
    binding.binding = m_layout_bindings.size();
    binding.stageFlags = VK_SHADER_STAGE_ALL;
    binding.pImmutableSamplers = NULL;

    m_layout_bindings.push_back(binding);
    m_type_counts[type] += binding.descriptorCount;

    m_writes.push_back(vk_testing::Device::write_descriptor_set(vk_testing::DescriptorSet(), m_nextSlot, 0, type, 1,
                                                                &constantBuffer.m_descriptorBufferInfo));

    return m_nextSlot++;
}

int VkDescriptorSetObj::AppendSamplerTexture(VkSamplerObj *sampler, VkTextureObj *texture) {
    VkDescriptorSetLayoutBinding binding = {};
    binding.descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER;
    binding.descriptorCount = 1;
    binding.binding = m_layout_bindings.size();
    binding.stageFlags = VK_SHADER_STAGE_ALL;
    binding.pImmutableSamplers = NULL;

    m_layout_bindings.push_back(binding);
    m_type_counts[VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER] += binding.descriptorCount;
    VkDescriptorImageInfo tmp = texture->m_imageInfo;
    tmp.sampler = sampler->handle();
    m_imageSamplerDescriptors.push_back(tmp);

    m_writes.push_back(vk_testing::Device::write_descriptor_set(vk_testing::DescriptorSet(), m_nextSlot, 0,
                                                                VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1, &tmp));

    return m_nextSlot++;
}

VkPipelineLayout VkDescriptorSetObj::GetPipelineLayout() const { return m_pipeline_layout.handle(); }

VkDescriptorSet VkDescriptorSetObj::GetDescriptorSetHandle() const { return m_set->handle(); }

void VkDescriptorSetObj::CreateVKDescriptorSet(VkCommandBufferObj *commandBuffer) {

    if (m_type_counts.size()) {
        // create VkDescriptorPool
        VkDescriptorPoolSize poolSize;
        vector<VkDescriptorPoolSize> sizes;
        for (auto it = m_type_counts.begin(); it != m_type_counts.end(); ++it) {
            poolSize.descriptorCount = it->second;
            poolSize.type = it->first;
            sizes.push_back(poolSize);
        }
        VkDescriptorPoolCreateInfo pool = {};
        pool.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_POOL_CREATE_INFO;
        pool.poolSizeCount = sizes.size();
        pool.maxSets = 1;
        pool.pPoolSizes = sizes.data();
        init(*m_device, pool);
    }

    // create VkDescriptorSetLayout
    VkDescriptorSetLayoutCreateInfo layout = {};
    layout.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO;
    layout.bindingCount = m_layout_bindings.size();
    layout.pBindings = m_layout_bindings.data();

    m_layout.init(*m_device, layout);
    vector<const vk_testing::DescriptorSetLayout *> layouts;
    layouts.push_back(&m_layout);

    // create VkPipelineLayout
    VkPipelineLayoutCreateInfo pipeline_layout = {};
    pipeline_layout.sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO;
    pipeline_layout.setLayoutCount = layouts.size();
    pipeline_layout.pSetLayouts = NULL;

    m_pipeline_layout.init(*m_device, pipeline_layout, layouts);

    if (m_type_counts.size()) {
        // create VkDescriptorSet
        m_set = alloc_sets(*m_device, m_layout);

        // build the update array
        size_t imageSamplerCount = 0;
        for (std::vector<VkWriteDescriptorSet>::iterator it = m_writes.begin(); it != m_writes.end(); it++) {
            it->dstSet = m_set->handle();
            if (it->descriptorType == VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER)
                it->pImageInfo = &m_imageSamplerDescriptors[imageSamplerCount++];
        }

        // do the updates
        m_device->update_descriptor_sets(m_writes);
    }
}

VkRenderpassObj::VkRenderpassObj(VkDeviceObj *dev) {
    // Create a renderPass with a single color attachment
    VkAttachmentReference attach = {};
    attach.layout = VK_IMAGE_LAYOUT_GENERAL;

    VkSubpassDescription subpass = {};
    subpass.pColorAttachments = &attach;
    subpass.colorAttachmentCount = 1;

    VkRenderPassCreateInfo rpci = {};
    rpci.subpassCount = 1;
    rpci.pSubpasses = &subpass;
    rpci.attachmentCount = 1;

    VkAttachmentDescription attach_desc = {};
    attach_desc.format = VK_FORMAT_B8G8R8A8_UNORM;
    attach_desc.samples = VK_SAMPLE_COUNT_1_BIT;
    attach_desc.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
    attach_desc.finalLayout = VK_IMAGE_LAYOUT_GENERAL;

    rpci.pAttachments = &attach_desc;
    rpci.sType = VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO;

    device = dev->device();
    vkCreateRenderPass(device, &rpci, NULL, &m_renderpass);
}

VkRenderpassObj::~VkRenderpassObj() { vkDestroyRenderPass(device, m_renderpass, NULL); }

VkImageObj::VkImageObj(VkDeviceObj *dev) {
    m_device = dev;
    m_descriptorImageInfo.imageView = VK_NULL_HANDLE;
    m_descriptorImageInfo.imageLayout = VK_IMAGE_LAYOUT_GENERAL;
}

void VkImageObj::ImageMemoryBarrier(VkCommandBufferObj *cmd_buf, VkImageAspectFlags aspect, VkFlags output_mask /*=
            VK_ACCESS_HOST_WRITE_BIT |
            VK_ACCESS_SHADER_WRITE_BIT |
            VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT |
            VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT |
            VK_MEMORY_OUTPUT_COPY_BIT*/,
                                    VkFlags input_mask /*=
            VK_ACCESS_HOST_READ_BIT |
            VK_ACCESS_INDIRECT_COMMAND_READ_BIT |
            VK_ACCESS_INDEX_READ_BIT |
            VK_ACCESS_VERTEX_ATTRIBUTE_READ_BIT |
            VK_ACCESS_UNIFORM_READ_BIT |
            VK_ACCESS_SHADER_READ_BIT |
            VK_ACCESS_COLOR_ATTACHMENT_READ_BIT |
            VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_READ_BIT |
            VK_MEMORY_INPUT_COPY_BIT*/, VkImageLayout image_layout) {
    const VkImageSubresourceRange subresourceRange = subresource_range(aspect, 0, 1, 0, 1);
    VkImageMemoryBarrier barrier;
    barrier = image_memory_barrier(output_mask, input_mask, layout(), image_layout, subresourceRange);

    VkImageMemoryBarrier *pmemory_barrier = &barrier;

    VkPipelineStageFlags src_stages = VK_PIPELINE_STAGE_ALL_COMMANDS_BIT;
    VkPipelineStageFlags dest_stages = VK_PIPELINE_STAGE_ALL_COMMANDS_BIT;

