HELLO·Android
系统源代码
IT资讯
技术文章
我的收藏
注册
登录
-
我收藏的文章
创建代码块
我的代码块
我的账号
Oreo
|
8.0.0_r4
下载
查看原文件
收藏
根目录
frameworks
rs
driver
rsdRuntimeStubs.cpp
/* * Copyright (C) 2011-2012 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "rsContext.h" #include "rsElement.h" #include "rsScriptC.h" #include "rsMatrix4x4.h" #include "rsMatrix3x3.h" #include "rsMatrix2x2.h" #include "rsRuntime.h" #include "rsType.h" #include "rsdCore.h" #include "rsdBcc.h" #include "rsdAllocation.h" #include "rsdShaderCache.h" #include "rsdVertexArray.h" #include
#if !defined(RS_VENDOR_LIB) && !defined(RS_COMPATIBILITY_LIB) using android::renderscript::Font; #endif using android::renderscript::Allocation; using android::renderscript::Context; using android::renderscript::Element; using android::renderscript::RsdCpuReference; using android::renderscript::Mesh; using android::renderscript::ObjectBase; using android::renderscript::ObjectBaseRef; using android::renderscript::ProgramFragment; using android::renderscript::ProgramRaster; using android::renderscript::ProgramStore; using android::renderscript::ProgramVertex; using android::renderscript::Sampler; using android::renderscript::Script; using android::renderscript::Type; using android::renderscript::rs_object_base; typedef __fp16 half; typedef half half2 __attribute__((ext_vector_type(2))); typedef half half3 __attribute__((ext_vector_type(3))); typedef half half4 __attribute__((ext_vector_type(4))); typedef float float2 __attribute__((ext_vector_type(2))); typedef float float3 __attribute__((ext_vector_type(3))); typedef float float4 __attribute__((ext_vector_type(4))); typedef double double2 __attribute__((ext_vector_type(2))); typedef double double3 __attribute__((ext_vector_type(3))); typedef double double4 __attribute__((ext_vector_type(4))); typedef char char2 __attribute__((ext_vector_type(2))); typedef char char3 __attribute__((ext_vector_type(3))); typedef char char4 __attribute__((ext_vector_type(4))); typedef unsigned char uchar2 __attribute__((ext_vector_type(2))); typedef unsigned char uchar3 __attribute__((ext_vector_type(3))); typedef unsigned char uchar4 __attribute__((ext_vector_type(4))); typedef int16_t short2 __attribute__((ext_vector_type(2))); typedef int16_t short3 __attribute__((ext_vector_type(3))); typedef int16_t short4 __attribute__((ext_vector_type(4))); typedef uint16_t ushort2 __attribute__((ext_vector_type(2))); typedef uint16_t ushort3 __attribute__((ext_vector_type(3))); typedef uint16_t ushort4 __attribute__((ext_vector_type(4))); typedef int32_t int2 __attribute__((ext_vector_type(2))); typedef int32_t int3 __attribute__((ext_vector_type(3))); typedef int32_t int4 __attribute__((ext_vector_type(4))); typedef uint32_t uint2 __attribute__((ext_vector_type(2))); typedef uint32_t uint3 __attribute__((ext_vector_type(3))); typedef uint32_t uint4 __attribute__((ext_vector_type(4))); typedef int64_t long2 __attribute__((ext_vector_type(2))); typedef int64_t long3 __attribute__((ext_vector_type(3))); typedef int64_t long4 __attribute__((ext_vector_type(4))); typedef uint64_t ulong2 __attribute__((ext_vector_type(2))); typedef uint64_t ulong3 __attribute__((ext_vector_type(3))); typedef uint64_t ulong4 __attribute__((ext_vector_type(4))); typedef uint8_t uchar; typedef uint16_t ushort; typedef uint32_t uint; typedef uint64_t ulong; // Add NOLINT to suppress wrong warnings from clang-tidy. #ifndef __LP64__ #define OPAQUETYPE(t) \ typedef struct { const int* const p; } __attribute__((packed, aligned(4))) t; /*NOLINT*/ #else #define OPAQUETYPE(t) \ typedef struct { const void* p; const void* unused1; const void* unused2; const void* unused3; } t; /*NOLINT*/ #endif OPAQUETYPE(rs_element) OPAQUETYPE(rs_type) OPAQUETYPE(rs_allocation) OPAQUETYPE(rs_sampler) OPAQUETYPE(rs_script) OPAQUETYPE(rs_script_call) OPAQUETYPE(rs_program_fragment); OPAQUETYPE(rs_program_store); OPAQUETYPE(rs_program_vertex); OPAQUETYPE(rs_program_raster); OPAQUETYPE(rs_mesh); OPAQUETYPE(rs_font); #undef OPAQUETYPE typedef enum { // Empty to avoid conflicting definitions with RsAllocationCubemapFace } rs_allocation_cubemap_face; typedef enum { // Empty to avoid conflicting definitions with RsYuvFormat } rs_yuv_format; typedef enum { // Empty to avoid conflicting definitions with RsAllocationMipmapControl } rs_allocation_mipmap_control; typedef struct { unsigned int val; } rs_allocation_usage_type; typedef struct { int tm_sec; ///< seconds int tm_min; ///< minutes int tm_hour; ///< hours int tm_mday; ///< day of the month int tm_mon; ///< month int tm_year; ///< year int tm_wday; ///< day of the week int tm_yday; ///< day of the year int tm_isdst; ///< daylight savings time } rs_tm; // Some RS functions are not threadsafe but can be called from an invoke // function. Instead of summarily marking scripts that call these functions as // not-threadable we detect calls to them in the driver and sends a fatal error // message. static bool failIfInKernel(Context *rsc, const char *funcName) { RsdHal *dc = (RsdHal *)rsc->mHal.drv; RsdCpuReference *impl = (RsdCpuReference *) dc->mCpuRef; if (impl->getInKernel()) { char buf[256]; snprintf(buf, sizeof(buf), "Error: Call to unsupported function %s " "in kernel", funcName); rsc->setError(RS_ERROR_FATAL_DRIVER, buf); return true; } return false; } ////////////////////////////////////////////////////////////////////////////// // Allocation routines ////////////////////////////////////////////////////////////////////////////// #if defined(__i386__) || (defined(__mips__) && __mips==32) // i386 and MIPS32 have different struct return passing to ARM; emulate with a pointer const Allocation * rsGetAllocation(const void *ptr) { Context *rsc = RsdCpuReference::getTlsContext(); const Script *sc = RsdCpuReference::getTlsScript(); Allocation* alloc = rsdScriptGetAllocationForPointer(rsc, sc, ptr); android::renderscript::rs_allocation obj = {0}; alloc->callUpdateCacheObject(rsc, &obj); return (Allocation *)obj.p; } #else const android::renderscript::rs_allocation rsGetAllocation(const void *ptr) { Context *rsc = RsdCpuReference::getTlsContext(); const Script *sc = RsdCpuReference::getTlsScript(); Allocation* alloc = rsdScriptGetAllocationForPointer(rsc, sc, ptr); #ifndef __LP64__ // ARMv7 android::renderscript::rs_allocation obj = {0}; #else // AArch64/x86_64/MIPS64 android::renderscript::rs_allocation obj = {0, 0, 0, 0}; #endif alloc->callUpdateCacheObject(rsc, &obj); return obj; } #endif void __attribute__((overloadable)) rsAllocationIoSend(::rs_allocation a) { Context *rsc = RsdCpuReference::getTlsContext(); if (failIfInKernel(rsc, "rsAllocationIoSend")) return; rsrAllocationIoSend(rsc, (Allocation *)a.p); } void __attribute__((overloadable)) rsAllocationIoReceive(::rs_allocation a) { Context *rsc = RsdCpuReference::getTlsContext(); if (failIfInKernel(rsc, "rsAllocationIoReceive")) return; rsrAllocationIoReceive(rsc, (Allocation *)a.p); } void __attribute__((overloadable)) rsAllocationCopy1DRange( ::rs_allocation dstAlloc, uint32_t dstOff, uint32_t dstMip, uint32_t count, ::rs_allocation srcAlloc, uint32_t srcOff, uint32_t srcMip) { Context *rsc = RsdCpuReference::getTlsContext(); if (failIfInKernel(rsc, "rsAllocationCopy1DRange")) return; rsrAllocationCopy1DRange(rsc, (Allocation *)dstAlloc.p, dstOff, dstMip, count, (Allocation *)srcAlloc.p, srcOff, srcMip); } void __attribute__((overloadable)) rsAllocationCopy2DRange( ::rs_allocation dstAlloc, uint32_t dstXoff, uint32_t dstYoff, uint32_t dstMip, rs_allocation_cubemap_face dstFace, uint32_t width, uint32_t height, ::rs_allocation srcAlloc, uint32_t srcXoff, uint32_t srcYoff, uint32_t srcMip, rs_allocation_cubemap_face srcFace) { Context *rsc = RsdCpuReference::getTlsContext(); if (failIfInKernel(rsc, "rsAllocationCopy2DRange")) return; rsrAllocationCopy2DRange(rsc, (Allocation *)dstAlloc.p, dstXoff, dstYoff, dstMip, dstFace, width, height, (Allocation *)srcAlloc.p, srcXoff, srcYoff, srcMip, srcFace); } static android::renderscript::rs_element CreateElement(RsDataType dt, RsDataKind dk, bool isNormalized, uint32_t vecSize) { Context *rsc = RsdCpuReference::getTlsContext(); // No need for validation here. The rsCreateElement overload below is not // exposed to the Script. The Element-creation APIs call this function in a // consistent manner and rsComponent.cpp asserts on any inconsistency. Element *element = (Element *) rsrElementCreate(rsc, dt, dk, isNormalized, vecSize); android::renderscript::rs_element obj = {}; if (element == nullptr) return obj; element->callUpdateCacheObject(rsc, &obj); // Any new rsObject created from inside a script should have the usrRefCount // initialized to 0 and the sysRefCount initialized to 1. element->incSysRef(); element->decUserRef(); return obj; } static android::renderscript::rs_type CreateType(RsElement element, uint32_t dimX, uint32_t dimY, uint32_t dimZ, bool mipmaps, bool faces, uint32_t yuv_format) { Context *rsc = RsdCpuReference::getTlsContext(); android::renderscript::rs_type obj = {}; if (element == nullptr) { ALOGE("rs_type creation error: Invalid element"); return obj; } // validate yuv_format RsYuvFormat yuv = (RsYuvFormat) yuv_format; if (yuv != RS_YUV_NONE && yuv != RS_YUV_YV12 && yuv != RS_YUV_NV21 && yuv != RS_YUV_420_888) { ALOGE("rs_type creation error: Invalid yuv_format %d\n", yuv_format); return obj; } // validate consistency of shape parameters if (dimZ > 0) { if (dimX < 1 || dimY < 1) { ALOGE("rs_type creation error: Both X and Y dimension required " "when Z is present."); return obj; } if (mipmaps) { ALOGE("rs_type creation error: mipmap control requires 2D types"); return obj; } if (faces) { ALOGE("rs_type creation error: Cube maps require 2D types"); return obj; } } if (dimY > 0 && dimX < 1) { ALOGE("rs_type creation error: X dimension required when Y is " "present."); return obj; } if (mipmaps && dimY < 1) { ALOGE("rs_type creation error: mipmap control require 2D Types."); return obj; } if (faces && dimY < 1) { ALOGE("rs_type creation error: Cube maps require 2D Types."); return obj; } if (yuv_format != RS_YUV_NONE) { if (dimZ != 0 || dimY == 0 || faces || mipmaps) { ALOGE("rs_type creation error: YUV only supports basic 2D."); return obj; } } Type *type = (Type *) rsrTypeCreate(rsc, element, dimX, dimY, dimZ, mipmaps, faces, yuv_format); if (type == nullptr) return obj; type->callUpdateCacheObject(rsc, &obj); // Any new rsObject created from inside a script should have the usrRefCount // initialized to 0 and the sysRefCount initialized to 1. type->incSysRef(); type->decUserRef(); return obj; } static android::renderscript::rs_allocation CreateAllocation( RsType type, RsAllocationMipmapControl mipmaps, uint32_t usages, void *ptr) { Context *rsc = RsdCpuReference::getTlsContext(); android::renderscript::rs_allocation obj = {}; if (type == nullptr) { ALOGE("rs_allocation creation error: Invalid type"); return obj; } uint32_t validUsages = RS_ALLOCATION_USAGE_SCRIPT | \ RS_ALLOCATION_USAGE_GRAPHICS_TEXTURE; if (usages & ~validUsages) { ALOGE("rs_allocation creation error: Invalid usage flag"); return obj; } Allocation *alloc = (Allocation *) rsrAllocationCreateTyped(rsc, type, mipmaps, usages, (uintptr_t) ptr); if (alloc == nullptr) return obj; alloc->callUpdateCacheObject(rsc, &obj); // Any new rsObject created from inside a script should have the usrRefCount // initialized to 0 and the sysRefCount initialized to 1. alloc->incSysRef(); alloc->decUserRef(); return obj; } // Define rsCreateElement, rsCreateType and rsCreateAllocation entry points // differently for 32-bit x86 and Mips. The definitions for ARM32 and all // 64-bit architectures is further below. #if defined(__i386__) || (defined(__mips__) && __mips==32) // The calling convention for the driver on 32-bit x86 and Mips returns // rs_element etc. as a stack-return parameter. The Script uses ARM32 calling // conventions that return the structs in a register. To match this convention, // emulate the return value using a pointer. Element *rsCreateElement(int32_t dt, int32_t dk, bool isNormalized, uint32_t vecSize) { android::renderscript::rs_element obj = CreateElement((RsDataType) dt, (RsDataKind) dk, isNormalized, vecSize); return (Element *) obj.p; } Type *rsCreateType(::rs_element element, uint32_t dimX, uint32_t dimY, uint32_t dimZ, bool mipmaps, bool faces, rs_yuv_format yuv_format) { android::renderscript::rs_type obj = CreateType((RsElement) element.p, dimX, dimY, dimZ, mipmaps, faces, (RsYuvFormat) yuv_format); return (Type *) obj.p; } Allocation *rsCreateAllocation(::rs_type type, rs_allocation_mipmap_control mipmaps, uint32_t usages, void *ptr) { android::renderscript::rs_allocation obj; obj = CreateAllocation((RsType) type.p, (RsAllocationMipmapControl) mipmaps, usages, ptr); return (Allocation *) obj.p; } #else android::renderscript::rs_element rsCreateElement(int32_t dt, int32_t dk, bool isNormalized, uint32_t vecSize) { return CreateElement((RsDataType) dt, (RsDataKind) dk, isNormalized, vecSize); } android::renderscript::rs_type rsCreateType(::rs_element element, uint32_t dimX, uint32_t dimY, uint32_t dimZ, bool mipmaps, bool faces, rs_yuv_format yuv_format) { return CreateType((RsElement) element.p, dimX, dimY, dimZ, mipmaps, faces, yuv_format); } android::renderscript::rs_allocation rsCreateAllocation( ::rs_type type, rs_allocation_mipmap_control mipmaps, uint32_t usages, void *ptr) { return CreateAllocation((RsType) type.p, (RsAllocationMipmapControl) mipmaps, usages, ptr); } #endif ////////////////////////////////////////////////////////////////////////////// // Object routines ////////////////////////////////////////////////////////////////////////////// // Add NOLINT to suppress wrong warnings from clang-tidy. #define IS_CLEAR_SET_OBJ(t) \ bool rsIsObject(t src) { \ return src.p != nullptr; \ } \ void __attribute__((overloadable)) rsClearObject(t *dst) { /*NOLINT*/ \ rsrClearObject(reinterpret_cast
