#!/usr/bin/python
#
# Copyright (C) 2012 The Android Open Source Project
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
"""
A set of classes (models) each closely representing an XML node in the
metadata_properties.xml file.
Node: Base class for most nodes.
Entry: A node corresponding to <entry> elements.
Clone: A node corresponding to <clone> elements.
MergedEntry: A node corresponding to either <entry> or <clone> elements.
Kind: A node corresponding to <dynamic>, <static>, <controls> elements.
InnerNamespace: A node corresponding to a <namespace> nested under a <kind>.
OuterNamespace: A node corresponding to a <namespace> with <kind> children.
Section: A node corresponding to a <section> element.
Enum: A class corresponding an <enum> element within an <entry>
EnumValue: A class corresponding to a <value> element within an Enum
Metadata: Root node that also provides tree construction functionality.
Tag: A node corresponding to a top level <tag> element.
Typedef: A node corresponding to a <typedef> element under <types>.
"""
import sys
import itertools
from collections import OrderedDict
class Node(object):
"""
Base class for most nodes that are part of the Metadata graph.
Attributes (Read-Only):
parent: An edge to a parent Node.
name: A string describing the name, usually but not always the 'name'
attribute of the corresponding XML node.
"""
def __init__(self):
self._parent = None
self._name = None
@property
def parent(self):
return self._parent
@property
def name(self):
return self._name
def find_all(self, pred):
"""
Find all descendants that match the predicate.
Args:
pred: a predicate function that acts as a filter for a Node
Yields:
A sequence of all descendants for which pred(node) is true,
in a pre-order visit order.
"""
if pred(self):
yield self
if self._get_children() is None:
return
for i in self._get_children():
for j in i.find_all(pred):
yield j
def find_first(self, pred):
"""
Find the first descendant that matches the predicate.
Args:
pred: a predicate function that acts as a filter for a Node
Returns:
The first Node from find_all(pred), or None if there were no results.
"""
for i in self.find_all(pred):
return i
return None
def find_parent_first(self, pred):
"""
Find the first ancestor that matches the predicate.
Args:
pred: A predicate function that acts as a filter for a Node
Returns:
The first ancestor closest to the node for which pred(node) is true.
"""
for i in self.find_parents(pred):
return i
return None
def find_parents(self, pred):
"""
Find all ancestors that match the predicate.
Args:
pred: A predicate function that acts as a filter for a Node
Yields:
A sequence of all ancestors (closest to furthest) from the node,
where pred(node) is true.
"""
parent = self.parent
while parent is not None:
if pred(parent):
yield parent
parent = parent.parent
def sort_children(self):
"""
Sorts the immediate children in-place.
"""
self._sort_by_name(self._children)
def _sort_by_name(self, what):
what.sort(key=lambda x: x.name)
def _get_name(self):
return lambda x: x.name
# Iterate over all children nodes. None when node doesn't support children.
def _get_children(self):
return (i for i in self._children)
def _children_name_map_matching(self, match=lambda x: True):
d = {}
for i in self._get_children():
if match(i):
d[i.name] = i
return d
@staticmethod
def _dictionary_by_name(values):
d = OrderedDict()
for i in values:
d[i.name] = i
return d
def validate_tree(self):
"""
Sanity check the tree recursively, ensuring for a node n, all children's
parents are also n.
Returns:
True if validation succeeds, False otherwise.
"""
succ = True
children = self._get_children()
if children is None:
return True
for child in self._get_children():
if child.parent != self:
print >> sys.stderr, ("ERROR: Node '%s' doesn't match the parent" + \
"(expected: %s, actual %s)") \
%(child, self, child.parent)
succ = False
succ = child.validate_tree() and succ
return succ
def __str__(self):
return "<%s name='%s'>" %(self.__class__, self.name)
class Metadata(Node):
"""
A node corresponding to a <metadata> entry.
Attributes (Read-Only):
parent: An edge to the parent Node. This is always None for Metadata.
outer_namespaces: A sequence of immediate OuterNamespace children.
tags: A sequence of all Tag instances available in the graph.
types: An iterable of all Typedef instances available in the graph.
"""
def __init__(self):
"""
Initialize with no children. Use insert_* functions and then
construct_graph() to build up the Metadata from some source.
"""
# Private
self._entries = []
# kind => { name => entry }
self._entry_map = { 'static': {}, 'dynamic': {}, 'controls': {} }
self._entries_ordered = [] # list of ordered Entry/Clone instances
self._clones = []
# Public (Read Only)
self._name = None
self._parent = None
self._outer_namespaces = None
self._tags = []
self._types = []
@property
def outer_namespaces(self):
if self._outer_namespaces is None:
return None
else:
return (i for i in self._outer_namespaces)
@property
def tags(self):
return (i for i in self._tags)
@property
def types(self):
return (i for i in self._types)
def _get_properties(self):
for i in self._entries:
yield i
for i in self._clones:
yield i
def insert_tag(self, tag, description=""):
"""
Insert a tag into the metadata.