    // write barrier to the command buffer
    vkCmdPipelineBarrier(cmd_buf->handle(), src_stages, dest_stages, 0, 0, NULL, 0, NULL, 1, pmemory_barrier);
}

void VkImageObj::SetLayout(VkCommandBufferObj *cmd_buf, VkImageAspectFlags aspect, VkImageLayout image_layout) {
    VkFlags src_mask, dst_mask;
    const VkFlags all_cache_outputs = VK_ACCESS_HOST_WRITE_BIT | VK_ACCESS_SHADER_WRITE_BIT | VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT |
                                      VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT | VK_ACCESS_TRANSFER_WRITE_BIT;
    const VkFlags all_cache_inputs = VK_ACCESS_HOST_READ_BIT | VK_ACCESS_INDIRECT_COMMAND_READ_BIT | VK_ACCESS_INDEX_READ_BIT |
                                     VK_ACCESS_VERTEX_ATTRIBUTE_READ_BIT | VK_ACCESS_UNIFORM_READ_BIT | VK_ACCESS_SHADER_READ_BIT |
                                     VK_ACCESS_COLOR_ATTACHMENT_READ_BIT | VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_READ_BIT |
                                     VK_ACCESS_MEMORY_READ_BIT;

    if (image_layout == m_descriptorImageInfo.imageLayout) {
        return;
    }

    switch (image_layout) {
    case VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL:
        if (m_descriptorImageInfo.imageLayout == VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL)
            src_mask = VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT;
        else
            src_mask = VK_ACCESS_TRANSFER_WRITE_BIT;
        dst_mask = VK_ACCESS_SHADER_READ_BIT | VK_ACCESS_TRANSFER_READ_BIT;
        break;

    case VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL:
        if (m_descriptorImageInfo.imageLayout == VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL)
            src_mask = VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT;
        else if (m_descriptorImageInfo.imageLayout == VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL)
            src_mask = VK_ACCESS_INPUT_ATTACHMENT_READ_BIT;
        else
            src_mask = VK_ACCESS_TRANSFER_WRITE_BIT;
        dst_mask = VK_ACCESS_TRANSFER_WRITE_BIT;
        break;

    case VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL:
        if (m_descriptorImageInfo.imageLayout == VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL)
            src_mask = VK_ACCESS_TRANSFER_WRITE_BIT;
        else
            src_mask = VK_ACCESS_INPUT_ATTACHMENT_READ_BIT;
        dst_mask = VK_ACCESS_SHADER_READ_BIT | VK_ACCESS_MEMORY_READ_BIT;
        break;

    case VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL:
        if (m_descriptorImageInfo.imageLayout == VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL)
            src_mask = VK_ACCESS_TRANSFER_READ_BIT;
        else
            src_mask = 0;
        dst_mask = VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT;
        break;

    case VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL:
        dst_mask = VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT;
        src_mask = all_cache_outputs;
        break;

    default:
        src_mask = all_cache_outputs;
        dst_mask = all_cache_inputs;
        break;
    }

    if (m_descriptorImageInfo.imageLayout == VK_IMAGE_LAYOUT_UNDEFINED)
        src_mask = 0;

    ImageMemoryBarrier(cmd_buf, aspect, src_mask, dst_mask, image_layout);
    m_descriptorImageInfo.imageLayout = image_layout;
}

void VkImageObj::SetLayout(VkImageAspectFlags aspect, VkImageLayout image_layout) {
    VkResult U_ASSERT_ONLY err;

    if (image_layout == m_descriptorImageInfo.imageLayout) {
        return;
    }

    VkCommandPoolCreateInfo cmd_pool_info = {};
    cmd_pool_info.sType = VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO;
    cmd_pool_info.pNext = NULL;
    cmd_pool_info.queueFamilyIndex = m_device->graphics_queue_node_index_;
    cmd_pool_info.flags = 0;
    vk_testing::CommandPool pool(*m_device, cmd_pool_info);
    VkCommandBufferObj cmd_buf(m_device, pool.handle());

    /* Build command buffer to set image layout in the driver */
    err = cmd_buf.BeginCommandBuffer();
    assert(!err);

    SetLayout(&cmd_buf, aspect, image_layout);

    err = cmd_buf.EndCommandBuffer();
    assert(!err);

    cmd_buf.QueueCommandBuffer();
}

bool VkImageObj::IsCompatible(VkFlags usage, VkFlags features) {
    if ((usage & VK_IMAGE_USAGE_SAMPLED_BIT) && !(features & VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT))
        return false;

    return true;
}

void VkImageObj::init_no_layout(uint32_t w, uint32_t h, VkFormat fmt, VkFlags usage, VkImageTiling requested_tiling,
                                VkMemoryPropertyFlags reqs) {

    VkFormatProperties image_fmt;
    VkImageTiling tiling = VK_IMAGE_TILING_OPTIMAL;

    vkGetPhysicalDeviceFormatProperties(m_device->phy().handle(), fmt, &image_fmt);

    if (requested_tiling == VK_IMAGE_TILING_LINEAR) {
        if (IsCompatible(usage, image_fmt.linearTilingFeatures)) {
            tiling = VK_IMAGE_TILING_LINEAR;
        } else if (IsCompatible(usage, image_fmt.optimalTilingFeatures)) {
            tiling = VK_IMAGE_TILING_OPTIMAL;
        } else {
            ASSERT_TRUE(false) << "Error: Cannot find requested tiling configuration";
        }
    } else if (IsCompatible(usage, image_fmt.optimalTilingFeatures)) {
        tiling = VK_IMAGE_TILING_OPTIMAL;
    } else if (IsCompatible(usage, image_fmt.linearTilingFeatures)) {
        tiling = VK_IMAGE_TILING_LINEAR;
    } else {
        ASSERT_TRUE(false) << "Error: Cannot find requested tiling configuration";
    }

    VkImageCreateInfo imageCreateInfo = vk_testing::Image::create_info();
    imageCreateInfo.imageType = VK_IMAGE_TYPE_2D;
    imageCreateInfo.format = fmt;
    imageCreateInfo.extent.width = w;
    imageCreateInfo.extent.height = h;
    imageCreateInfo.mipLevels = 1;
    imageCreateInfo.tiling = tiling;
    imageCreateInfo.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;

    layout(imageCreateInfo.initialLayout);
    imageCreateInfo.usage = usage;

    vk_testing::Image::init(*m_device, imageCreateInfo, reqs);
}

void VkImageObj::init(uint32_t w, uint32_t h, VkFormat fmt, VkFlags usage, VkImageTiling requested_tiling,
                      VkMemoryPropertyFlags reqs) {

    init_no_layout(w, h, fmt, usage, requested_tiling, reqs);

    VkImageLayout newLayout;
    if (usage & VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT)
        newLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
    else if (usage & VK_IMAGE_USAGE_SAMPLED_BIT)
        newLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
    else
        newLayout = m_descriptorImageInfo.imageLayout;