(dst)); \ } \ void __attribute__((overloadable)) rsSetObject(t *dst, t src) { /*NOLINT*/ \ Context *rsc = RsdCpuReference::getTlsContext(); \ rsrSetObject(rsc, reinterpret_cast
(dst), (ObjectBase*)src.p); \ } IS_CLEAR_SET_OBJ(::rs_element) IS_CLEAR_SET_OBJ(::rs_type) IS_CLEAR_SET_OBJ(::rs_allocation) IS_CLEAR_SET_OBJ(::rs_sampler) IS_CLEAR_SET_OBJ(::rs_script) IS_CLEAR_SET_OBJ(::rs_mesh) IS_CLEAR_SET_OBJ(::rs_program_fragment) IS_CLEAR_SET_OBJ(::rs_program_vertex) IS_CLEAR_SET_OBJ(::rs_program_raster) IS_CLEAR_SET_OBJ(::rs_program_store) IS_CLEAR_SET_OBJ(::rs_font) #undef IS_CLEAR_SET_OBJ ////////////////////////////////////////////////////////////////////////////// // Element routines ////////////////////////////////////////////////////////////////////////////// static void * ElementAt(Allocation *a, RsDataType dt, uint32_t vecSize, uint32_t x, uint32_t y, uint32_t z) { Context *rsc = RsdCpuReference::getTlsContext(); const Type *t = a->getType(); const Element *e = t->getElement(); char buf[256]; if (x && (x >= t->getLODDimX(0))) { snprintf(buf, sizeof(buf), "Out range ElementAt X %i of %i", x, t->getLODDimX(0)); rsc->setError(RS_ERROR_FATAL_DEBUG, buf); return nullptr; } if (y && (y >= t->getLODDimY(0))) { snprintf(buf, sizeof(buf), "Out range ElementAt Y %i of %i", y, t->getLODDimY(0)); rsc->setError(RS_ERROR_FATAL_DEBUG, buf); return nullptr; } if (z && (z >= t->getLODDimZ(0))) { snprintf(buf, sizeof(buf), "Out range ElementAt Z %i of %i", z, t->getLODDimZ(0)); rsc->setError(RS_ERROR_FATAL_DEBUG, buf); return nullptr; } if (vecSize > 0) { if (vecSize != e->getVectorSize()) { snprintf(buf, sizeof(buf), "Vector size mismatch for ElementAt %i of %i", vecSize, e->getVectorSize()); rsc->setError(RS_ERROR_FATAL_DEBUG, buf); return nullptr; } if (dt != e->getType()) { snprintf(buf, sizeof(buf), "Data type mismatch for ElementAt %i of %i", dt, e->getType()); rsc->setError(RS_ERROR_FATAL_DEBUG, buf); return nullptr; } } uint8_t *p = (uint8_t *)a->mHal.drvState.lod[0].mallocPtr; const uint32_t eSize = e->getSizeBytes(); const uint32_t stride = a->mHal.drvState.lod[0].stride; const uint32_t dimY = a->mHal.drvState.lod[0].dimY; return &p[(x * eSize) + (y * stride) + (z * stride * dimY)]; } void rsSetElementAt(::rs_allocation a, const void *ptr, uint32_t x, uint32_t y, uint32_t z) { const Type *t = const_cast
((Allocation*)a.p)->getType(); const Element *e = t->getElement(); void *tmp = ElementAt((Allocation *)a.p, RS_TYPE_UNSIGNED_8, 0, x, y, z); if (tmp != nullptr) memcpy(tmp, ptr, e->getSizeBytes()); } void rsSetElementAt(::rs_allocation a, const void *ptr, uint32_t x, uint32_t y) { rsSetElementAt(a, ptr, x, y, 0); } void rsSetElementAt(::rs_allocation a, const void *ptr, uint32_t x) { rsSetElementAt(a, ptr, x, 0, 0); } const void *rsGetElementAt(::rs_allocation a, uint32_t x, uint32_t y, uint32_t z) { return ElementAt((Allocation *)a.p, RS_TYPE_UNSIGNED_8, 0, x, y, z); } const void *rsGetElementAt(::rs_allocation a, uint32_t x, uint32_t y) { return rsGetElementAt(a, x, y ,0); } const void *rsGetElementAt(::rs_allocation a, uint32_t x) { return rsGetElementAt(a, x, 0, 0); } // Add NOLINT to suppress wrong warnings from