// Copyright (c) 2013 The Chromium OS Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "perf_parser.h"
#include <algorithm>
#include <cstdio>
#include <set>
#include "base/logging.h"
#include "address_mapper.h"
#include "quipper_string.h"
#include "perf_utils.h"
namespace quipper {
namespace {
struct EventAndTime {
ParsedEvent* event;
uint64_t time;
};
// Returns true if |e1| has an earlier timestamp than |e2|. The args are const
// pointers instead of references because of the way this function is used when
// calling std::stable_sort.
bool CompareParsedEventTimes(const std::unique_ptr<EventAndTime>& e1,
const std::unique_ptr<EventAndTime>& e2) {
return (e1->time < e2->time);
}
// Kernel MMAP entry pid appears as -1
const uint32_t kKernelPid = UINT32_MAX;
// Name and ID of the kernel swapper process.
const char kSwapperCommandName[] = "swapper";
const uint32_t kSwapperPid = 0;
bool IsNullBranchStackEntry(const struct branch_entry& entry) {
return (!entry.from && !entry.to);
}
} // namespace
PerfParser::PerfParser()
: kernel_mapper_(new AddressMapper)
{}
PerfParser::~PerfParser() {}
PerfParser::PerfParser(const PerfParser::Options& options) {
options_ = options;
}
void PerfParser::set_options(const PerfParser::Options& options) {
options_ = options;
}
bool PerfParser::ParseRawEvents() {
process_mappers_.clear();
parsed_events_.resize(events_.size());
for (size_t i = 0; i < events_.size(); ++i) {
ParsedEvent& parsed_event = parsed_events_[i];
parsed_event.raw_event = events_[i].get();
}
MaybeSortParsedEvents();
if (!ProcessEvents()) {
return false;
}
if (!options_.discard_unused_events)
return true;
// Some MMAP/MMAP2 events' mapped regions will not have any samples. These
// MMAP/MMAP2 events should be dropped. |parsed_events_| should be
// reconstructed without these events.
size_t write_index = 0;
size_t read_index;
for (read_index = 0; read_index < parsed_events_.size(); ++read_index) {
const ParsedEvent& event = parsed_events_[read_index];
if ((event.raw_event->header.type == PERF_RECORD_MMAP ||
event.raw_event->header.type == PERF_RECORD_MMAP2) &&
event.num_samples_in_mmap_region == 0) {
continue;
}
if (read_index != write_index)
parsed_events_[write_index] = event;
++write_index;
}
CHECK_LE(write_index, parsed_events_.size());
parsed_events_.resize(write_index);
// Now regenerate the sorted event list again. These are pointers to events
// so they must be regenerated after a resize() of the ParsedEvent vector.
MaybeSortParsedEvents();
return true;
}
void PerfParser::MaybeSortParsedEvents() {
if (!(sample_type_ & PERF_SAMPLE_TIME)) {
parsed_events_sorted_by_time_.resize(parsed_events_.size());
for (size_t i = 0; i < parsed_events_.size(); ++i) {
parsed_events_sorted_by_time_[i] = &parsed_events_[i];
}
return;
}
std::vector<std::unique_ptr<EventAndTime>> events_and_times;
events_and_times.resize(parsed_events_.size());
for (size_t i = 0; i < parsed_events_.size(); ++i) {
std::unique_ptr<EventAndTime> event_and_time(new EventAndTime);
// Store the timestamp and event pointer in an array.
event_and_time->event = &parsed_events_[i];
struct perf_sample sample_info;
PerfSampleCustodian custodian(sample_info);
CHECK(ReadPerfSampleInfo(*parsed_events_[i].raw_event, &sample_info));
event_and_time->time = sample_info.time;
events_and_times[i] = std::move(event_and_time);
}
// Sort the events based on timestamp, and then populate the sorted event
// vector in sorted order.
std::stable_sort(events_and_times.begin(), events_and_times.end(),
CompareParsedEventTimes);
parsed_events_sorted_by_time_.resize(events_and_times.size());
for (unsigned int i = 0; i < events_and_times.size(); ++i) {
parsed_events_sorted_by_time_[i] = events_and_times[i]->event;
}
}
bool PerfParser::ProcessEvents() {
memset(&stats_, 0, sizeof(stats_));
stats_.did_remap = false; // Explicitly clear the remap flag.