    VkImageAspectFlags image_aspect = 0;
    if (vk_format_is_depth_and_stencil(fmt)) {
        image_aspect = VK_IMAGE_ASPECT_STENCIL_BIT | VK_IMAGE_ASPECT_DEPTH_BIT;
    } else if (vk_format_is_depth_only(fmt)) {
        image_aspect = VK_IMAGE_ASPECT_DEPTH_BIT;
    } else if (vk_format_is_stencil_only(fmt)) {
        image_aspect = VK_IMAGE_ASPECT_STENCIL_BIT;
    } else { // color
        image_aspect = VK_IMAGE_ASPECT_COLOR_BIT;
    }
    SetLayout(image_aspect, newLayout);
}

VkResult VkImageObj::CopyImage(VkImageObj &src_image) {
    VkResult U_ASSERT_ONLY err;
    VkImageLayout src_image_layout, dest_image_layout;

    VkCommandPoolCreateInfo cmd_pool_info = {};
    cmd_pool_info.sType = VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO;
    cmd_pool_info.pNext = NULL;
    cmd_pool_info.queueFamilyIndex = m_device->graphics_queue_node_index_;
    cmd_pool_info.flags = 0;
    vk_testing::CommandPool pool(*m_device, cmd_pool_info);
    VkCommandBufferObj cmd_buf(m_device, pool.handle());

    /* Build command buffer to copy staging texture to usable texture */
    err = cmd_buf.BeginCommandBuffer();
    assert(!err);

    /* TODO: Can we determine image aspect from image object? */
    src_image_layout = src_image.layout();
    src_image.SetLayout(&cmd_buf, VK_IMAGE_ASPECT_COLOR_BIT, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL);

    dest_image_layout = (this->layout() == VK_IMAGE_LAYOUT_UNDEFINED) ? VK_IMAGE_LAYOUT_GENERAL : this->layout();
    this->SetLayout(&cmd_buf, VK_IMAGE_ASPECT_COLOR_BIT, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL);

    VkImageCopy copy_region = {};
    copy_region.srcSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
    copy_region.srcSubresource.baseArrayLayer = 0;
    copy_region.srcSubresource.mipLevel = 0;
    copy_region.srcSubresource.layerCount = 1;
    copy_region.srcOffset.x = 0;
    copy_region.srcOffset.y = 0;
    copy_region.srcOffset.z = 0;
    copy_region.dstSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
    copy_region.dstSubresource.baseArrayLayer = 0;
    copy_region.dstSubresource.mipLevel = 0;
    copy_region.dstSubresource.layerCount = 1;
    copy_region.dstOffset.x = 0;
    copy_region.dstOffset.y = 0;
    copy_region.dstOffset.z = 0;
    copy_region.extent = src_image.extent();

    vkCmdCopyImage(cmd_buf.handle(), src_image.handle(), src_image.layout(), handle(), layout(), 1, &copy_region);

    src_image.SetLayout(&cmd_buf, VK_IMAGE_ASPECT_COLOR_BIT, src_image_layout);

    this->SetLayout(&cmd_buf, VK_IMAGE_ASPECT_COLOR_BIT, dest_image_layout);

    err = cmd_buf.EndCommandBuffer();
    assert(!err);

    cmd_buf.QueueCommandBuffer();

    return VK_SUCCESS;
}

VkTextureObj::VkTextureObj(VkDeviceObj *device, uint32_t *colors) : VkImageObj(device) {
    m_device = device;
    const VkFormat tex_format = VK_FORMAT_B8G8R8A8_UNORM;
    uint32_t tex_colors[2] = {0xffff0000, 0xff00ff00};
    void *data;
    uint32_t x, y;
    VkImageObj stagingImage(device);
    VkMemoryPropertyFlags reqs = VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT;

    stagingImage.init(16, 16, tex_format, VK_IMAGE_USAGE_TRANSFER_DST_BIT | VK_IMAGE_USAGE_TRANSFER_SRC_BIT, VK_IMAGE_TILING_LINEAR,
                      reqs);
    VkSubresourceLayout layout = stagingImage.subresource_layout(subresource(VK_IMAGE_ASPECT_COLOR_BIT, 0, 0));

    if (colors == NULL)
        colors = tex_colors;

    memset(&m_imageInfo, 0, sizeof(m_imageInfo));

    VkImageViewCreateInfo view = {};
    view.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO;
    view.pNext = NULL;
    view.image = VK_NULL_HANDLE;
    view.viewType = VK_IMAGE_VIEW_TYPE_2D;
    view.format = tex_format;
    view.components.r = VK_COMPONENT_SWIZZLE_R;
    view.components.g = VK_COMPONENT_SWIZZLE_G;
    view.components.b = VK_COMPONENT_SWIZZLE_B;
    view.components.a = VK_COMPONENT_SWIZZLE_A;
    view.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
    view.subresourceRange.baseMipLevel = 0;
    view.subresourceRange.levelCount = 1;
    view.subresourceRange.baseArrayLayer = 0;
    view.subresourceRange.layerCount = 1;

    /* create image */
    init(16, 16, tex_format, VK_IMAGE_USAGE_SAMPLED_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT, VK_IMAGE_TILING_OPTIMAL);
    stagingImage.SetLayout(VK_IMAGE_ASPECT_COLOR_BIT, VK_IMAGE_LAYOUT_GENERAL);

    /* create image view */
    view.image = handle();
    m_textureView.init(*m_device, view);
    m_imageInfo.imageView = m_textureView.handle();

    data = stagingImage.MapMemory();

    for (y = 0; y < extent().height; y++) {
        uint32_t *row = (uint32_t *)((char *)data + layout.rowPitch * y);
        for (x = 0; x < extent().width; x++)
            row[x] = colors[(x & 1) ^ (y & 1)];
    }
    stagingImage.UnmapMemory();
    stagingImage.SetLayout(VK_IMAGE_ASPECT_COLOR_BIT, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL);
    VkImageObj::CopyImage(stagingImage);
}

VkSamplerObj::VkSamplerObj(VkDeviceObj *device) {
    m_device = device;

    VkSamplerCreateInfo samplerCreateInfo;
    memset(&samplerCreateInfo, 0, sizeof(samplerCreateInfo));
    samplerCreateInfo.sType = VK_STRUCTURE_TYPE_SAMPLER_CREATE_INFO;
    samplerCreateInfo.magFilter = VK_FILTER_NEAREST;
    samplerCreateInfo.minFilter = VK_FILTER_NEAREST;
    samplerCreateInfo.mipmapMode = VK_SAMPLER_MIPMAP_MODE_NEAREST;
    samplerCreateInfo.addressModeU = VK_SAMPLER_ADDRESS_MODE_REPEAT;
    samplerCreateInfo.addressModeV = VK_SAMPLER_ADDRESS_MODE_REPEAT;
    samplerCreateInfo.addressModeW = VK_SAMPLER_ADDRESS_MODE_REPEAT;
    samplerCreateInfo.mipLodBias = 0.0;
    samplerCreateInfo.anisotropyEnable = VK_FALSE;
    samplerCreateInfo.maxAnisotropy = 1;
    samplerCreateInfo.compareOp = VK_COMPARE_OP_NEVER;
    samplerCreateInfo.minLod = 0.0;
    samplerCreateInfo.maxLod = 0.0;
    samplerCreateInfo.borderColor = VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE;
    samplerCreateInfo.unnormalizedCoordinates = VK_FALSE;

    init(*m_device, samplerCreateInfo);
}

/*
 * Basic ConstantBuffer constructor. Then use create methods to fill in the
 * details.
 */
VkConstantBufferObj::VkConstantBufferObj(VkDeviceObj *device, VkBufferUsageFlags usage) {
    m_device = device;
    m_commandBuffer = 0;

    memset(&m_descriptorBufferInfo, 0, sizeof(m_descriptorBufferInfo));