Args:
tag: A string identifier for a tag.
description: A string description for a tag.
Example:
metadata.insert_tag("BC", "Backwards Compatibility for old API")
Remarks:
Subsequent calls to insert_tag with the same tag are safe (they will
be ignored).
"""
tag_ids = [tg.name for tg in self.tags if tg.name == tag]
if not tag_ids:
self._tags.append(Tag(tag, self, description))
def insert_type(self, type_name, type_selector="typedef", **kwargs):
"""
Insert a type into the metadata.
Args:
type_name: A type's name
type_selector: The selector for the type, e.g. 'typedef'
Args (if type_selector == 'typedef'):
languages: A map of 'language name' -> 'fully qualified class path'
Example:
metadata.insert_type('rectangle', 'typedef',
{ 'java': 'android.graphics.Rect' })
Remarks:
Subsequent calls to insert_type with the same type name are safe (they
will be ignored)
"""
if type_selector != 'typedef':
raise ValueError("Unsupported type_selector given " + type_selector)
type_names = [tp.name for tp in self.types if tp.name == tp]
if not type_names:
self._types.append(Typedef(type_name, self, kwargs.get('languages')))
def insert_entry(self, entry):
"""
Insert an entry into the metadata.
Args:
entry: A key-value dictionary describing an entry. Refer to
Entry#__init__ for the keys required/optional.
Remarks:
Subsequent calls to insert_entry with the same entry+kind name are safe
(they will be ignored).
"""
e = Entry(**entry)
self._entries.append(e)
self._entry_map[e.kind][e.name] = e
self._entries_ordered.append(e)
def insert_clone(self, clone):
"""
Insert a clone into the metadata.
Args:
clone: A key-value dictionary describing a clone. Refer to
Clone#__init__ for the keys required/optional.
Remarks:
Subsequent calls to insert_clone with the same clone+kind name are safe
(they will be ignored). Also the target entry need not be inserted
ahead of the clone entry.
"""
# figure out corresponding entry later. allow clone insert, entry insert
entry = None
c = Clone(entry, **clone)
self._entry_map[c.kind][c.name] = c
self._clones.append(c)
self._entries_ordered.append(c)
def prune_clones(self):
"""
Remove all clones that don't point to an existing entry.
Remarks:
This should be called after all insert_entry/insert_clone calls have
finished.
"""
remove_list = []
for p in self._clones:
if p.entry is None:
remove_list.append(p)
for p in remove_list:
# remove from parent's entries list
if p.parent is not None:
p.parent._entries.remove(p)
# remove from parents' _leafs list
for ancestor in p.find_parents(lambda x: not isinstance(x, Metadata)):
ancestor._leafs.remove(p)
# remove from global list
self._clones.remove(p)
self._entry_map[p.kind].pop(p.name)
self._entries_ordered.remove(p)
def is_entry_this_kind(self, entry, kind):
"""
Check if input entry if of input kind
Args:
entry: an Entry object
kind: a string. Possible values are "static", "dynamic", "controls"
Returns:
A boolean indicating whether input entry is of input kind.
"""
if kind not in ("static", "dynamic", "controls"):
assert(False), "Unknown kind value " + kind
return entry.name in self._entry_map[kind]
# After all entries/clones are inserted,
# invoke this to generate the parent/child node graph all these objects
def construct_graph(self):
"""
Generate the graph recursively, after which all Entry nodes will be
accessible recursively by crawling through the outer_namespaces sequence.
Remarks:
This is safe to be called multiple times at any time. It should be done at
least once or there will be no graph.