// Pid 0 is called the swapper process. Even though perf does not record a
// COMM event for pid 0, we act like we did receive a COMM event for it. Perf
// does this itself, example:
// http://lxr.free-electrons.com/source/tools/perf/util/session.c#L1120
commands_.insert(kSwapperCommandName);
pidtid_to_comm_map_[std::make_pair(kSwapperPid, kSwapperPid)] =
&(*commands_.find(kSwapperCommandName));
// NB: Not necessarily actually sorted by time.
for (unsigned int i = 0; i < parsed_events_sorted_by_time_.size(); ++i) {
ParsedEvent& parsed_event = *parsed_events_sorted_by_time_[i];
event_t& event = *parsed_event.raw_event;
switch (event.header.type) {
case PERF_RECORD_SAMPLE:
// SAMPLE doesn't have any fields to log at a fixed,
// previously-endian-swapped location. This used to log ip.
VLOG(1) << "SAMPLE";
++stats_.num_sample_events;
if (MapSampleEvent(&parsed_event)) {
++stats_.num_sample_events_mapped;
}
break;
case PERF_RECORD_MMAP: {
VLOG(1) << "MMAP: " << event.mmap.filename;
++stats_.num_mmap_events;
// Use the array index of the current mmap event as a unique identifier.
CHECK(MapMmapEvent(&event.mmap, i)) << "Unable to map MMAP event!";
// No samples in this MMAP region yet, hopefully.
parsed_event.num_samples_in_mmap_region = 0;
DSOInfo dso_info;
// TODO(sque): Add Build ID as well.
dso_info.name = event.mmap.filename;
dso_set_.insert(dso_info);
break;
}
case PERF_RECORD_MMAP2: {
VLOG(1) << "MMAP2: " << event.mmap2.filename;
++stats_.num_mmap_events;
// Use the array index of the current mmap event as a unique identifier.
CHECK(MapMmapEvent(&event.mmap2, i)) << "Unable to map MMAP2 event!";
// No samples in this MMAP region yet, hopefully.
parsed_event.num_samples_in_mmap_region = 0;
DSOInfo dso_info;
// TODO(sque): Add Build ID as well.
dso_info.name = event.mmap2.filename;
dso_set_.insert(dso_info);
break;
}
case PERF_RECORD_FORK:
VLOG(1) << "FORK: " << event.fork.ppid << ":" << event.fork.ptid
<< " -> " << event.fork.pid << ":" << event.fork.tid;
++stats_.num_fork_events;
CHECK(MapForkEvent(event.fork)) << "Unable to map FORK event!";
break;
case PERF_RECORD_EXIT:
// EXIT events have the same structure as FORK events.
VLOG(1) << "EXIT: " << event.fork.ppid << ":" << event.fork.ptid;
++stats_.num_exit_events;
break;
case PERF_RECORD_COMM:
VLOG(1) << "COMM: " << event.comm.pid << ":" << event.comm.tid << ": "
<< event.comm.comm;
++stats_.num_comm_events;
CHECK(MapCommEvent(event.comm));
commands_.insert(event.comm.comm);
pidtid_to_comm_map_[std::make_pair(event.comm.pid, event.comm.tid)] =
&(*commands_.find(event.comm.comm));
break;
case PERF_RECORD_LOST:
case PERF_RECORD_THROTTLE:
case PERF_RECORD_UNTHROTTLE:
case PERF_RECORD_READ:
case PERF_RECORD_MAX:
VLOG(1) << "Parsed event type: " << event.header.type
<< ". Doing nothing.";
break;
case SIMPLE_PERF_RECORD_KERNEL_SYMBOL:
case SIMPLE_PERF_RECORD_DSO:
case SIMPLE_PERF_RECORD_SYMBOL:
case SIMPLE_PERF_RECORD_SPLIT:
case SIMPLE_PERF_RECORD_SPLIT_END:
break;
default:
LOG(ERROR) << "Unknown event type: " << event.header.type;
return false;
}
}
// Print stats collected from parsing.