    // Special case for usages outside of original limits of framework
    if ((VK_BUFFER_USAGE_TRANSFER_SRC_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT) != usage) {
        init_no_mem(*m_device, create_info(0, usage));
    }
}

VkConstantBufferObj::~VkConstantBufferObj() {
    // TODO: Should we call QueueRemoveMemReference for the constant buffer
    // memory here?
    if (m_commandBuffer) {
        delete m_commandBuffer;
        delete m_commandPool;
    }
}

VkConstantBufferObj::VkConstantBufferObj(VkDeviceObj *device, int constantCount, int constantSize, const void *data,
                                         VkBufferUsageFlags usage) {
    m_device = device;
    m_commandBuffer = 0;

    memset(&m_descriptorBufferInfo, 0, sizeof(m_descriptorBufferInfo));
    m_numVertices = constantCount;
    m_stride = constantSize;

    VkMemoryPropertyFlags reqs = VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT;
    const VkDeviceSize allocationSize = static_cast<VkDeviceSize>(constantCount * constantSize);

    if ((VK_BUFFER_USAGE_TRANSFER_SRC_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT) == usage) {
        init_as_src_and_dst(*m_device, allocationSize, reqs);
    } else {
        init(*m_device, create_info(allocationSize, usage), reqs);
    }

    void *pData = memory().map();
    memcpy(pData, data, static_cast<size_t>(allocationSize));
    memory().unmap();

    /*
     * Constant buffers are going to be used as vertex input buffers
     * or as shader uniform buffers. So, we'll create the shaderbuffer
     * descriptor here so it's ready if needed.
     */
    this->m_descriptorBufferInfo.buffer = handle();
    this->m_descriptorBufferInfo.offset = 0;
    this->m_descriptorBufferInfo.range = allocationSize;
}

void VkConstantBufferObj::Bind(VkCommandBuffer commandBuffer, VkDeviceSize offset, uint32_t binding) {
    vkCmdBindVertexBuffers(commandBuffer, binding, 1, &handle(), &offset);
}

void VkConstantBufferObj::BufferMemoryBarrier(VkFlags srcAccessMask /*=
            VK_ACCESS_HOST_WRITE_BIT |
            VK_ACCESS_SHADER_WRITE_BIT |
            VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT |
            VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT |
            VK_MEMORY_OUTPUT_COPY_BIT*/, VkFlags dstAccessMask /*=
            VK_ACCESS_HOST_READ_BIT |
            VK_ACCESS_INDIRECT_COMMAND_READ_BIT |
            VK_ACCESS_INDEX_READ_BIT |
            VK_ACCESS_VERTEX_ATTRIBUTE_READ_BIT |
            VK_ACCESS_UNIFORM_READ_BIT |
            VK_ACCESS_SHADER_READ_BIT |
            VK_ACCESS_COLOR_ATTACHMENT_READ_BIT |
            VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_READ_BIT |
            VK_MEMORY_INPUT_COPY_BIT*/) {
    VkResult err = VK_SUCCESS;

    if (!m_commandBuffer) {
        m_fence.init(*m_device, vk_testing::Fence::create_info());
        VkCommandPoolCreateInfo cmd_pool_info = {};
        cmd_pool_info.sType = VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO;
        cmd_pool_info.pNext = NULL;
        cmd_pool_info.queueFamilyIndex = m_device->graphics_queue_node_index_;
        cmd_pool_info.flags = 0;
        m_commandPool = new vk_testing::CommandPool(*m_device, cmd_pool_info);
        m_commandBuffer = new VkCommandBufferObj(m_device, m_commandPool->handle());
    } else {
        m_device->wait(m_fence);
    }

    // open the command buffer
    VkCommandBufferBeginInfo cmd_buf_info = {};
    VkCommandBufferInheritanceInfo cmd_buf_hinfo = {};
    cmd_buf_info.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO;
    cmd_buf_info.pNext = NULL;
    cmd_buf_info.flags = 0;
    cmd_buf_info.pInheritanceInfo = &cmd_buf_hinfo;

    cmd_buf_hinfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_INHERITANCE_INFO;
    cmd_buf_hinfo.pNext = NULL;
    cmd_buf_hinfo.renderPass = VK_NULL_HANDLE;
    cmd_buf_hinfo.subpass = 0;
    cmd_buf_hinfo.framebuffer = VK_NULL_HANDLE;
    cmd_buf_hinfo.occlusionQueryEnable = VK_FALSE;
    cmd_buf_hinfo.queryFlags = 0;
    cmd_buf_hinfo.pipelineStatistics = 0;

    err = m_commandBuffer->BeginCommandBuffer(&cmd_buf_info);
    ASSERT_VK_SUCCESS(err);

    VkBufferMemoryBarrier memory_barrier = buffer_memory_barrier(srcAccessMask, dstAccessMask, 0, m_numVertices * m_stride);
    VkBufferMemoryBarrier *pmemory_barrier = &memory_barrier;

    VkPipelineStageFlags src_stages = VK_PIPELINE_STAGE_ALL_COMMANDS_BIT;
    VkPipelineStageFlags dest_stages = VK_PIPELINE_STAGE_ALL_COMMANDS_BIT;

    // write barrier to the command buffer
    m_commandBuffer->PipelineBarrier(src_stages, dest_stages, 0, 0, NULL, 1, pmemory_barrier, 0, NULL);

    // finish recording the command buffer
    err = m_commandBuffer->EndCommandBuffer();
    ASSERT_VK_SUCCESS(err);

    // submit the command buffer to the universal queue
    VkCommandBuffer bufferArray[1];
    bufferArray[0] = m_commandBuffer->GetBufferHandle();
    VkSubmitInfo submit_info;
    submit_info.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO;
    submit_info.pNext = NULL;
    submit_info.waitSemaphoreCount = 0;
    submit_info.pWaitSemaphores = NULL;
    submit_info.pWaitDstStageMask = NULL;
    submit_info.commandBufferCount = 1;
    submit_info.pCommandBuffers = bufferArray;
    submit_info.signalSemaphoreCount = 0;
    submit_info.pSignalSemaphores = NULL;

    err = vkQueueSubmit(m_device->m_queue, 1, &submit_info, m_fence.handle());
    ASSERT_VK_SUCCESS(err);
}