"""
self.validate_tree()
self._construct_tags()
self.validate_tree()
self._construct_types()
self.validate_tree()
self._construct_clones()
self.validate_tree()
self._construct_outer_namespaces()
self.validate_tree()
def _construct_tags(self):
tag_dict = self._dictionary_by_name(self.tags)
for p in self._get_properties():
p._tags = []
for tag_id in p._tag_ids:
tag = tag_dict.get(tag_id)
if tag not in p._tags:
p._tags.append(tag)
if p not in tag.entries:
tag._entries.append(p)
def _construct_types(self):
type_dict = self._dictionary_by_name(self.types)
for p in self._get_properties():
if p._type_name:
type_node = type_dict.get(p._type_name)
p._typedef = type_node
if p not in type_node.entries:
type_node._entries.append(p)
def _construct_clones(self):
for p in self._clones:
target_kind = p.target_kind
target_entry = self._entry_map[target_kind].get(p.name)
p._entry = target_entry
# should not throw if we pass validation
# but can happen when importing obsolete CSV entries
if target_entry is None:
print >> sys.stderr, ("WARNING: Clone entry '%s' target kind '%s'" + \
" has no corresponding entry") \
%(p.name, p.target_kind)
def _construct_outer_namespaces(self):
if self._outer_namespaces is None: #the first time this runs
self._outer_namespaces = []
root = self._dictionary_by_name(self._outer_namespaces)
for ons_name, ons in root.iteritems():
ons._leafs = []
for p in self._entries_ordered:
ons_name = p.get_outer_namespace()
ons = root.get(ons_name, OuterNamespace(ons_name, self))
root[ons_name] = ons
if p not in ons._leafs:
ons._leafs.append(p)
for ons_name, ons in root.iteritems():
ons.validate_tree()
self._construct_sections(ons)
if ons not in self._outer_namespaces:
self._outer_namespaces.append(ons)
ons.validate_tree()
def _construct_sections(self, outer_namespace):
sections_dict = self._dictionary_by_name(outer_namespace.sections)
for sec_name, sec in sections_dict.iteritems():
sec._leafs = []
sec.validate_tree()
for p in outer_namespace._leafs:
does_exist = sections_dict.get(p.get_section())
sec = sections_dict.get(p.get_section(), \
Section(p.get_section(), outer_namespace))
sections_dict[p.get_section()] = sec
sec.validate_tree()
if p not in sec._leafs:
sec._leafs.append(p)
for sec_name, sec in sections_dict.iteritems():
if not sec.validate_tree():
print >> sys.stderr, ("ERROR: Failed to validate tree in " + \
"construct_sections (start), with section = '%s'")\
%(sec)
self._construct_kinds(sec)
if sec not in outer_namespace.sections:
outer_namespace._sections.append(sec)
if not sec.validate_tree():
print >> sys.stderr, ("ERROR: Failed to validate tree in " + \
"construct_sections (end), with section = '%s'") \
%(sec)
# 'controls', 'static' 'dynamic'. etc
def _construct_kinds(self, section):
for kind in section.kinds:
kind._leafs = []
section.validate_tree()
group_entry_by_kind = itertools.groupby(section._leafs, lambda x: x.kind)
leaf_it = ((k, g) for k, g in group_entry_by_kind)
# allow multiple kinds with the same name. merge if adjacent
# e.g. dynamic,dynamic,static,static,dynamic -> dynamic,static,dynamic
# this helps maintain ABI compatibility when adding an entry in a new kind
for idx, (kind_name, entry_it) in enumerate(leaf_it):
if idx >= len(section._kinds):
kind = Kind(kind_name, section)
section._kinds.append(kind)
section.validate_tree()
kind = section._kinds[idx]
for p in entry_it:
if p not in kind._leafs:
kind._leafs.append(p)
for kind in section._kinds:
kind.validate_tree()
self._construct_inner_namespaces(kind)
kind.validate_tree()
self._construct_entries(kind)
kind.validate_tree()
if not section.validate_tree():
print >> sys.stderr, ("ERROR: Failed to validate tree in " + \
"construct_kinds, with kind = '%s'") %(kind)
if not kind.validate_tree():
print >> sys.stderr, ("ERROR: Failed to validate tree in " + \
"construct_kinds, with kind = '%s'") %(kind)
def _construct_inner_namespaces(self, parent, depth=0):
#parent is InnerNamespace or Kind
ins_dict = self._dictionary_by_name(parent.namespaces)
for name, ins in ins_dict.iteritems():
ins._leafs = []
for p in parent._leafs:
ins_list = p.get_inner_namespace_list()
if len(ins_list) > depth:
ins_str = ins_list[depth]
ins = ins_dict.get(ins_str, InnerNamespace(ins_str, parent))
ins_dict[ins_str] = ins
if p not in ins._leafs:
ins._leafs.append(p)
for name, ins in ins_dict.iteritems():
ins.validate_tree()
# construct children INS
self._construct_inner_namespaces(ins, depth + 1)
ins.validate_tree()
# construct children entries
self._construct_entries(ins, depth + 1)
if ins not in parent.namespaces:
parent._namespaces.append(ins)
if not ins.validate_tree():
print >> sys.stderr, ("ERROR: Failed to validate tree in " + \
"construct_inner_namespaces, with ins = '%s'") \
%(ins)
# doesnt construct the entries, so much as links them
def _construct_entries(self, parent, depth=0):
#parent is InnerNamespace or Kind
entry_dict = self._dictionary_by_name(parent.entries)
for p in parent._leafs:
ins_list = p.get_inner_namespace_list()
if len(ins_list) == depth:
entry = entry_dict.get(p.name, p)
entry_dict[p.name] = entry
for name, entry in entry_dict.iteritems():
old_parent = entry.parent
entry._parent = parent
if entry not in parent.entries:
parent._entries.append(entry)
if old_parent is not None and old_parent != parent:
print >> sys.stderr, ("ERROR: Parent changed from '%s' to '%s' for " + \
"entry '%s'") \
%(old_parent.name, parent.name, entry.name)
def _get_children(self):
if self.outer_namespaces is not None:
for i in self.outer_namespaces:
yield i
if self.tags is not None:
for i in self.tags:
yield i
class Tag(Node):
"""
A tag Node corresponding to a top-level <tag> element.