DLOG(INFO) << "Parser processed: "
<< stats_.num_mmap_events << " MMAP/MMAP2 events, "
<< stats_.num_comm_events << " COMM events, "
<< stats_.num_fork_events << " FORK events, "
<< stats_.num_exit_events << " EXIT events, "
<< stats_.num_sample_events << " SAMPLE events, "
<< stats_.num_sample_events_mapped << " of these were mapped";
float sample_mapping_percentage =
static_cast<float>(stats_.num_sample_events_mapped) /
stats_.num_sample_events * 100.;
float threshold = options_.sample_mapping_percentage_threshold;
if (sample_mapping_percentage < threshold) {
LOG(WARNING) << "Mapped " << static_cast<int>(sample_mapping_percentage)
<< "% of samples, expected at least "
<< static_cast<int>(threshold) << "%";
return false;
}
stats_.did_remap = options_.do_remap;
return true;
}
bool PerfParser::MapSampleEvent(ParsedEvent* parsed_event) {
bool mapping_failed = false;
// Find the associated command.
if (!(sample_type_ & PERF_SAMPLE_IP && sample_type_ & PERF_SAMPLE_TID))
return false;
perf_sample sample_info;
PerfSampleCustodian custodian(sample_info);
if (!ReadPerfSampleInfo(*parsed_event->raw_event, &sample_info))
return false;
PidTid pidtid = std::make_pair(sample_info.pid, sample_info.tid);
const auto comm_iter = pidtid_to_comm_map_.find(pidtid);
if (comm_iter != pidtid_to_comm_map_.end()) {
parsed_event->set_command(comm_iter->second);
}
const uint64_t unmapped_event_ip = sample_info.ip;
// Map the event IP itself.
if (!MapIPAndPidAndGetNameAndOffset(sample_info.ip,
sample_info.pid,
&sample_info.ip,
&parsed_event->dso_and_offset)) {
mapping_failed = true;
}
if (sample_info.callchain &&
!MapCallchain(sample_info.ip,
sample_info.pid,
unmapped_event_ip,
sample_info.callchain,
parsed_event)) {
mapping_failed = true;
}
if (sample_info.branch_stack &&
!MapBranchStack(sample_info.pid,
sample_info.branch_stack,
parsed_event)) {
mapping_failed = true;
}
if (options_.do_remap) {
// Write the remapped data back to the raw event regardless of
// whether it was entirely successfully remapped. A single failed
// remap should not invalidate all the other remapped entries.
if (!WritePerfSampleInfo(sample_info, parsed_event->raw_event)) {
LOG(ERROR) << "Failed to write back remapped sample info.";
return false;
}
}
return !mapping_failed;
}
bool PerfParser::MapCallchain(const uint64_t ip,
const uint32_t pid,
const uint64_t original_event_addr,
struct ip_callchain* callchain,
ParsedEvent* parsed_event) {
if (!callchain) {
LOG(ERROR) << "NULL call stack data.";
return false;
}
bool mapping_failed = false;
// If the callchain's length is 0, there is no work to do.
if (callchain->nr == 0)
return true;
// Keeps track of whether the current entry is kernel or user.
parsed_event->callchain.resize(callchain->nr);
int num_entries_mapped = 0;
for (unsigned int j = 0; j < callchain->nr; ++j) {
uint64_t entry = callchain->ips[j];
// When a callchain context entry is found, do not attempt to symbolize it.
if (entry >= PERF_CONTEXT_MAX) {
continue;
}
// The sample address has already been mapped so no need to map it.
if (entry == original_event_addr) {
callchain->ips[j] = ip;
continue;
}
if (!MapIPAndPidAndGetNameAndOffset(
entry,
pid,
&callchain->ips[j],
&parsed_event->callchain[num_entries_mapped++])) {
mapping_failed = true;
}
}
// Not all the entries were mapped. Trim |parsed_event->callchain| to
// remove unused entries at the end.