VkIndexBufferObj::VkIndexBufferObj(VkDeviceObj *device) : VkConstantBufferObj(device) {}

void VkIndexBufferObj::CreateAndInitBuffer(int numIndexes, VkIndexType indexType, const void *data) {
    m_numVertices = numIndexes;
    m_indexType = indexType;
    switch (indexType) {
    case VK_INDEX_TYPE_UINT16:
        m_stride = 2;
        break;
    case VK_INDEX_TYPE_UINT32:
        m_stride = 4;
        break;
    default:
        assert(!"unknown index type");
        m_stride = 2;
        break;
    }

    const size_t allocationSize = numIndexes * m_stride;
    VkMemoryPropertyFlags reqs = VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT;
    init_as_src_and_dst(*m_device, allocationSize, reqs);

    void *pData = memory().map();
    memcpy(pData, data, allocationSize);
    memory().unmap();

    // set up the descriptor for the constant buffer
    this->m_descriptorBufferInfo.buffer = handle();
    this->m_descriptorBufferInfo.offset = 0;
    this->m_descriptorBufferInfo.range = allocationSize;
}

void VkIndexBufferObj::Bind(VkCommandBuffer commandBuffer, VkDeviceSize offset) {
    vkCmdBindIndexBuffer(commandBuffer, handle(), offset, m_indexType);
}

VkIndexType VkIndexBufferObj::GetIndexType() { return m_indexType; }

VkPipelineShaderStageCreateInfo VkShaderObj::GetStageCreateInfo() const {
    VkPipelineShaderStageCreateInfo stageInfo = {};

    stageInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO;
    stageInfo.stage = m_stage;
    stageInfo.module = handle();
    stageInfo.pName = m_name;

    return stageInfo;
}

VkShaderObj::VkShaderObj(VkDeviceObj *device, const char *shader_code, VkShaderStageFlagBits stage, VkRenderFramework *framework,
                         char const *name) {
    VkResult U_ASSERT_ONLY err = VK_SUCCESS;
    std::vector<unsigned int> spv;
    VkShaderModuleCreateInfo moduleCreateInfo;
    size_t shader_len;

    m_stage = stage;
    m_device = device;
    m_name = name;

    moduleCreateInfo.sType = VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO;
    moduleCreateInfo.pNext = NULL;

    if (framework->m_use_glsl) {

        shader_len = strlen(shader_code);
        moduleCreateInfo.codeSize = 3 * sizeof(uint32_t) + shader_len + 1;
        moduleCreateInfo.pCode = (uint32_t *)malloc(moduleCreateInfo.codeSize);
        moduleCreateInfo.flags = 0;

        /* try version 0 first: VkShaderStage followed by GLSL */
        ((uint32_t *)moduleCreateInfo.pCode)[0] = ICD_SPV_MAGIC;
        ((uint32_t *)moduleCreateInfo.pCode)[1] = 0;
        ((uint32_t *)moduleCreateInfo.pCode)[2] = stage;
        memcpy(((uint32_t *)moduleCreateInfo.pCode + 3), shader_code, shader_len + 1);

    } else {

        // Use Reference GLSL to SPV compiler
        framework->GLSLtoSPV(stage, shader_code, spv);
        moduleCreateInfo.pCode = spv.data();
        moduleCreateInfo.codeSize = spv.size() * sizeof(unsigned int);
        moduleCreateInfo.flags = 0;
    }

    err = init_try(*m_device, moduleCreateInfo);
    assert(VK_SUCCESS == err);
}

VkPipelineObj::VkPipelineObj(VkDeviceObj *device) {
    m_device = device;

    m_vi_state.pNext = VK_NULL_HANDLE;
    m_vi_state.flags = 0;
    m_vi_state.vertexBindingDescriptionCount = 0;
    m_vi_state.pVertexBindingDescriptions = VK_NULL_HANDLE;
    m_vi_state.vertexAttributeDescriptionCount = 0;
    m_vi_state.pVertexAttributeDescriptions = VK_NULL_HANDLE;

    m_vertexBufferCount = 0;

    m_ia_state.sType = VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO;
    m_ia_state.pNext = VK_NULL_HANDLE;
    m_ia_state.flags = 0;
    m_ia_state.topology = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST;
    m_ia_state.primitiveRestartEnable = VK_FALSE;

    m_rs_state.sType = VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO;
    m_rs_state.pNext = VK_NULL_HANDLE;
    m_rs_state.flags = 0;
    m_rs_state.depthClampEnable = VK_TRUE;
    m_rs_state.rasterizerDiscardEnable = VK_FALSE;
    m_rs_state.polygonMode = VK_POLYGON_MODE_FILL;
    m_rs_state.cullMode = VK_CULL_MODE_BACK_BIT;
    m_rs_state.frontFace = VK_FRONT_FACE_CLOCKWISE;
    m_rs_state.depthBiasEnable = VK_FALSE;
    m_rs_state.lineWidth = 1.0f;
    m_rs_state.depthBiasConstantFactor = 0.0f;
    m_rs_state.depthBiasClamp = 0.0f;
    m_rs_state.depthBiasSlopeFactor = 0.0f;

    memset(&m_cb_state, 0, sizeof(m_cb_state));
    m_cb_state.sType = VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO;
    m_cb_state.pNext = VK_NULL_HANDLE;
    m_cb_state.logicOp = VK_LOGIC_OP_COPY;
    m_cb_state.blendConstants[0] = 1.0f;
    m_cb_state.blendConstants[1] = 1.0f;
    m_cb_state.blendConstants[2] = 1.0f;
    m_cb_state.blendConstants[3] = 1.0f;

    m_ms_state.pNext = VK_NULL_HANDLE;
    m_ms_state.sType = VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO;
    m_ms_state.flags = 0;
    m_ms_state.pSampleMask = NULL;
    m_ms_state.alphaToCoverageEnable = VK_FALSE;
    m_ms_state.alphaToOneEnable = VK_FALSE;
    m_ms_state.rasterizationSamples = VK_SAMPLE_COUNT_1_BIT;
    m_ms_state.minSampleShading = 0;
    m_ms_state.sampleShadingEnable = 0;

    m_vp_state.sType = VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO;
    m_vp_state.pNext = VK_NULL_HANDLE;
    m_vp_state.flags = 0;
    m_vp_state.viewportCount = 1;
    m_vp_state.scissorCount = 1;
    m_vp_state.pViewports = NULL;
    m_vp_state.pScissors = NULL;

    m_ds_state = nullptr;
};

void VkPipelineObj::AddShader(VkShaderObj *shader) { m_shaderObjs.push_back(shader); }

void VkPipelineObj::AddVertexInputAttribs(VkVertexInputAttributeDescription *vi_attrib, uint32_t count) {
    m_vi_state.pVertexAttributeDescriptions = vi_attrib;
    m_vi_state.vertexAttributeDescriptionCount = count;
}