Attributes (Read-Only):
name: alias for id
id: The name of the tag, e.g. for <tag id="BC"/> id = 'BC'
description: The description of the tag, the contents of the <tag> element.
parent: An edge to the parent, which is always the Metadata root node.
entries: A sequence of edges to entries/clones that are using this Tag.
"""
def __init__(self, name, parent, description=""):
self._name = name # 'id' attribute in XML
self._id = name
self._description = description
self._parent = parent
# all entries that have this tag, including clones
self._entries = [] # filled in by Metadata#construct_tags
@property
def id(self):
return self._id
@property
def description(self):
return self._description
@property
def entries(self):
return (i for i in self._entries)
def _get_children(self):
return None
class Typedef(Node):
"""
A typedef Node corresponding to a <typedef> element under a top-level <types>.
Attributes (Read-Only):
name: The name of this typedef as a string.
languages: A dictionary of 'language name' -> 'fully qualified class'.
parent: An edge to the parent, which is always the Metadata root node.
entries: An iterable over all entries which reference this typedef.
"""
def __init__(self, name, parent, languages=None):
self._name = name
self._parent = parent
# all entries that have this typedef
self._entries = [] # filled in by Metadata#construct_types
self._languages = languages or {}
@property
def languages(self):
return self._languages
@property
def entries(self):
return (i for i in self._entries)
def _get_children(self):
return None
class OuterNamespace(Node):
"""
A node corresponding to a <namespace> element under <metadata>
Attributes (Read-Only):
name: The name attribute of the <namespace name="foo"> element.
parent: An edge to the parent, which is always the Metadata root node.
sections: A sequence of Section children.
"""
def __init__(self, name, parent, sections=[]):
self._name = name
self._parent = parent # MetadataSet
self._sections = sections[:]
self._leafs = []
self._children = self._sections
@property
def sections(self):
return (i for i in self._sections)
class Section(Node):
"""
A node corresponding to a <section> element under <namespace>
Attributes (Read-Only):
name: The name attribute of the <section name="foo"> element.
parent: An edge to the parent, which is always an OuterNamespace instance.
description: A string description of the section, or None.
kinds: A sequence of Kind children.
merged_kinds: A sequence of virtual Kind children,
with each Kind's children merged by the kind.name
"""
def __init__(self, name, parent, description=None, kinds=[]):
self._name = name
self._parent = parent
self._description = description
self._kinds = kinds[:]
self._leafs = []
@property
def description(self):
return self._description
@property
def kinds(self):
return (i for i in self._kinds)
def sort_children(self):
self.validate_tree()
# order is always controls,static,dynamic
find_child = lambda x: [i for i in self._get_children() if i.name == x]
new_lst = find_child('controls') \
+ find_child('static') \
+ find_child('dynamic')
self._kinds = new_lst
self.validate_tree()
def _get_children(self):
return (i for i in self.kinds)
@property
def merged_kinds(self):
def aggregate_by_name(acc, el):
existing = [i for i in acc if i.name == el.name]
if existing:
k = existing[0]
else:
k = Kind(el.name, el.parent)
acc.append(k)
k._namespaces.extend(el._namespaces)
k._entries.extend(el._entries)
return acc
new_kinds_lst = reduce(aggregate_by_name, self.kinds, [])
for k in new_kinds_lst:
yield k
def combine_kinds_into_single_node(self):
r"""
Combines the section's Kinds into a single node.
Combines all the children (kinds) of this section into a single
virtual Kind node.
Returns:
A new Kind node that collapses all Kind siblings into one, combining
all their children together.
For example, given self.kinds == [ x, y ]
x y z
/ | | \ --> / | | \
a b c d a b c d
a new instance z is returned in this example.
Remarks:
The children of the kinds are the same references as before, that is
their parents will point to the old parents and not to the new parent.
"""
combined = Kind(name="combined", parent=self)
for k in self._get_children():
combined._namespaces.extend(k.namespaces)
combined._entries.extend(k.entries)
return combined
class Kind(Node):
"""
A node corresponding to one of: <static>,<dynamic>,<controls> under a
<section> element.