clang-tidy. #define ELEMENT_AT(T, DT, VS) \ void rsSetElementAt_##T(::rs_allocation a, const T *val, uint32_t x, uint32_t y, uint32_t z) { \ void *r = ElementAt((Allocation *)a.p, DT, VS, x, y, z); \ if (r != nullptr) ((T *)r)[0] = *val; \ else ALOGE("Error from %s", __PRETTY_FUNCTION__); \ } \ void rsSetElementAt_##T(::rs_allocation a, const T *val, uint32_t x, uint32_t y) { \ rsSetElementAt_##T(a, val, x, y, 0); \ } \ void rsSetElementAt_##T(::rs_allocation a, const T *val, uint32_t x) { \ rsSetElementAt_##T(a, val, x, 0, 0); \ } \ void rsGetElementAt_##T(::rs_allocation a, T *val, uint32_t x, uint32_t y, uint32_t z) { /*NOLINT*/ \ void *r = ElementAt((Allocation *)a.p, DT, VS, x, y, z); \ if (r != nullptr) *val = ((T *)r)[0]; \ else ALOGE("Error from %s", __PRETTY_FUNCTION__); \ } \ void rsGetElementAt_##T(::rs_allocation a, T *val, uint32_t x, uint32_t y) { /*NOLINT*/ \ rsGetElementAt_##T(a, val, x, y, 0); \ } \ void rsGetElementAt_##T(::rs_allocation a, T *val, uint32_t x) { /*NOLINT*/ \ rsGetElementAt_##T(a, val, x, 0, 0); \ } ELEMENT_AT(char, RS_TYPE_SIGNED_8, 1) ELEMENT_AT(char2, RS_TYPE_SIGNED_8, 2) ELEMENT_AT(char3, RS_TYPE_SIGNED_8, 3) ELEMENT_AT(char4, RS_TYPE_SIGNED_8, 4) ELEMENT_AT(uchar, RS_TYPE_UNSIGNED_8, 1) ELEMENT_AT(uchar2, RS_TYPE_UNSIGNED_8, 2) ELEMENT_AT(uchar3, RS_TYPE_UNSIGNED_8, 3) ELEMENT_AT(uchar4, RS_TYPE_UNSIGNED_8, 4) ELEMENT_AT(short, RS_TYPE_SIGNED_16, 1) ELEMENT_AT(short2, RS_TYPE_SIGNED_16, 2) ELEMENT_AT(short3, RS_TYPE_SIGNED_16, 3) ELEMENT_AT(short4, RS_TYPE_SIGNED_16, 4) ELEMENT_AT(ushort, RS_TYPE_UNSIGNED_16, 1) ELEMENT_AT(ushort2, RS_TYPE_UNSIGNED_16, 2) ELEMENT_AT(ushort3, RS_TYPE_UNSIGNED_16, 3) ELEMENT_AT(ushort4, RS_TYPE_UNSIGNED_16, 4) ELEMENT_AT(int, RS_TYPE_SIGNED_32, 1) ELEMENT_AT(int2, RS_TYPE_SIGNED_32, 2) ELEMENT_AT(int3, RS_TYPE_SIGNED_32, 3) ELEMENT_AT(int4, RS_TYPE_SIGNED_32, 4) ELEMENT_AT(uint, RS_TYPE_UNSIGNED_32, 1) ELEMENT_AT(uint2, RS_TYPE_UNSIGNED_32, 2) ELEMENT_AT(uint3, RS_TYPE_UNSIGNED_32, 3) ELEMENT_AT(uint4, RS_TYPE_UNSIGNED_32, 4) #ifdef __LP64__ ELEMENT_AT(long, RS_TYPE_SIGNED_64, 1) #else /* the long versions need special treatment; the long * argument has to be * kept so the signatures match, but the actual accesses have to be done in * int64_t * to be consistent with the script ABI. */ void rsSetElementAt_long(::rs_allocation a, const long *val, uint32_t x, uint32_t y, uint32_t z) { void *r = ElementAt((Allocation *)a.p, RS_TYPE_SIGNED_64, 1, x, y, z); if (r != nullptr) ((int64_t *)r)[0] = *((int64_t *)val); else ALOGE("Error from %s", __PRETTY_FUNCTION__); } void rsSetElementAt_long(::rs_allocation a, const long *val, uint32_t x, uint32_t y) { rsSetElementAt_long(a, val, x, y, 0); } void rsSetElementAt_long(::rs_allocation a, const long *val, uint32_t x) { rsSetElementAt_long(a, val, x, 0, 0); } void rsGetElementAt_long(::rs_allocation a, long *val, uint32_t x, uint32_t y, uint32_t z) { /*NOLINT*/ void *r = ElementAt((Allocation *)a.p, RS_TYPE_SIGNED_64, 1, x, y, z); if (r != nullptr) *((int64_t*)val) = ((int64_t *)r)[0]; else ALOGE("Error from %s", __PRETTY_FUNCTION__); } void rsGetElementAt_long(::rs_allocation a, long *val, uint32_t x, uint32_t y) { /*NOLINT*/ rsGetElementAt_long(a, val, x, y, 0); } void rsGetElementAt_long(::rs_allocation a, long *val, uint32_t x) { /*NOLINT*/ rsGetElementAt_long(a, val, x, 0, 0); } #endif ELEMENT_AT(long2, RS_TYPE_SIGNED_64, 