void VkPipelineObj::AddVertexInputBindings(VkVertexInputBindingDescription *vi_binding, uint32_t count) {
    m_vi_state.pVertexBindingDescriptions = vi_binding;
    m_vi_state.vertexBindingDescriptionCount = count;
}

void VkPipelineObj::AddColorAttachment(uint32_t binding, const VkPipelineColorBlendAttachmentState *att) {
    if (binding + 1 > m_colorAttachments.size()) {
        m_colorAttachments.resize(binding + 1);
    }
    m_colorAttachments[binding] = *att;
}

void VkPipelineObj::SetDepthStencil(const VkPipelineDepthStencilStateCreateInfo *ds_state) {
    m_ds_state = ds_state;
}

void VkPipelineObj::SetViewport(const vector<VkViewport> viewports) {
    m_viewports = viewports;
    // If we explicitly set a null viewport, pass it through to create info
    // but preserve viewportCount because it musn't change
    if (m_viewports.size() == 0) {
        m_vp_state.pViewports = nullptr;
    }
}

void VkPipelineObj::SetScissor(const vector<VkRect2D> scissors) {
    m_scissors = scissors;
    // If we explicitly set a null scissors, pass it through to create info
    // but preserve viewportCount because it musn't change
    if (m_scissors.size() == 0) {
        m_vp_state.pScissors = nullptr;
    }
}

void VkPipelineObj::MakeDynamic(VkDynamicState state) {
    /* Only add a state once */
    for (auto it = m_dynamic_state_enables.begin(); it != m_dynamic_state_enables.end(); it++) {
        if ((*it) == state)
            return;
    }
    m_dynamic_state_enables.push_back(state);
}

void VkPipelineObj::SetMSAA(const VkPipelineMultisampleStateCreateInfo *ms_state) { m_ms_state = *ms_state; }

void VkPipelineObj::SetInputAssembly(const VkPipelineInputAssemblyStateCreateInfo *ia_state) { m_ia_state = *ia_state; }

void VkPipelineObj::SetRasterization(const VkPipelineRasterizationStateCreateInfo *rs_state) { m_rs_state = *rs_state; }

void VkPipelineObj::SetTessellation(const VkPipelineTessellationStateCreateInfo *te_state) { m_te_state = *te_state; }

VkResult VkPipelineObj::CreateVKPipeline(VkPipelineLayout layout, VkRenderPass render_pass) {
    VkGraphicsPipelineCreateInfo info = {};
    VkPipelineDynamicStateCreateInfo dsci = {};

    info.stageCount = m_shaderObjs.size();
    info.pStages = new VkPipelineShaderStageCreateInfo[info.stageCount];

    for (size_t i = 0; i < m_shaderObjs.size(); i++) {
        ((VkPipelineShaderStageCreateInfo *)info.pStages)[i] = m_shaderObjs[i]->GetStageCreateInfo();
    }

    m_vi_state.sType = VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO;
    info.pVertexInputState = &m_vi_state;

    m_ia_state.sType = VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO;
    info.pInputAssemblyState = &m_ia_state;

    info.sType = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO;
    info.pNext = NULL;
    info.flags = 0;
    info.layout = layout;

    m_cb_state.attachmentCount = m_colorAttachments.size();
    m_cb_state.pAttachments = m_colorAttachments.data();

    if (m_viewports.size() > 0) {
        m_vp_state.viewportCount = m_viewports.size();
        m_vp_state.pViewports = m_viewports.data();
    } else {
        MakeDynamic(VK_DYNAMIC_STATE_VIEWPORT);
    }

    if (m_scissors.size() > 0) {
        m_vp_state.scissorCount = m_scissors.size();
        m_vp_state.pScissors = m_scissors.data();
    } else {
        MakeDynamic(VK_DYNAMIC_STATE_SCISSOR);
    }

    if (m_dynamic_state_enables.size() > 0) {
        dsci.sType = VK_STRUCTURE_TYPE_PIPELINE_DYNAMIC_STATE_CREATE_INFO;
        dsci.dynamicStateCount = m_dynamic_state_enables.size();
        dsci.pDynamicStates = m_dynamic_state_enables.data();
        info.pDynamicState = &dsci;
    }

    info.renderPass = render_pass;
    info.subpass = 0;
    info.pViewportState = &m_vp_state;
    info.pRasterizationState = &m_rs_state;
    info.pMultisampleState = &m_ms_state;
    info.pDepthStencilState = m_ds_state;
    info.pColorBlendState = &m_cb_state;

    if (m_ia_state.topology == VK_PRIMITIVE_TOPOLOGY_PATCH_LIST) {
        m_te_state.sType = VK_STRUCTURE_TYPE_PIPELINE_TESSELLATION_STATE_CREATE_INFO;
        info.pTessellationState = &m_te_state;
    } else {
        info.pTessellationState = nullptr;
    }

    return init_try(*m_device, info);
}

VkCommandBufferObj::VkCommandBufferObj(VkDeviceObj *device, VkCommandPool pool) {
    m_device = device;

    init(*device, vk_testing::CommandBuffer::create_info(pool));
}

VkCommandBuffer VkCommandBufferObj::GetBufferHandle() { return handle(); }

VkResult VkCommandBufferObj::BeginCommandBuffer(VkCommandBufferBeginInfo *pInfo) {
    begin(pInfo);
    return VK_SUCCESS;
}

VkResult VkCommandBufferObj::BeginCommandBuffer() {
    begin();
    return VK_SUCCESS;
}

VkResult VkCommandBufferObj::EndCommandBuffer() {
    end();
    return VK_SUCCESS;
}

void VkCommandBufferObj::PipelineBarrier(VkPipelineStageFlags src_stages, VkPipelineStageFlags dest_stages,
                                         VkDependencyFlags dependencyFlags, uint32_t memoryBarrierCount,
                                         const VkMemoryBarrier *pMemoryBarriers, uint32_t bufferMemoryBarrierCount,
                                         const VkBufferMemoryBarrier *pBufferMemoryBarriers, uint32_t imageMemoryBarrierCount,
                                         const VkImageMemoryBarrier *pImageMemoryBarriers) {
    vkCmdPipelineBarrier(handle(), src_stages, dest_stages, dependencyFlags, memoryBarrierCount, pMemoryBarriers,
                         bufferMemoryBarrierCount, pBufferMemoryBarriers, imageMemoryBarrierCount, pImageMemoryBarriers);
}

void VkCommandBufferObj::ClearAllBuffers(VkClearColorValue clear_color, float depth_clear_color, uint32_t stencil_clear_color,
                                         VkDepthStencilObj *depthStencilObj) {
    uint32_t i;
    const VkFlags output_mask = VK_ACCESS_HOST_WRITE_BIT | VK_ACCESS_SHADER_WRITE_BIT | VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT |
                                VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT | VK_ACCESS_TRANSFER_WRITE_BIT;
    const VkFlags input_mask = 0;