Attributes (Read-Only):
name: A string which is one of 'static', 'dynamic, or 'controls'.
parent: An edge to the parent, which is always a Section instance.
namespaces: A sequence of InnerNamespace children.
entries: A sequence of Entry/Clone children.
merged_entries: A sequence of MergedEntry virtual nodes from entries
"""
def __init__(self, name, parent):
self._name = name
self._parent = parent
self._namespaces = []
self._entries = []
self._leafs = []
@property
def namespaces(self):
return self._namespaces
@property
def entries(self):
return self._entries
@property
def merged_entries(self):
for i in self.entries:
yield i.merge()
def sort_children(self):
self._namespaces.sort(key=self._get_name())
self._entries.sort(key=self._get_name())
def _get_children(self):
for i in self.namespaces:
yield i
for i in self.entries:
yield i
def combine_children_by_name(self):
r"""
Combine multiple children with the same name into a single node.
Returns:
A new Kind where all of the children with the same name were combined.
For example:
Given a Kind k:
k
/ | \
a b c
| | |
d e f
a.name == "foo"
b.name == "foo"
c.name == "bar"
The returned Kind will look like this:
k'
/ \
a' c'
/ | |
d e f
Remarks:
This operation is not recursive. To combine the grandchildren and other
ancestors, call this method on the ancestor nodes.
"""
return Kind._combine_children_by_name(self, new_type=type(self))
# new_type is either Kind or InnerNamespace
@staticmethod
def _combine_children_by_name(self, new_type):
new_ins_dict = OrderedDict()
new_ent_dict = OrderedDict()
for ins in self.namespaces:
new_ins = new_ins_dict.setdefault(ins.name,
InnerNamespace(ins.name, parent=self))
new_ins._namespaces.extend(ins.namespaces)
new_ins._entries.extend(ins.entries)
for ent in self.entries:
new_ent = new_ent_dict.setdefault(ent.name,
ent.merge())
kind = new_type(self.name, self.parent)
kind._namespaces = new_ins_dict.values()
kind._entries = new_ent_dict.values()
return kind
class InnerNamespace(Node):
"""
A node corresponding to a <namespace> which is an ancestor of a Kind.
These namespaces may have other namespaces recursively, or entries as leafs.
Attributes (Read-Only):
name: Name attribute from the element, e.g. <namespace name="foo"> -> 'foo'
parent: An edge to the parent, which is an InnerNamespace or a Kind.
namespaces: A sequence of InnerNamespace children.
entries: A sequence of Entry/Clone children.
merged_entries: A sequence of MergedEntry virtual nodes from entries
"""
def __init__(self, name, parent):
self._name = name
self._parent = parent
self._namespaces = []
self._entries = []
self._leafs = []
@property
def namespaces(self):
return self._namespaces
@property
def entries(self):
return self._entries
@property
def merged_entries(self):
for i in self.entries:
yield i.merge()
def sort_children(self):
self._namespaces.sort(key=self._get_name())
self._entries.sort(key=self._get_name())
def _get_children(self):
for i in self.namespaces:
yield i
for i in self.entries:
yield i
def combine_children_by_name(self):
r"""
Combine multiple children with the same name into a single node.
Returns:
A new InnerNamespace where all of the children with the same name were
combined.
For example:
Given an InnerNamespace i:
i
/ | \
a b c
| | |
d e f
a.name == "foo"
b.name == "foo"
c.name == "bar"
The returned InnerNamespace will look like this:
i'
/ \
a' c'
/ | |
d e f
Remarks:
This operation is not recursive. To combine the grandchildren and other
ancestors, call this method on the ancestor nodes.
"""
return Kind._combine_children_by_name(self, new_type=type(self))
class EnumValue(Node):
"""
A class corresponding to a <value> element within an <enum> within an <entry>.
Attributes (Read-Only):
name: A string, e.g. 'ON' or 'OFF'
id: An optional numeric string, e.g. '0' or '0xFF'
deprecated: A boolean, True if the enum should be deprecated.
optional: A boolean
hidden: A boolean, True if the enum should be hidden.
ndk_hidden: A boolean, True if the enum should be hidden in NDK
notes: A string describing the notes, or None.
parent: An edge to the parent, always an Enum instance.
"""
def __init__(self, name, parent,
id=None, deprecated=False, optional=False, hidden=False, notes=None, ndk_hidden=False):
self._name = name # str, e.g. 'ON' or 'OFF'
self._id = id # int, e.g. '0'
self._deprecated = deprecated # bool
self._optional = optional # bool
self._hidden = hidden # bool
self._ndk_hidden = ndk_hidden # bool
self._notes = notes # None or str
self._parent = parent
@property
def id(self):
return self._id
@property
def deprecated(self):
return self._deprecated
@property
def optional(self):
return self._optional
@property
def hidden(self):
return self._hidden
@property
def ndk_hidden(self):
return self._ndk_hidden
@property
def notes(self):
return self._notes
def _get_children(self):
return None
class Enum(Node):
"""
A class corresponding to an <enum> element within an <entry>.
