/*
* Copyright (C) 2016 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "rsovScript.h"
#include "bcinfo/MetadataExtractor.h"
#include "rsContext.h"
#include "rsDefines.h"
#include "rsType.h"
#include "rsUtils.h"
#include "rsovAllocation.h"
#include "rsovContext.h"
#include "rsovCore.h"
#include "spirit/instructions.h"
#include "spirit/module.h"
#include <fstream>
#include <functional>
namespace android {
namespace renderscript {
namespace rsov {
namespace {
// Layout of this struct has to be the same as the struct in generated SPIR-V
// TODO: generate this file from some spec that is shared with the compiler
struct rsovTypeInfo {
uint32_t element_size; // TODO: not implemented
uint32_t x_size;
uint32_t y_size;
uint32_t z_size;
};
const char *COMPILER_EXE_PATH = "/system/bin/bcc_rsov";
std::vector<const char *> setCompilerArgs(const char *bcFileName,
const char *cacheDir) {
rsAssert(bcFileName && cacheDir);
std::vector<const char *> args;
args.push_back(COMPILER_EXE_PATH);
args.push_back(bcFileName);
args.push_back(nullptr);
return args;
}
void writeBytes(const char *filename, const char *bytes, size_t size) {
std::ofstream ofs(filename, std::ios::binary);
ofs.write(bytes, size);
ofs.close();
}
std::vector<uint32_t> readWords(const char *filename) {
std::ifstream ifs(filename, std::ios::binary);
ifs.seekg(0, ifs.end);
int length = ifs.tellg();
ifs.seekg(0, ifs.beg);
rsAssert(((length & 3) == 0) && "File size expected to be multiples of 4");
std::vector<uint32_t> spvWords(length / sizeof(uint32_t));
ifs.read((char *)(spvWords.data()), length);
ifs.close();
return spvWords;
}
std::vector<uint32_t> compileBitcode(const char *resName, const char *cacheDir,
const char *bitcode, size_t bitcodeSize) {
rsAssert(bitcode && bitcodeSize);
// TODO: Cache the generated code
std::string bcFileName(cacheDir);
bcFileName.append("/");
bcFileName.append(resName);
bcFileName.append(".bc");
writeBytes(bcFileName.c_str(), bitcode, bitcodeSize);
auto args = setCompilerArgs(bcFileName.c_str(), cacheDir);
if (!rsuExecuteCommand(COMPILER_EXE_PATH, args.size() - 1, args.data())) {
ALOGE("compiler command line failed");
return std::vector<uint32_t>();
}
ALOGV("compiler command line succeeded");
std::string spvFileName(cacheDir);
spvFileName.append("/");
spvFileName.append(resName);
spvFileName.append(".spv");
return readWords(spvFileName.c_str());
}
} // anonymous namespace
bool RSoVScript::isScriptCpuBacked(const Script *s) {
return s->mHal.info.mVersionMinor == CPU_SCRIPT_MAGIC_NUMBER;
}
void RSoVScript::initScriptOnCpu(Script *s, RsdCpuReference::CpuScript *cs) {
s->mHal.drv = cs;
s->mHal.info.mVersionMajor = 0; // Unused. Don't care.
s->mHal.info.mVersionMinor = CPU_SCRIPT_MAGIC_NUMBER;
}
void RSoVScript::initScriptOnRSoV(Script *s, RSoVScript *rsovScript) {
s->mHal.drv = rsovScript;
s->mHal.info.mVersionMajor = 0; // Unused. Don't care.