    // whatever we want to do, we do it to the whole buffer
    VkImageSubresourceRange srRange = {};
    srRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
    srRange.baseMipLevel = 0;
    srRange.levelCount = VK_REMAINING_MIP_LEVELS;
    srRange.baseArrayLayer = 0;
    srRange.layerCount = VK_REMAINING_ARRAY_LAYERS;

    VkImageMemoryBarrier memory_barrier = {};
    memory_barrier.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER;
    memory_barrier.srcAccessMask = output_mask;
    memory_barrier.dstAccessMask = input_mask;
    memory_barrier.newLayout = VK_IMAGE_LAYOUT_GENERAL;
    memory_barrier.subresourceRange = srRange;
    VkImageMemoryBarrier *pmemory_barrier = &memory_barrier;

    VkPipelineStageFlags src_stages = VK_PIPELINE_STAGE_ALL_COMMANDS_BIT;
    VkPipelineStageFlags dest_stages = VK_PIPELINE_STAGE_ALL_COMMANDS_BIT;

    for (i = 0; i < m_renderTargets.size(); i++) {
        memory_barrier.image = m_renderTargets[i]->image();
        memory_barrier.oldLayout = m_renderTargets[i]->layout();
        vkCmdPipelineBarrier(handle(), src_stages, dest_stages, 0, 0, NULL, 0, NULL, 1, pmemory_barrier);
        m_renderTargets[i]->layout(memory_barrier.newLayout);

        vkCmdClearColorImage(handle(), m_renderTargets[i]->image(), VK_IMAGE_LAYOUT_GENERAL, &clear_color, 1, &srRange);
    }

    if (depthStencilObj) {
        VkImageSubresourceRange dsRange = {};
        dsRange.aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT;
        dsRange.baseMipLevel = 0;
        dsRange.levelCount = VK_REMAINING_MIP_LEVELS;
        dsRange.baseArrayLayer = 0;
        dsRange.layerCount = VK_REMAINING_ARRAY_LAYERS;

        // prepare the depth buffer for clear

        memory_barrier.oldLayout = memory_barrier.newLayout;
        memory_barrier.newLayout = VK_IMAGE_LAYOUT_GENERAL;
        memory_barrier.image = depthStencilObj->handle();
        memory_barrier.subresourceRange = dsRange;

        vkCmdPipelineBarrier(handle(), src_stages, dest_stages, 0, 0, NULL, 0, NULL, 1, pmemory_barrier);

        VkClearDepthStencilValue clear_value = {depth_clear_color, stencil_clear_color};
        vkCmdClearDepthStencilImage(handle(), depthStencilObj->handle(), VK_IMAGE_LAYOUT_GENERAL, &clear_value, 1, &dsRange);

        // prepare depth buffer for rendering
        memory_barrier.image = depthStencilObj->handle();
        memory_barrier.newLayout = memory_barrier.oldLayout;
        memory_barrier.oldLayout = VK_IMAGE_LAYOUT_GENERAL;
        memory_barrier.subresourceRange = dsRange;
        vkCmdPipelineBarrier(handle(), src_stages, dest_stages, 0, 0, NULL, 0, NULL, 1, pmemory_barrier);
    }
}

void VkCommandBufferObj::FillBuffer(VkBuffer buffer, VkDeviceSize offset, VkDeviceSize fill_size, uint32_t data) {
    vkCmdFillBuffer(handle(), buffer, offset, fill_size, data);
}

void VkCommandBufferObj::UpdateBuffer(VkBuffer buffer, VkDeviceSize dstOffset, VkDeviceSize dataSize, const void *pData) {
    vkCmdUpdateBuffer(handle(), buffer, dstOffset, dataSize, pData);
}

void VkCommandBufferObj::CopyImage(VkImage srcImage, VkImageLayout srcImageLayout, VkImage dstImage, VkImageLayout dstImageLayout,
                                   uint32_t regionCount, const VkImageCopy *pRegions) {
    vkCmdCopyImage(handle(), srcImage, srcImageLayout, dstImage, dstImageLayout, regionCount, pRegions);
}

void VkCommandBufferObj::ResolveImage(VkImage srcImage, VkImageLayout srcImageLayout, VkImage dstImage,
                                      VkImageLayout dstImageLayout, uint32_t regionCount, const VkImageResolve *pRegions) {
    vkCmdResolveImage(handle(), srcImage, srcImageLayout, dstImage, dstImageLayout, regionCount, pRegions);
}

void VkCommandBufferObj::PrepareAttachments() {
    uint32_t i;
    const VkFlags output_mask = VK_ACCESS_HOST_WRITE_BIT | VK_ACCESS_SHADER_WRITE_BIT | VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT |
                                VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT | VK_ACCESS_TRANSFER_WRITE_BIT;
    const VkFlags input_mask = VK_ACCESS_HOST_READ_BIT | VK_ACCESS_INDIRECT_COMMAND_READ_BIT | VK_ACCESS_INDEX_READ_BIT |
                               VK_ACCESS_VERTEX_ATTRIBUTE_READ_BIT | VK_ACCESS_UNIFORM_READ_BIT | VK_ACCESS_SHADER_READ_BIT |
                               VK_ACCESS_COLOR_ATTACHMENT_READ_BIT | VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_READ_BIT |
                               VK_ACCESS_MEMORY_READ_BIT;

    VkImageSubresourceRange srRange = {};
    srRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
    srRange.baseMipLevel = 0;
    srRange.levelCount = VK_REMAINING_MIP_LEVELS;
    srRange.baseArrayLayer = 0;
    srRange.layerCount = VK_REMAINING_ARRAY_LAYERS;

    VkImageMemoryBarrier memory_barrier = {};
    memory_barrier.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER;
    memory_barrier.srcAccessMask = output_mask;
    memory_barrier.dstAccessMask = input_mask;
    memory_barrier.newLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
    memory_barrier.subresourceRange = srRange;
    VkImageMemoryBarrier *pmemory_barrier = &memory_barrier;