Attributes (Read-Only):
parent: An edge to the parent, always an Entry instance.
values: A sequence of EnumValue children.
has_values_with_id: A boolean representing if any of the children have a
non-empty id property.
"""
def __init__(self, parent, values, ids={}, deprecateds=[],
optionals=[], hiddens=[], notes={}, ndk_hiddens=[]):
self._values = \
[ EnumValue(val, self, ids.get(val), val in deprecateds, val in optionals, val in hiddens, \
notes.get(val), val in ndk_hiddens) \
for val in values ]
self._parent = parent
self._name = None
@property
def values(self):
return (i for i in self._values)
@property
def has_values_with_id(self):
return bool(any(i for i in self.values if i.id))
def _get_children(self):
return (i for i in self._values)
class Entry(Node):
"""
A node corresponding to an <entry> element.
Attributes (Read-Only):
parent: An edge to the parent node, which is an InnerNamespace or Kind.
name: The fully qualified name string, e.g. 'android.shading.mode'
name_short: The name attribute from <entry name="mode">, e.g. mode
type: The type attribute from <entry type="bar">
kind: A string ('static', 'dynamic', 'controls') corresponding to the
ancestor Kind#name
container: The container attribute from <entry container="array">, or None.
container_sizes: A sequence of size strings or None if container is None.
enum: An Enum instance if the enum attribute is true, None otherwise.
visibility: The visibility of this entry ('system', 'hidden', 'public')
across the system. System entries are only visible in native code
headers. Hidden entries are marked @hide in managed code, while
public entries are visible in the Android SDK.
applied_visibility: As visibility, but always valid, defaulting to 'system'
if no visibility is given for an entry.
applied_ndk_visible: Always valid. Default is 'false'.
Set to 'true' when the visibility implied entry is visible
in NDK.
synthetic: The C-level visibility of this entry ('false', 'true').
Synthetic entries will not be generated into the native metadata
list of entries (in C code). In general a synthetic entry is
glued together at the Java layer from multiple visibiltity=hidden
entries.
hwlevel: The lowest hardware level at which the entry is guaranteed
to be supported by the camera device. All devices with higher
hwlevels will also include this entry. None means that the
entry is optional on any hardware level.
deprecated: Marks an entry as @Deprecated in the Java layer; if within an
unreleased version this needs to be removed altogether. If applied
to an entry from an older release, then this means the entry
should be ignored by newer code.
optional: a bool representing the optional attribute, which denotes the entry
is required for hardware level full devices, but optional for other
hardware levels. None if not present.
applied_optional: As optional but always valid, defaulting to False if no
optional attribute is present.
tuple_values: A sequence of strings describing the tuple values,
None if container is not 'tuple'.
description: A string description, or None.
range: A string range, or None.
units: A string units, or None.
tags: A sequence of Tag nodes associated with this Entry.
type_notes: A string describing notes for the type, or None.
typedef: A Typedef associated with this Entry, or None.
Remarks:
Subclass Clone can be used interchangeable with an Entry,
for when we don't care about the underlying type.
parent and tags edges are invalid until after Metadata#construct_graph
has been invoked.
"""
def __init__(self, **kwargs):
"""
Instantiate a new Entry node.
Args:
name: A string with the fully qualified name, e.g. 'android.shading.mode'
type: A string describing the type, e.g. 'int32'
kind: A string describing the kind, e.g. 'static'
Args (if container):
container: A string describing the container, e.g. 'array' or 'tuple'
container_sizes: A list of string sizes if a container, or None otherwise
Args (if container is 'tuple'):
tuple_values: A list of tuple values, e.g. ['width', 'height']
Args (if the 'enum' attribute is true):
enum: A boolean, True if this is an enum, False otherwise
enum_values: A list of value strings, e.g. ['ON', 'OFF']
enum_optionals: A list of optional enum values, e.g. ['OFF']
enum_notes: A dictionary of value->notes strings.
enum_ids: A dictionary of value->id strings.
Args (optional):
description: A string with a description of the entry.
range: A string with the range of the values of the entry, e.g. '>= 0'
units: A string with the units of the values, e.g. 'inches'
details: A string with the detailed documentation for the entry
hal_details: A string with the HAL implementation details for the entry
tag_ids: A list of tag ID strings, e.g. ['BC', 'V1']
type_notes: A string with the notes for the type
visibility: A string describing the visibility, eg 'system', 'hidden',
'public'
synthetic: A bool to mark whether this entry is visible only at the Java
layer (True), or at both layers (False = default).
hwlevel: A string of the HW level (one of 'legacy', 'limited', 'full')
deprecated: A bool to mark whether this is @Deprecated at the Java layer
(default = False).
optional: A bool to mark whether optional for non-full hardware devices
typedef: A string corresponding to a typedef's name attribute.