s->mHal.info.mVersionMinor = 0;
}
RSoVScript::RSoVScript(RSoVContext *context, std::vector<uint32_t> &&spvWords,
bcinfo::MetadataExtractor *ME,
std::map<std::string, int> *GA2ID)
: mRSoV(context),
mDevice(context->getDevice()),
mSPIRVWords(std::move(spvWords)),
mME(ME),
mGlobalAllocationMetadata(nullptr),
mGAMapping(GA2ID) {}
RSoVScript::~RSoVScript() {
delete mCpuScript;
delete mME;
}
void RSoVScript::populateScript(Script *) {
// TODO: implement this
}
void RSoVScript::invokeFunction(uint32_t slot, const void *params,
size_t paramLength) {
getCpuScript()->invokeFunction(slot, params, paramLength);
}
int RSoVScript::invokeRoot() { return getCpuScript()->invokeRoot(); }
void RSoVScript::invokeForEach(uint32_t slot, const Allocation **ains,
uint32_t inLen, Allocation *aout,
const void *usr, uint32_t usrLen,
const RsScriptCall *sc) {
// TODO: Handle kernel without input Allocation
rsAssert(ains);
std::vector<RSoVAllocation *> inputAllocations(inLen);
for (uint32_t i = 0; i < inLen; ++i) {
inputAllocations[i] = static_cast<RSoVAllocation *>(ains[i]->mHal.drv);
}
RSoVAllocation *outputAllocation =
static_cast<RSoVAllocation *>(aout->mHal.drv);
runForEach(slot, inLen, inputAllocations, outputAllocation);
}
void RSoVScript::invokeReduce(uint32_t slot, const Allocation **ains,
uint32_t inLen, Allocation *aout,
const RsScriptCall *sc) {
getCpuScript()->invokeReduce(slot, ains, inLen, aout, sc);
}
void RSoVScript::invokeInit() {
// TODO: implement this
}
void RSoVScript::invokeFreeChildren() {
// TODO: implement this
}
void RSoVScript::setGlobalVar(uint32_t slot, const void *data,
size_t dataLength) {
// TODO: implement this
ALOGV("%s missing.", __FUNCTION__);
}
void RSoVScript::getGlobalVar(uint32_t slot, void *data, size_t dataLength) {
// TODO: implement this
ALOGV("%s missing.", __FUNCTION__);
}
void RSoVScript::setGlobalVarWithElemDims(uint32_t slot, const void *data,
size_t dataLength, const Element *e,
const uint32_t *dims,
size_t dimLength) {
// TODO: implement this
}
void RSoVScript::setGlobalBind(uint32_t slot, Allocation *data) {
ALOGV("%s succeeded.", __FUNCTION__);
// TODO: implement this
}
void RSoVScript::setGlobalObj(uint32_t slot, ObjectBase *obj) {
mCpuScript->setGlobalObj(slot, obj);
ALOGV("%s succeeded.", __FUNCTION__);
}
Allocation *RSoVScript::getAllocationForPointer(const void *ptr) const {
// TODO: implement this
return nullptr;
}
int RSoVScript::getGlobalEntries() const {
// TODO: implement this
return 0;
}
const char *RSoVScript::getGlobalName(int i) const {
// TODO: implement this
return nullptr;
}
const void *RSoVScript::getGlobalAddress(int i) const {
// TODO: implement this
return nullptr;
}
size_t RSoVScript::getGlobalSize(int i) const {
// TODO: implement this
return 0;
}
uint32_t RSoVScript::getGlobalProperties(int i) const {
// TODO: implement this
return 0;
}
void RSoVScript::InitDescriptorAndPipelineLayouts(uint32_t inLen) {
// TODO: global variables
// TODO: kernels with zero output allocations
std::vector<VkDescriptorSetLayoutBinding> layout_bindings{
{
// for the global allocation metadata
.binding = 0,
.descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_BUFFER,
.descriptorCount = 1,
.stageFlags = VK_SHADER_STAGE_COMPUTE_BIT,
.pImmutableSamplers = nullptr,
},
{
// for the output allocation
.binding = 1,
.descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_BUFFER,
.descriptorCount = 1,
.stageFlags = VK_SHADER_STAGE_COMPUTE_BIT,
.pImmutableSamplers = nullptr,
},
};
// initialize descriptors for input allocations
for (uint32_t i = 0; i < inLen; ++i) {
layout_bindings.push_back({
.binding = i + 2, // input allocations start from bining #2
.descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_BUFFER,
.descriptorCount = 1,
.stageFlags = VK_SHADER_STAGE_COMPUTE_BIT,
.pImmutableSamplers = nullptr,
});
}
VkDescriptorSetLayoutCreateInfo descriptor_layout = {
.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO,
.pNext = nullptr,
.flags = 0,
.bindingCount = inLen + 2,
.pBindings = layout_bindings.data(),
};
VkResult res;
mDescLayout.resize(NUM_DESCRIPTOR_SETS);
res = vkCreateDescriptorSetLayout(mDevice, &descriptor_layout, NULL,
mDescLayout.data());
if (res != VK_SUCCESS) {
__android_log_print(ANDROID_LOG_ERROR, "ComputeTest",
"vkCreateDescriptorSetLayout() returns %d", res);