    VkPipelineStageFlags src_stages = VK_PIPELINE_STAGE_ALL_COMMANDS_BIT;
    VkPipelineStageFlags dest_stages = VK_PIPELINE_STAGE_ALL_COMMANDS_BIT;

    for (i = 0; i < m_renderTargets.size(); i++) {
        memory_barrier.image = m_renderTargets[i]->image();
        memory_barrier.oldLayout = m_renderTargets[i]->layout();
        vkCmdPipelineBarrier(handle(), src_stages, dest_stages, 0, 0, NULL, 0, NULL, 1, pmemory_barrier);
        m_renderTargets[i]->layout(memory_barrier.newLayout);
    }
}

void VkCommandBufferObj::BeginRenderPass(const VkRenderPassBeginInfo &info) {
    vkCmdBeginRenderPass(handle(), &info, VK_SUBPASS_CONTENTS_INLINE);
}

void VkCommandBufferObj::EndRenderPass() { vkCmdEndRenderPass(handle()); }

void VkCommandBufferObj::SetViewport(uint32_t firstViewport, uint32_t viewportCount, const VkViewport *pViewports) {
    vkCmdSetViewport(handle(), firstViewport, viewportCount, pViewports);
}

void VkCommandBufferObj::SetScissor(uint32_t firstScissor, uint32_t scissorCount, const VkRect2D *pScissors) {
    vkCmdSetScissor(handle(), firstScissor, scissorCount, pScissors);
}

void VkCommandBufferObj::SetLineWidth(float lineWidth) { vkCmdSetLineWidth(handle(), lineWidth); }

void VkCommandBufferObj::SetDepthBias(float depthBiasConstantFactor, float depthBiasClamp, float depthBiasSlopeFactor) {
    vkCmdSetDepthBias(handle(), depthBiasConstantFactor, depthBiasClamp, depthBiasSlopeFactor);
}

void VkCommandBufferObj::SetBlendConstants(const float blendConstants[4]) { vkCmdSetBlendConstants(handle(), blendConstants); }

void VkCommandBufferObj::SetDepthBounds(float minDepthBounds, float maxDepthBounds) {
    vkCmdSetDepthBounds(handle(), minDepthBounds, maxDepthBounds);
}

void VkCommandBufferObj::SetStencilReadMask(VkStencilFaceFlags faceMask, uint32_t compareMask) {
    vkCmdSetStencilCompareMask(handle(), faceMask, compareMask);
}

void VkCommandBufferObj::SetStencilWriteMask(VkStencilFaceFlags faceMask, uint32_t writeMask) {
    vkCmdSetStencilWriteMask(handle(), faceMask, writeMask);
}

void VkCommandBufferObj::SetStencilReference(VkStencilFaceFlags faceMask, uint32_t reference) {
    vkCmdSetStencilReference(handle(), faceMask, reference);
}

void VkCommandBufferObj::AddRenderTarget(VkImageObj *renderTarget) { m_renderTargets.push_back(renderTarget); }

void VkCommandBufferObj::DrawIndexed(uint32_t indexCount, uint32_t instanceCount, uint32_t firstIndex, int32_t vertexOffset,
                                     uint32_t firstInstance) {
    vkCmdDrawIndexed(handle(), indexCount, instanceCount, firstIndex, vertexOffset, firstInstance);
}

void VkCommandBufferObj::Draw(uint32_t vertexCount, uint32_t instanceCount, uint32_t firstVertex, uint32_t firstInstance) {
    vkCmdDraw(handle(), vertexCount, instanceCount, firstVertex, firstInstance);
}

void VkCommandBufferObj::QueueCommandBuffer(bool checkSuccess) {
    VkFence nullFence = {VK_NULL_HANDLE};
    QueueCommandBuffer(nullFence, checkSuccess);
}

void VkCommandBufferObj::QueueCommandBuffer(VkFence fence, bool checkSuccess) {
    VkResult err = VK_SUCCESS;

    // submit the command buffer to the universal queue
    VkSubmitInfo submit_info;
    submit_info.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO;
    submit_info.pNext = NULL;
    submit_info.waitSemaphoreCount = 0;
    submit_info.pWaitSemaphores = NULL;
    submit_info.pWaitDstStageMask = NULL;
    submit_info.commandBufferCount = 1;
    submit_info.pCommandBuffers = &handle();
    submit_info.signalSemaphoreCount = 0;
    submit_info.pSignalSemaphores = NULL;

    err = vkQueueSubmit(m_device->m_queue, 1, &submit_info, fence);
    if (checkSuccess) {
        ASSERT_VK_SUCCESS(err);
    }

    err = vkQueueWaitIdle(m_device->m_queue);
    if (checkSuccess) {
        ASSERT_VK_SUCCESS(err);
    }

    // Wait for work to finish before cleaning up.
    vkDeviceWaitIdle(m_device->device());
}

void VkCommandBufferObj::BindPipeline(VkPipelineObj &pipeline) {
    vkCmdBindPipeline(handle(), VK_PIPELINE_BIND_POINT_GRAPHICS, pipeline.handle());
}

void VkCommandBufferObj::BindDescriptorSet(VkDescriptorSetObj &descriptorSet) {
    VkDescriptorSet set_obj = descriptorSet.GetDescriptorSetHandle();

    // bind pipeline, vertex buffer (descriptor set) and WVP (dynamic buffer
    // view)
    vkCmdBindDescriptorSets(handle(), VK_PIPELINE_BIND_POINT_GRAPHICS, descriptorSet.GetPipelineLayout(), 0, 1, &set_obj, 0, NULL);
}

void VkCommandBufferObj::BindIndexBuffer(VkIndexBufferObj *indexBuffer, VkDeviceSize offset) {
    vkCmdBindIndexBuffer(handle(), indexBuffer->handle(), offset, indexBuffer->GetIndexType());
}

void VkCommandBufferObj::BindVertexBuffer(VkConstantBufferObj *vertexBuffer, VkDeviceSize offset, uint32_t binding) {
    vkCmdBindVertexBuffers(handle(), binding, 1, &vertexBuffer->handle(), &offset);
}

bool VkDepthStencilObj::Initialized() { return m_initialized; }
VkDepthStencilObj::VkDepthStencilObj(VkDeviceObj *device) : VkImageObj(device) { m_initialized = false; }

VkImageView *VkDepthStencilObj::BindInfo() { return &m_attachmentBindInfo; }

void VkDepthStencilObj::Init(VkDeviceObj *device, int32_t width, int32_t height, VkFormat format, VkImageUsageFlags usage) {

    VkImageViewCreateInfo view_info = {};

    m_device = device;
    m_initialized = true;
    m_depth_stencil_fmt = format;

    /* create image */
    init(width, height, m_depth_stencil_fmt, usage, VK_IMAGE_TILING_OPTIMAL);

    VkImageAspectFlags aspect = VK_IMAGE_ASPECT_DEPTH_BIT;
    if (vk_format_is_depth_and_stencil(format))
        aspect |= VK_IMAGE_ASPECT_STENCIL_BIT;

    SetLayout(aspect, VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL);

    view_info.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO;
    view_info.pNext = NULL;
    view_info.image = VK_NULL_HANDLE;
    view_info.subresourceRange.aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT;
    view_info.subresourceRange.baseMipLevel = 0;
    view_info.subresourceRange.levelCount = 1;
    view_info.subresourceRange.baseArrayLayer = 0;
    view_info.subresourceRange.layerCount = 1;
    view_info.flags = 0;
    view_info.format = m_depth_stencil_fmt;
    view_info.image = handle();
    view_info.viewType = VK_IMAGE_VIEW_TYPE_2D;
    m_imageView.init(*m_device, view_info);

    m_attachmentBindInfo = m_imageView.handle();
}