"""
if kwargs.get('type') is None:
print >> sys.stderr, "ERROR: Missing type for entry '%s' kind '%s'" \
%(kwargs.get('name'), kwargs.get('kind'))
# Attributes are Read-Only, but edges may be mutated by
# Metadata, particularly during construct_graph
self._name = kwargs['name']
self._type = kwargs['type']
self._kind = kwargs['kind'] # static, dynamic, or controls
self._init_common(**kwargs)
@property
def type(self):
return self._type
@property
def kind(self):
return self._kind
@property
def visibility(self):
return self._visibility
@property
def applied_visibility(self):
return self._visibility or 'system'
@property
def applied_ndk_visible(self):
if self._visibility in ("public", "ndk_public"):
return "true"
return "false"
@property
def synthetic(self):
return self._synthetic
@property
def hwlevel(self):
return self._hwlevel
@property
def deprecated(self):
return self._deprecated
# TODO: optional should just return hwlevel is None
@property
def optional(self):
return self._optional
@property
def applied_optional(self):
return self._optional or False
@property
def name_short(self):
return self.get_name_minimal()
@property
def container(self):
return self._container
@property
def container_sizes(self):
if self._container_sizes is None:
return None
else:
return (i for i in self._container_sizes)
@property
def tuple_values(self):
if self._tuple_values is None:
return None
else:
return (i for i in self._tuple_values)
@property
def description(self):
return self._description
@property
def range(self):
return self._range
@property
def units(self):
return self._units
@property
def details(self):
return self._details
@property
def hal_details(self):
return self._hal_details
@property
def tags(self):
if self._tags is None:
return None
else:
return (i for i in self._tags)
@property
def type_notes(self):
return self._type_notes
@property
def typedef(self):
return self._typedef
@property
def enum(self):
return self._enum
def _get_children(self):
if self.enum:
yield self.enum
def sort_children(self):
return None
def is_clone(self):
"""
Whether or not this is a Clone instance.
Returns:
False
"""
return False
def _init_common(self, **kwargs):
self._parent = None # filled in by Metadata::_construct_entries
self._container = kwargs.get('container')
self._container_sizes = kwargs.get('container_sizes')
# access these via the 'enum' prop
enum_values = kwargs.get('enum_values')
enum_deprecateds = kwargs.get('enum_deprecateds')
enum_optionals = kwargs.get('enum_optionals')
enum_hiddens = kwargs.get('enum_hiddens')
enum_ndk_hiddens = kwargs.get('enum_ndk_hiddens')
enum_notes = kwargs.get('enum_notes') # { value => notes }
enum_ids = kwargs.get('enum_ids') # { value => notes }
self._tuple_values = kwargs.get('tuple_values')
self._description = kwargs.get('description')
self._range = kwargs.get('range')
self._units = kwargs.get('units')
self._details = kwargs.get('details')
self._hal_details = kwargs.get('hal_details')
self._tag_ids = kwargs.get('tag_ids', [])
self._tags = None # Filled in by Metadata::_construct_tags
self._type_notes = kwargs.get('type_notes')
self._type_name = kwargs.get('type_name')
self._typedef = None # Filled in by Metadata::_construct_types
if kwargs.get('enum', False):
self._enum = Enum(self, enum_values, enum_ids, enum_deprecateds, enum_optionals,
enum_hiddens, enum_notes, enum_ndk_hiddens)
else:
self._enum = None
self._visibility = kwargs.get('visibility')
self._synthetic = kwargs.get('synthetic', False)
self._hwlevel = kwargs.get('hwlevel')
self._deprecated = kwargs.get('deprecated', False)
self._optional = kwargs.get('optional')
self._ndk_visible = kwargs.get('ndk_visible')
self._property_keys = kwargs
def merge(self):
"""
Copy the attributes into a new entry, merging it with the target entry
if it's a clone.
"""
return MergedEntry(self)
# Helpers for accessing less than the fully qualified name
def get_name_as_list(self):
"""
Returns the name as a list split by a period.
For example:
entry.name is 'android.lens.info.shading'
entry.get_name_as_list() == ['android', 'lens', 'info', 'shading']
"""
return self.name.split(".")
def get_inner_namespace_list(self):
"""
Returns the inner namespace part of the name as a list
For example:
entry.name is 'android.lens.info.shading'
entry.get_inner_namespace_list() == ['info']
"""
return self.get_name_as_list()[2:-1]
def get_outer_namespace(self):
"""
Returns the outer namespace as a string.