}
rsAssert(res == VK_SUCCESS);
/* Now use the descriptor layout to create a pipeline layout */
VkPipelineLayoutCreateInfo pPipelineLayoutCreateInfo = {
.sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO,
.pNext = nullptr,
.pushConstantRangeCount = 0,
.pPushConstantRanges = nullptr,
.setLayoutCount = NUM_DESCRIPTOR_SETS,
.pSetLayouts = mDescLayout.data(),
};
res = vkCreatePipelineLayout(mDevice, &pPipelineLayoutCreateInfo, NULL,
&mPipelineLayout);
rsAssert(res == VK_SUCCESS);
ALOGV("%s succeeded.", __FUNCTION__);
}
void RSoVScript::InitShader(uint32_t slot) {
VkResult res;
mShaderStage.sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO;
mShaderStage.pNext = nullptr;
mShaderStage.pSpecializationInfo = nullptr;
mShaderStage.flags = 0;
mShaderStage.stage = VK_SHADER_STAGE_COMPUTE_BIT;
const char **RSKernelNames = mME->getExportForEachNameList();
size_t RSKernelNum = mME->getExportForEachSignatureCount();
rsAssert(slot < RSKernelNum);
rsAssert(RSKernelNames);
rsAssert(RSKernelNames[slot]);
ALOGV("slot = %d kernel name = %s", slot, RSKernelNames[slot]);
std::string entryName("entry_");
entryName.append(RSKernelNames[slot]);
mShaderStage.pName = strndup(entryName.c_str(), entryName.size());
VkShaderModuleCreateInfo moduleCreateInfo = {
.sType = VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO,
.pNext = nullptr,
.flags = 0,
.codeSize = mSPIRVWords.size() * sizeof(unsigned int),
.pCode = mSPIRVWords.data(),
};
res = vkCreateShaderModule(mDevice, &moduleCreateInfo, NULL,
&mShaderStage.module);
rsAssert(res == VK_SUCCESS);
ALOGV("%s succeeded.", __FUNCTION__);
}
void RSoVScript::InitDescriptorPool(uint32_t inLen) {
/* DEPENDS on InitDescriptorAndPipelineLayouts() */
VkResult res;
VkDescriptorPoolSize type_count[] = {
{
.type = VK_DESCRIPTOR_TYPE_STORAGE_BUFFER,
.descriptorCount = 2 + inLen,
},
};
VkDescriptorPoolCreateInfo descriptor_pool = {
.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_POOL_CREATE_INFO,
.pNext = nullptr,
.maxSets = 1,
.poolSizeCount = NELEM(type_count),
.pPoolSizes = type_count,
};
res = vkCreateDescriptorPool(mDevice, &descriptor_pool, NULL, &mDescPool);
rsAssert(res == VK_SUCCESS);
ALOGV("%s succeeded.", __FUNCTION__);
}
// Iterate through a list of global allocations that are used inside the module
// and marshal their type information to a dedicated Vulkan Buffer
void RSoVScript::MarshalTypeInfo(void) {
// Marshal global allocation metadata to the device
auto *cs = getCpuScript();
int nr_globals = mGAMapping->size();
if (mGlobalAllocationMetadata == nullptr) {
mGlobalAllocationMetadata.reset(
new RSoVBuffer(mRSoV, sizeof(struct rsovTypeInfo) * nr_globals));
}
struct rsovTypeInfo *mappedMetadata =
(struct rsovTypeInfo *)mGlobalAllocationMetadata->getHostPtr();
for (int i = 0; i < nr_globals; ++i) {
if (getGlobalRsType(cs->getGlobalProperties(i)) ==
RsDataType::RS_TYPE_ALLOCATION) {
ALOGV("global variable %d is an allocation!", i);
const void *host_buf;
cs->getGlobalVar(i, (void *)&host_buf, sizeof(host_buf));
if (!host_buf) continue;
const android::renderscript::Allocation *GA =
static_cast<const android::renderscript::Allocation *>(host_buf);
const android::renderscript::Type *T = GA->getType();
rsAssert(T);
auto global_it = mGAMapping->find(cs->getGlobalName(i));
rsAssert(global_it != (*mGAMapping).end());
int id = global_it->second;
ALOGV("global allocation %s is mapped to ID %d", cs->getGlobalName(i),
id);
// TODO: marshal other properties
mappedMetadata[id].x_size = T->getDimX();
mappedMetadata[id].y_size = T->getDimY();
mappedMetadata[id].z_size = T->getDimZ();
}
}
}
void RSoVScript::InitDescriptorSet(
const std::vector<RSoVAllocation *> &inputAllocations,
RSoVAllocation *outputAllocation) {
VkResult res;
VkDescriptorSetAllocateInfo alloc_info = {
.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_ALLOCATE_INFO,
.pNext = NULL,
.descriptorPool = mDescPool,
.descriptorSetCount = NUM_DESCRIPTOR_SETS,
.pSetLayouts = mDescLayout.data(),
};
mDescSet.resize(NUM_DESCRIPTOR_SETS);
res = vkAllocateDescriptorSets(mDevice, &alloc_info, mDescSet.data());
ALOGD("vkAllocateDescriptorSets() result = %d", res);
rsAssert(res == VK_SUCCESS);
// TODO: support for set up the binding(s) of global variables
uint32_t nBindings = inputAllocations.size() + 1; // input + output.