parsed_event->callchain.resize(num_entries_mapped);
return !mapping_failed;
}
bool PerfParser::MapBranchStack(const uint32_t pid,
struct branch_stack* branch_stack,
ParsedEvent* parsed_event) {
if (!branch_stack) {
LOG(ERROR) << "NULL branch stack data.";
return false;
}
// First, trim the branch stack to remove trailing null entries.
size_t trimmed_size = 0;
for (size_t i = 0; i < branch_stack->nr; ++i) {
// Count the number of non-null entries before the first null entry.
if (IsNullBranchStackEntry(branch_stack->entries[i])) {
break;
}
++trimmed_size;
}
// If a null entry was found, make sure all subsequent null entries are NULL
// as well.
for (size_t i = trimmed_size; i < branch_stack->nr; ++i) {
const struct branch_entry& entry = branch_stack->entries[i];
if (!IsNullBranchStackEntry(entry)) {
LOG(ERROR) << "Non-null branch stack entry found after null entry: "
<< reinterpret_cast<void*>(entry.from) << " -> "
<< reinterpret_cast<void*>(entry.to);
return false;
}
}
// Map branch stack addresses.
parsed_event->branch_stack.resize(trimmed_size);
for (unsigned int i = 0; i < trimmed_size; ++i) {
struct branch_entry& entry = branch_stack->entries[i];
ParsedEvent::BranchEntry& parsed_entry = parsed_event->branch_stack[i];
if (!MapIPAndPidAndGetNameAndOffset(entry.from,
pid,
&entry.from,
&parsed_entry.from)) {
return false;
}
if (!MapIPAndPidAndGetNameAndOffset(entry.to,
pid,
&entry.to,
&parsed_entry.to)) {
return false;
}
parsed_entry.predicted = entry.flags.predicted;
// Either predicted or mispredicted, not both. But don't use a CHECK here,
// just exit gracefully because it's a minor issue.
if (entry.flags.predicted == entry.flags.mispred) {
LOG(ERROR) << "Branch stack entry predicted and mispred flags "
<< "both have value " << entry.flags.mispred;
return false;
}
}
return true;
}
bool PerfParser::MapIPAndPidAndGetNameAndOffset(
uint64_t ip,
uint32_t pid,
uint64_t* new_ip,
ParsedEvent::DSOAndOffset* dso_and_offset) {
// Attempt to find the synthetic address of the IP sample in this order:
// 1. Address space of its own process.
// 2. Address space of the kernel.
uint64_t mapped_addr = 0;
// Sometimes the first event we see is a SAMPLE event and we don't have the
// time to create an address mapper for a process. Example, for pid 0.
AddressMapper* mapper = GetOrCreateProcessMapper(pid).first;
bool mapped = mapper->GetMappedAddress(ip, &mapped_addr);
if (!mapped) {
mapper = kernel_mapper_.get();
mapped = mapper->GetMappedAddress(ip, &mapped_addr);
}
// TODO(asharif): What should we do when we cannot map a SAMPLE event?
if (mapped) {
if (dso_and_offset) {
uint64_t id = kuint64max;
CHECK(mapper->GetMappedIDAndOffset(ip, &id, &dso_and_offset->offset_));
// Make sure the ID points to a valid event.
CHECK_LE(id, parsed_events_sorted_by_time_.size());
ParsedEvent* parsed_event = parsed_events_sorted_by_time_[id];
const event_t* raw_event = parsed_event->raw_event;
DSOInfo dso_info;
if (raw_event->header.type == PERF_RECORD_MMAP) {
dso_info.name = raw_event->mmap.filename;
} else if (raw_event->header.type == PERF_RECORD_MMAP2) {
dso_info.name = raw_event->mmap2.filename;
} else {
LOG(FATAL) << "Expected MMAP or MMAP2 event";
}
// Find the mmap DSO filename in the set of known DSO names.
// TODO(sque): take build IDs into account.
std::set<DSOInfo>::const_iterator dso_iter = dso_set_.find(dso_info);
CHECK(dso_iter != dso_set_.end());
dso_and_offset->dso_info_ = &(*dso_iter);
++parsed_event->num_samples_in_mmap_region;
}
if (options_.do_remap)
*new_ip = mapped_addr;
}
return mapped;
}
bool PerfParser::MapMmapEvent(uint64_t id,
uint32_t pid,
uint64_t* p_start,
uint64_t* p_len,
uint64_t* p_pgoff)
{
// We need to hide only the real kernel addresses. However, to make things
// more secure, and make the mapping idempotent, we should remap all
// addresses, both kernel and non-kernel.