For example:
entry.name is 'android.lens.info.shading'
entry.get_outer_namespace() == 'android'
Remarks:
Since outer namespaces are non-recursive,
and each entry has one, this does not need to be a list.
"""
return self.get_name_as_list()[0]
def get_section(self):
"""
Returns the section as a string.
For example:
entry.name is 'android.lens.info.shading'
entry.get_section() == ''
Remarks:
Since outer namespaces are non-recursive,
and each entry has one, this does not need to be a list.
"""
return self.get_name_as_list()[1]
def get_name_minimal(self):
"""
Returns only the last component of the fully qualified name as a string.
For example:
entry.name is 'android.lens.info.shading'
entry.get_name_minimal() == 'shading'
Remarks:
entry.name_short it an alias for this
"""
return self.get_name_as_list()[-1]
def get_path_without_name(self):
"""
Returns a string path to the entry, with the name component excluded.
For example:
entry.name is 'android.lens.info.shading'
entry.get_path_without_name() == 'android.lens.info'
"""
return ".".join(self.get_name_as_list()[0:-1])
class Clone(Entry):
"""
A Node corresponding to a <clone> element. It has all the attributes of an
<entry> element (Entry) plus the additions specified below.
Attributes (Read-Only):
entry: an edge to an Entry object that this targets
target_kind: A string describing the kind of the target entry.
name: a string of the name, same as entry.name
kind: a string of the Kind ancestor, one of 'static', 'controls', 'dynamic'
for the <clone> element.
type: always None, since a clone cannot override the type.
"""
def __init__(self, entry=None, **kwargs):
"""
Instantiate a new Clone node.
Args:
name: A string with the fully qualified name, e.g. 'android.shading.mode'
type: A string describing the type, e.g. 'int32'
kind: A string describing the kind, e.g. 'static'
target_kind: A string for the kind of the target entry, e.g. 'dynamic'
Args (if container):
container: A string describing the container, e.g. 'array' or 'tuple'
container_sizes: A list of string sizes if a container, or None otherwise
Args (if container is 'tuple'):
tuple_values: A list of tuple values, e.g. ['width', 'height']
Args (if the 'enum' attribute is true):
enum: A boolean, True if this is an enum, False otherwise
enum_values: A list of value strings, e.g. ['ON', 'OFF']
enum_optionals: A list of optional enum values, e.g. ['OFF']
enum_notes: A dictionary of value->notes strings.
enum_ids: A dictionary of value->id strings.
Args (optional):
entry: An edge to the corresponding target Entry.
description: A string with a description of the entry.
range: A string with the range of the values of the entry, e.g. '>= 0'
units: A string with the units of the values, e.g. 'inches'
details: A string with the detailed documentation for the entry
hal_details: A string with the HAL implementation details for the entry
tag_ids: A list of tag ID strings, e.g. ['BC', 'V1']
type_notes: A string with the notes for the type
Remarks:
Note that type is not specified since it has to be the same as the
entry.type.
"""
self._entry = entry # Entry object
self._target_kind = kwargs['target_kind']
self._name = kwargs['name'] # same as entry.name
self._kind = kwargs['kind']
# illegal to override the type, it should be the same as the entry
self._type = None
# the rest of the kwargs are optional
# can be used to override the regular entry data
self._init_common(**kwargs)
@property
def entry(self):
return self._entry
@property
def target_kind(self):
return self._target_kind
def is_clone(self):
"""
Whether or not this is a Clone instance.
Returns:
True
"""
return True
class MergedEntry(Entry):
"""
A MergedEntry has all the attributes of a Clone and its target Entry merged
together.
Remarks:
Useful when we want to 'unfold' a clone into a real entry by copying out
the target entry data. In this case we don't care about distinguishing
a clone vs an entry.
"""
def __init__(self, entry):
"""
Create a new instance of MergedEntry.
Args:
entry: An Entry or Clone instance
"""
props_distinct = ['description', 'units', 'range', 'details',
'hal_details', 'tags', 'kind']
for p in props_distinct:
p = '_' + p
if entry.is_clone():
setattr(self, p, getattr(entry, p) or getattr(entry.entry, p))
else:
setattr(self, p, getattr(entry, p))
props_common = ['parent', 'name', 'container',
'container_sizes', 'enum',
'tuple_values',
'type',
'type_notes',
'visibility',
'ndk_visible',
'synthetic',
'hwlevel',
'deprecated',
'optional',
'typedef'
]
for p in props_common:
p = '_' + p
if entry.is_clone():
setattr(self, p, getattr(entry.entry, p))
else:
setattr(self, p, getattr(entry, p))