std::vector<VkWriteDescriptorSet> writes{
// Metadata for global allocations
{
.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET,
.dstSet = mDescSet[0],
.dstBinding = 0,
.dstArrayElement = 0,
.descriptorCount = 1,
.descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_BUFFER,
.pBufferInfo = mGlobalAllocationMetadata->getBufferInfo(),
},
{
.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET,
.dstSet = mDescSet[0],
.dstBinding = 1,
.dstArrayElement = 0,
.descriptorCount = 1,
.descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_BUFFER,
.pBufferInfo = outputAllocation->getBuffer()->getBufferInfo(),
},
};
for (uint32_t i = 0; i < inputAllocations.size(); ++i) {
writes.push_back({
.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET,
.dstSet = mDescSet[0],
.dstBinding = 2 + i, // input allocations start from binding #2
.dstArrayElement = 0,
.descriptorCount = 1,
.descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_BUFFER,
.pBufferInfo = inputAllocations[i]->getBuffer()->getBufferInfo(),
});
}
vkUpdateDescriptorSets(mDevice, writes.size(), writes.data(), 0, NULL);
ALOGV("%s succeeded.", __FUNCTION__);
}
void RSoVScript::InitPipeline() {
// DEPENDS on mShaderStage, i.e., InitShader()
VkResult res;
VkComputePipelineCreateInfo pipeline_info = {
.sType = VK_STRUCTURE_TYPE_COMPUTE_PIPELINE_CREATE_INFO,
.pNext = nullptr,
.layout = mPipelineLayout,
.basePipelineHandle = VK_NULL_HANDLE,
.basePipelineIndex = 0,
.flags = 0,
.stage = mShaderStage,
};
res = vkCreateComputePipelines(mDevice, VK_NULL_HANDLE, 1, &pipeline_info,
NULL, &mComputePipeline);
rsAssert(res == VK_SUCCESS);
ALOGV("%s succeeded.", __FUNCTION__);
}
void RSoVScript::runForEach(
uint32_t slot, uint32_t inLen,
const std::vector<RSoVAllocation *> &inputAllocations,
RSoVAllocation *outputAllocation) {
VkResult res;
InitDescriptorAndPipelineLayouts(inLen);
InitShader(slot);
InitDescriptorPool(inLen);
MarshalTypeInfo();
InitDescriptorSet(inputAllocations, outputAllocation);
// InitPipelineCache();
InitPipeline();
VkCommandBuffer cmd;
VkCommandBufferAllocateInfo cmd_info = {
.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO,
.pNext = nullptr,
.commandPool = mRSoV->getCmdPool(),
.level = VK_COMMAND_BUFFER_LEVEL_PRIMARY,
.commandBufferCount = 1,
};
res = vkAllocateCommandBuffers(mDevice, &cmd_info, &cmd);
rsAssert(res == VK_SUCCESS);
VkCommandBufferBeginInfo cmd_buf_info = {
.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO,
.pNext = nullptr,
.flags = 0,
.pInheritanceInfo = nullptr,
};
res = vkBeginCommandBuffer(cmd, &cmd_buf_info);
rsAssert(res == VK_SUCCESS);
vkCmdBindPipeline(cmd, VK_PIPELINE_BIND_POINT_COMPUTE, mComputePipeline);
vkCmdBindDescriptorSets(cmd, VK_PIPELINE_BIND_POINT_COMPUTE, mPipelineLayout,
0, mDescSet.size(), mDescSet.data(), 0, nullptr);
// Assuming all input allocations are of the same dimensionality
const uint32_t width = inputAllocations[0]->getWidth();
const uint32_t height = rsMax(inputAllocations[0]->getHeight(), 1U);
const uint32_t depth = rsMax(inputAllocations[0]->getDepth(), 1U);
vkCmdDispatch(cmd, width, height, depth);
res = vkEndCommandBuffer(cmd);
assert(res == VK_SUCCESS);
VkSubmitInfo submit_info = {