AddressMapper* mapper =
(pid == kKernelPid ? kernel_mapper_.get() :
GetOrCreateProcessMapper(pid).first);
uint64_t start = *p_start;
uint64_t len = *p_len;
uint64_t pgoff = *p_pgoff;
// |id| == 0 corresponds to the kernel mmap. We have several cases here:
//
// For ARM and x86, in sudo mode, pgoff == start, example:
// start=0x80008200
// pgoff=0x80008200
// len =0xfffffff7ff7dff
//
// For x86-64, in sudo mode, pgoff is between start and start + len. SAMPLE
// events lie between pgoff and pgoff + length of the real kernel binary,
// example:
// start=0x3bc00000
// pgoff=0xffffffffbcc00198
// len =0xffffffff843fffff
// SAMPLE events will be found after pgoff. For kernels with ASLR, pgoff will
// be something only visible to the root user, and will be randomized at
// startup. With |remap| set to true, we should hide pgoff in this case. So we
// normalize all SAMPLE events relative to pgoff.
//
// For non-sudo mode, the kernel will be mapped from 0 to the pointer limit,
// example:
// start=0x0
// pgoff=0x0
// len =0xffffffff
if (id == 0) {
// If pgoff is between start and len, we normalize the event by setting
// start to be pgoff just like how it is for ARM and x86. We also set len to
// be a much smaller number (closer to the real length of the kernel binary)
// because SAMPLEs are actually only seen between |event->pgoff| and
// |event->pgoff + kernel text size|.
if (pgoff > start && pgoff < start + len) {
len = len + start - pgoff;
start = pgoff;
}
// For kernels with ALSR pgoff is critical information that should not be
// revealed when |remap| is true.
pgoff = 0;
}
if (!mapper->MapWithID(start, len, id, pgoff, true)) {
mapper->DumpToLog();
return false;
}
if (options_.do_remap) {
uint64_t mapped_addr;
CHECK(mapper->GetMappedAddress(start, &mapped_addr));
*p_start = mapped_addr;
*p_len = len;
*p_pgoff = pgoff;
}
return true;
}
std::pair<AddressMapper*, bool> PerfParser::GetOrCreateProcessMapper(
uint32_t pid, uint32_t *ppid) {
const auto& search = process_mappers_.find(pid);
if (search != process_mappers_.end()) {
return std::make_pair(search->second.get(), false);
}
std::unique_ptr<AddressMapper> mapper;
const auto& parent_mapper = (ppid ? process_mappers_.find(*ppid) : process_mappers_.end());
if (parent_mapper != process_mappers_.end())
mapper.reset(new AddressMapper(*parent_mapper->second));
else
mapper.reset(new AddressMapper());
const auto inserted =
process_mappers_.insert(search, std::make_pair(pid, std::move(mapper)));
return std::make_pair(inserted->second.get(), true);
}
bool PerfParser::MapCommEvent(const struct comm_event& event) {
GetOrCreateProcessMapper(event.pid);
return true;
}
bool PerfParser::MapForkEvent(const struct fork_event& event) {
PidTid parent = std::make_pair(event.ppid, event.ptid);
PidTid child = std::make_pair(event.pid, event.tid);
if (parent != child &&
pidtid_to_comm_map_.find(parent) != pidtid_to_comm_map_.end()) {
pidtid_to_comm_map_[child] = pidtid_to_comm_map_[parent];
}
const uint32_t pid = event.pid;
// If the parent and child pids are the same, this is just a new thread
// within the same process, so don't do anything.
if (event.ppid == pid)
return true;
uint32_t ppid = event.ppid;
if (!GetOrCreateProcessMapper(pid, &ppid).second) {
DLOG(INFO) << "Found an existing process mapper with pid: " << pid;
}
return true;
}
} // namespace quipper