# Context Hub Runtime Environment (CHRE)
## Build Instructions
Build targets are arranged in the form of a variant triple consisting of:
``vendor_arch_variant``
The vendor is the provider of the CHRE implementation (ex: google, qcom). The
arch is the CPU architecture (ie: hexagonv60, x86, cm4). The variant is the
target platform (ie: slpi, nanohub, linux, googletest).
### Linux
CHRE is compatible with Linux as a simulator.
#### Linux Build/Run
The build target for x86 linux is ``google_x86_linux``. You can build/run the
simulator with the following command:
./run_sim.sh
#### Linux Unit Tests
You can run all unit tests with the following command. Pass arguments to this
script and they are passed to the gtest framework. (example:
``--gtest_filter=DynamicVector.*``)
./run_tests.sh
### SLPI Hexagon
First, setup paths to the Hexagon Tools (v8.x.x), SDK (v3.0), and SLPI source
tree, for example:
export HEXAGON_TOOLS_PREFIX=~/Qualcomm/HEXAGON_Tools/8.0
export HEXAGON_SDK_PREFIX=~/Qualcomm/Hexagon_SDK/3.0
export SLPI_PREFIX=~/Qualcomm/msm8998/slpi_proc
Then use the provided Makefiles to build:
make google_hexagonv62_slpi -j
## Directory Structure
The CHRE project is organized as follows:
- ``chre_api``
- The stable API exposed to nanoapps
- ``core``
- Common code that applies to all CHRE platforms, most notably event
management.
- ``pal``
- An abstraction layer that implementers must supply to access
device-specific functionality (such as GPS and Wi-Fi). The PAL is a C API
which allows it to be implemented using a vendor-supplied library.
- ``platform``
- Contains the system interface that all plaforms must implement, along with
implementations for individual platforms. This includes the implementation
of the CHRE API.
- ``platform/shared``
- Contains code that will apply to multiple platforms, but not
necessarily all.
- ``platform/linux``
- This directory contains the canonical example for running CHRE on
desktop machines, primarily for simulation and testing.
- ``apps``
- A small number of sample applications are provided. These are intended to
guide developers of new applications and help implementers test basic
functionality quickly.
- This is reference code and is not required for the CHRE to function.
- ``util``
- Contains data structures used throughout CHRE and common utility code.
Within each of these directories, you may find a ``tests`` subdirectory
containing tests written against the googletest framework.
## Supplied Nanoapps
This project includes a number of nanoapps that serve as both examples of how to
use CHRE, debugging tools and can perform some useful function.
All nanoapps in the ``apps`` directory are placed in a namespace when built
statically with this CHRE implementation. When compiled as standalone nanoapps,
there is no outer namespace on their entry points. This allows testing various
CHRE subsystems without requiring dynamic loading and allows these nanoapps to
coexist within a CHRE binary. Refer to ``apps/hello_world/hello_world.cc`` for
a minimal example.
### FeatureWorld
Any of the nanoapps that end with the term World are intended to test some
feature of the system. The HelloWorld nanoapp simply exercises logging
functionality, TimerWorld exercises timers and WifiWorld uses wifi, for example.
These nanoapps log all results via chreLog which makes them effective tools when
bringing up a new CHRE implementation.
### ImuCal
This nanoapp implements IMU calibration.
## Porting CHRE
This codebase is intended to be ported to a variety of operating systems. If you
wish to port CHRE to a new OS, refer to the ``platform`` directory. An example of
the Linux port is provided under ``platform/linux``.
There are notes regarding initialization under
``platform/include/chre/platform/init.h`` that will also be helpful.
## Coding conventions
There are many well-established coding standards within Google. The official
C++ style guide is used with the exception of Android naming conventions for
methods and variables. This means 2 space indents, camelCase method names, an
mPrefix on class members and so on. Style rules that are not specified in the
Android style guide are inherited from Google.
* [Google C++ Style][1]
[1]: https://google.github.io/styleguide/cppguide.html
### Use of C++
This project uses C++11, but with two main caveats:
1. General considerations for using C++ in an embedded environment apply. This
means avoiding language features that can impose runtime overhead should
be avoided, due to the relative scarcity of memory and CPU resources, and
power considerations. Examples include RTTI, exceptions, overuse of dynamic
memory allocation, etc. Refer to existing literature on this topic
including this [Technical Report on C++ Performance][1] and so on.
2. Support of C++ standard libraries are not generally expected to be
extensive or widespread in the embedded environments where this code will
run. That means that things like <thread> and <mutex> should not be used,
in favor of simple platform abstractions that can be implemented directly
with less effort (potentially using those libraries if they are known to be
available).
[1]: http://www.open-std.org/jtc1/sc22/wg21/docs/TR18015.pdf