.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO,
.commandBufferCount = 1,
.pCommandBuffers = &cmd,
};
VkFence fence;
VkFenceCreateInfo fenceInfo = {
.sType = VK_STRUCTURE_TYPE_FENCE_CREATE_INFO,
.pNext = nullptr,
.flags = 0,
};
vkCreateFence(mDevice, &fenceInfo, NULL, &fence);
vkQueueSubmit(mRSoV->getQueue(), 1, &submit_info, fence);
// Make sure command buffer is finished
do {
res = vkWaitForFences(mDevice, 1, &fence, VK_TRUE, 100000);
} while (res == VK_TIMEOUT);
rsAssert(res == VK_SUCCESS);
vkDestroyFence(mDevice, fence, NULL);
// TODO: shall we reuse command buffers?
VkCommandBuffer cmd_bufs[] = {cmd};
vkFreeCommandBuffers(mDevice, mRSoV->getCmdPool(), 1, cmd_bufs);
vkDestroyPipeline(mDevice, mComputePipeline, nullptr);
for (int i = 0; i < NUM_DESCRIPTOR_SETS; i++)
vkDestroyDescriptorSetLayout(mDevice, mDescLayout[i], nullptr);
vkDestroyPipelineLayout(mDevice, mPipelineLayout, nullptr);
vkFreeDescriptorSets(mDevice, mDescPool, NUM_DESCRIPTOR_SETS,
mDescSet.data());
vkDestroyDescriptorPool(mDevice, mDescPool, nullptr);
free((void *)mShaderStage.pName);
vkDestroyShaderModule(mDevice, mShaderStage.module, nullptr);
ALOGV("%s succeeded.", __FUNCTION__);
}
} // namespace rsov
} // namespace renderscript
} // namespace android
using android::renderscript::Allocation;
using android::renderscript::Context;
using android::renderscript::Element;
using android::renderscript::ObjectBase;
using android::renderscript::RsdCpuReference;
using android::renderscript::Script;
using android::renderscript::ScriptC;
using android::renderscript::rs_script;
using android::renderscript::rsov::RSoVContext;
using android::renderscript::rsov::RSoVScript;
using android::renderscript::rsov::compileBitcode;
namespace {
// A class to parse global allocation metadata; essentially a subset of JSON
// it would look like {"__RSoV_GA": {"g":42}}
// The result is stored in a refence to a map<string, int>
class ParseMD {
public:
ParseMD(std::string s, std::map<std::string, int> &map)
: mString(s), mMapping(map) {}
bool parse(void) {
// remove outermose two pairs of braces
mString = removeBraces(mString);
mString = removeBraces(mString);
// Now we are supposed to have a comma-separated list that looks like:
// "foo":42, "bar":56
split<','>(mString, [&](auto s) {
split<':'>(s, nullptr, [&](auto pair) {
rsAssert(pair.size() == 2);
std::string ga_name = removeQuotes(pair[0]);
int id = atoi(pair[1].c_str());
ALOGV("ParseMD: global allocation %s has ID %d", ga_name.c_str(), id);
mMapping[ga_name] = id;
});
});
return true;
}
private:
template <char L, char R>
static std::string removeMatching(const std::string &s) {
auto leftCBrace = s.find(L);
rsAssert(leftCBrace != std::string::npos);
leftCBrace++;
return s.substr(leftCBrace, s.rfind(R) - leftCBrace);
}
static std::string removeBraces(const std::string &s) {
return removeMatching<'{', '}'>(s);
}
static std::string removeQuotes(const std::string &s) {
return removeMatching<'"', '"'>(s);
}
// Splitting a string, and call "each" and/or "all" with individal elements
// and a vector of all tokenized elements
template <char D>
static void split(const std::string &s,
std::function<void(const std::string &)> each,