2) ELEMENT_AT(long3, RS_TYPE_SIGNED_64, 3) ELEMENT_AT(long4, RS_TYPE_SIGNED_64, 4) ELEMENT_AT(ulong, RS_TYPE_UNSIGNED_64, 1) ELEMENT_AT(ulong2, RS_TYPE_UNSIGNED_64, 2) ELEMENT_AT(ulong3, RS_TYPE_UNSIGNED_64, 3) ELEMENT_AT(ulong4, RS_TYPE_UNSIGNED_64, 4) ELEMENT_AT(half, RS_TYPE_FLOAT_16, 1) ELEMENT_AT(half2, RS_TYPE_FLOAT_16, 2) ELEMENT_AT(half3, RS_TYPE_FLOAT_16, 3) ELEMENT_AT(half4, RS_TYPE_FLOAT_16, 4) ELEMENT_AT(float, RS_TYPE_FLOAT_32, 1) ELEMENT_AT(float2, RS_TYPE_FLOAT_32, 2) ELEMENT_AT(float3, RS_TYPE_FLOAT_32, 3) ELEMENT_AT(float4, RS_TYPE_FLOAT_32, 4) ELEMENT_AT(double, RS_TYPE_FLOAT_64, 1) ELEMENT_AT(double2, RS_TYPE_FLOAT_64, 2) ELEMENT_AT(double3, RS_TYPE_FLOAT_64, 3) ELEMENT_AT(double4, RS_TYPE_FLOAT_64, 4) #undef ELEMENT_AT #ifndef __LP64__ /* * We miss some symbols for rs{Get,Set}Element_long,ulong variants because 64 * bit integer values are 'long' in RS-land but might be 'long long' in the * driver. Define native_long* and native_ulong* types to be vectors of * 'long' as seen by the driver and define overloaded versions of * rsSetElementAt_* and rsGetElementAt_*. This should get us the correct * mangled names in the driver. */ typedef long native_long2 __attribute__((ext_vector_type(2))); typedef long native_long3 __attribute__((ext_vector_type(3))); typedef long native_long4 __attribute__((ext_vector_type(4))); typedef unsigned long native_ulong2 __attribute__((ext_vector_type(2))); typedef unsigned long native_ulong3 __attribute__((ext_vector_type(3))); typedef unsigned long native_ulong4 __attribute__((ext_vector_type(4))); // Add NOLINT to suppress wrong warnings from clang-tidy. #define ELEMENT_AT_OVERLOADS(T, U) \ void rsSetElementAt_##T(::rs_allocation a, const U *val, uint32_t x, uint32_t y, uint32_t z) { \ rsSetElementAt_##T(a, (T *) val, x, y, z); \ } \ void rsSetElementAt_##T(::rs_allocation a, const U *val, uint32_t x, uint32_t y) { \ rsSetElementAt_##T(a, (T *) val, x, y, 0); \ } \ void rsSetElementAt_##T(::rs_allocation a, const U *val, uint32_t x) { \ rsSetElementAt_##T(a, (T *) val, x, 0, 0); \ } \ void rsGetElementAt_##T(::rs_allocation a, U *val, uint32_t x, uint32_t y, uint32_t z) { /*NOLINT*/ \ rsGetElementAt_##T(a, (T *) val, x, y, z); \ } \ void rsGetElementAt_##T(::rs_allocation a, U *val, uint32_t x, uint32_t y) { /*NOLINT*/ \ rsGetElementAt_##T(a, (T *) val, x, y, 0); \ } \ void rsGetElementAt_##T(::rs_allocation a, U *val, uint32_t x) { /*NOLINT*/ \ rsGetElementAt_##T(a, (T *) val, x, 0, 0); \ } \ ELEMENT_AT_OVERLOADS(long2, native_long2) ELEMENT_AT_OVERLOADS(long3, native_long3) ELEMENT_AT_OVERLOADS(long4, native_long4) ELEMENT_AT_OVERLOADS(ulong, unsigned long) ELEMENT_AT_OVERLOADS(ulong2, native_ulong2) ELEMENT_AT_OVERLOADS(ulong3, native_ulong3) ELEMENT_AT_OVERLOADS(ulong4, native_ulong4) // We also need variants of rs{Get,Set}ElementAt_long that take 'long long *' as // we might have this overloaded variant in old APKs. ELEMENT_AT_OVERLOADS(long, long long) #undef ELEMENT_AT_OVERLOADS #endif ////////////////////////////////////////////////////////////////////////////// // ForEach routines ////////////////////////////////////////////////////////////////////////////// void rsForEachInternal(int slot, rs_script_call *options, int hasOutput, int numInputs, ::rs_allocation* allocs) { Context *rsc = RsdCpuReference::getTlsContext(); Script *s = const_cast
登录后可以享受更多权益
您还没有登录,登录后您可以:
收藏Android系统代码
收藏喜欢的文章
多个平台共享账号
去登录
首次使用?从这里
注册