std::function<void(const std::vector<const std::string> &)>
all = nullptr) {
std::vector<const std::string> result;
for (std::string::size_type pos = 0; pos < s.size(); pos++) {
std::string::size_type begin = pos;
while (s[pos] != D && pos <= s.size()) pos++;
std::string found = s.substr(begin, pos - begin);
if (each) each(found);
if (all) result.push_back(found);
}
if (all) all(result);
}
std::string mString;
std::map<std::string, int> &mMapping;
};
} // namespace
class ExtractRSoVMD : public android::spirit::DoNothingVisitor {
public:
ExtractRSoVMD() : mGAMapping(new std::map<std::string, int>) {}
void visit(android::spirit::StringInst *s) {
ALOGV("ExtractRSoVMD: string = %s", s->mOperand1.c_str());
ParseMD p(s->mOperand1, *mGAMapping);
p.parse();
}
std::map<std::string, int> *takeMapping(void) { return mGAMapping.release(); }
private:
std::unique_ptr<std::map<std::string, int> > mGAMapping;
};
bool rsovScriptInit(const Context *rsc, ScriptC *script, char const *resName,
char const *cacheDir, uint8_t const *bitcode,
size_t bitcodeSize, uint32_t flags) {
RSoVHal *hal = static_cast<RSoVHal *>(rsc->mHal.drv);
std::unique_ptr<RsdCpuReference::CpuScript> cs(hal->mCpuRef->createScript(
script, resName, cacheDir, bitcode, bitcodeSize, flags));
if (cs == nullptr) {
ALOGE("Failed creating a CPU script %p for %s (%p)", cs.get(), resName,
script);
return false;
}
cs->populateScript(script);
std::unique_ptr<bcinfo::MetadataExtractor> bitcodeMetadata(
new bcinfo::MetadataExtractor((const char *)bitcode, bitcodeSize));
if (!bitcodeMetadata || !bitcodeMetadata->extract()) {
ALOGE("Could not extract metadata from bitcode from %s", resName);
return false;
}
auto spvWords =
compileBitcode(resName, cacheDir, (const char *)bitcode, bitcodeSize);
if (!spvWords.empty()) {
// Extract compiler metadata on allocation->binding mapping
android::spirit::Module *module =
android::spirit::Deserialize<android::spirit::Module>(spvWords);
rsAssert(module);
ExtractRSoVMD ga_md;
module->accept(&ga_md);
RSoVScript *rsovScript =
new RSoVScript(hal->mRSoV, std::move(spvWords),
bitcodeMetadata.release(), ga_md.takeMapping());
if (rsovScript) {
rsovScript->setCpuScript(cs.release());
RSoVScript::initScriptOnRSoV(script, rsovScript);
return true;
}
}
ALOGD("Failed creating an RSoV script for %s", resName);
// Fall back to CPU driver instead
RSoVScript::initScriptOnCpu(script, cs.release());
return true;
}
bool rsovInitIntrinsic(const Context *rsc, Script *s, RsScriptIntrinsicID iid,
Element *e) {
RSoVHal *dc = (RSoVHal *)rsc->mHal.drv;
RsdCpuReference::CpuScript *cs = dc->mCpuRef->createIntrinsic(s, iid, e);
if (cs == nullptr) {
return false;
}
s->mHal.drv = cs;
cs->populateScript(s);
return true;
}
void rsovScriptInvokeForEach(const Context *rsc, Script *s, uint32_t slot,
const Allocation *ain, Allocation *aout,
const void *usr, size_t usrLen,
const RsScriptCall *sc) {
if (ain == nullptr) {
rsovScriptInvokeForEachMulti(rsc, s, slot, nullptr, 0, aout, usr, usrLen,
sc);
} else {
const Allocation *ains[1] = {ain};
rsovScriptInvokeForEachMulti(rsc, s, slot, ains, 1, aout, usr, usrLen, sc);
}
}
void rsovScriptInvokeForEachMulti(const Context *rsc, Script *s, uint32_t slot,
const Allocation **ains, size_t inLen,
Allocation *aout, const void *usr,
size_t usrLen, const RsScriptCall *sc) {
RsdCpuReference::CpuScript *cs = (RsdCpuReference::CpuScript *)s->mHal.drv;
cs->invokeForEach(slot, ains, inLen, aout, usr, usrLen, sc);
}
int rsovScriptInvokeRoot(const Context *dc, Script *s) {
RsdCpuReference::CpuScript *cs = (RsdCpuReference::CpuScript *)s->mHal.drv;
return cs->invokeRoot();
}
void rsovScriptInvokeInit(const Context *dc, Script *s) {
RsdCpuReference::CpuScript *cs = (RsdCpuReference::CpuScript *)s->mHal.drv;
cs->invokeInit();
}
void rsovScriptInvokeFreeChildren(const Context *dc, Script *s) {
RsdCpuReference::CpuScript *cs = (RsdCpuReference::CpuScript *)s->mHal.drv;
cs->invokeFreeChildren();
}
void rsovScriptInvokeFunction(const Context *dc, Script *s, uint32_t slot,
const void *params, size_t paramLength) {
RsdCpuReference::CpuScript *cs = (RsdCpuReference::CpuScript *)s->mHal.drv;
cs->invokeFunction(slot, params, paramLength);
}
void rsovScriptInvokeReduce(const Context *dc, Script *s, uint32_t slot,
const Allocation **ains, size_t inLen,
Allocation *aout, const RsScriptCall *sc) {
RsdCpuReference::CpuScript *cs = (RsdCpuReference::CpuScript *)s->mHal.drv;
cs->invokeReduce(slot, ains, inLen, aout, sc);
}
void rsovScriptSetGlobalVar(const Context *dc, const Script *s, uint32_t slot,
void *data, size_t dataLength) {
RsdCpuReference::CpuScript *cs = (RsdCpuReference::CpuScript *)s->mHal.drv;
cs->setGlobalVar(slot, data, dataLength);
}
void rsovScriptGetGlobalVar(const Context *dc, const Script *s, uint32_t slot,
void *data, size_t dataLength) {
RsdCpuReference::CpuScript *cs = (RsdCpuReference::CpuScript *)s->mHal.drv;
cs->getGlobalVar(slot, data, dataLength);
}
void rsovScriptSetGlobalVarWithElemDims(
const Context *dc, const Script *s, uint32_t slot, void *data,
size_t dataLength, const android::renderscript::Element *elem,
const uint32_t *dims, size_t dimLength) {
RsdCpuReference::CpuScript *cs = (RsdCpuReference::CpuScript *)s->mHal.drv;
cs->setGlobalVarWithElemDims(slot, data, dataLength, elem, dims, dimLength);
}
void rsovScriptSetGlobalBind(const Context *dc, const Script *s, uint32_t slot,
Allocation *data) {
RsdCpuReference::CpuScript *cs = (RsdCpuReference::CpuScript *)s->mHal.drv;
cs->setGlobalBind(slot, data);
}
void rsovScriptSetGlobalObj(const Context *dc, const Script *s, uint32_t slot,
ObjectBase *data) {
RsdCpuReference::CpuScript *cs = (RsdCpuReference::CpuScript *)s->mHal.drv;
cs->setGlobalObj(slot, data);
}
void rsovScriptDestroy(const Context *dc, Script *s) {
RsdCpuReference::CpuScript *cs = (RsdCpuReference::CpuScript *)s->mHal.drv;
delete cs;
s->mHal.drv = nullptr;
}
Allocation *rsovScriptGetAllocationForPointer(
const android::renderscript::Context *dc,
const android::renderscript::Script *sc, const void *ptr) {
RsdCpuReference::CpuScript *cs = (RsdCpuReference::CpuScript *)sc->mHal.drv;
return cs->getAllocationForPointer(ptr);
}
void rsovScriptUpdateCachedObject(const Context *rsc, const Script *script,
rs_script *obj) {
obj->p = script;
#ifdef __LP64__
obj->unused1 = nullptr;
obj->unused2 = nullptr;
obj->unused3 = nullptr;
#endif
}