/* * Copyright (C) 2014 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <functional> #include <memory> #include "base/macros.h" #include "base/utils.h" #include "builder.h" #include "codegen_test_utils.h" #include "dex/dex_file.h" #include "dex/dex_instruction.h" #include "driver/compiler_options.h" #include "nodes.h" #include "optimizing_unit_test.h" #include "register_allocator_linear_scan.h" #include "utils/arm/assembler_arm_vixl.h" #include "utils/arm/managed_register_arm.h" #include "utils/mips/managed_register_mips.h" #include "utils/mips64/managed_register_mips64.h" #include "utils/x86/managed_register_x86.h" #include "gtest/gtest.h" namespace art { // Return all combinations of ISA and code generator that are executable on // hardware, or on simulator, and that we'd like to test. static ::std::vector<CodegenTargetConfig> GetTargetConfigs() { ::std::vector<CodegenTargetConfig> v; ::std::vector<CodegenTargetConfig> test_config_candidates = { #ifdef ART_ENABLE_CODEGEN_arm // TODO: Should't this be `kThumb2` instead of `kArm` here? CodegenTargetConfig(InstructionSet::kArm, create_codegen_arm_vixl32), #endif #ifdef ART_ENABLE_CODEGEN_arm64 CodegenTargetConfig(InstructionSet::kArm64, create_codegen_arm64), #endif #ifdef ART_ENABLE_CODEGEN_x86 CodegenTargetConfig(InstructionSet::kX86, create_codegen_x86), #endif #ifdef ART_ENABLE_CODEGEN_x86_64 CodegenTargetConfig(InstructionSet::kX86_64, create_codegen_x86_64), #endif #ifdef ART_ENABLE_CODEGEN_mips CodegenTargetConfig(InstructionSet::kMips, create_codegen_mips), #endif #ifdef ART_ENABLE_CODEGEN_mips64 CodegenTargetConfig(InstructionSet::kMips64, create_codegen_mips64) #endif }; for (const CodegenTargetConfig& test_config : test_config_candidates) { if (CanExecute(test_config.GetInstructionSet())) { v.push_back(test_config); } } return v; } class CodegenTest : public OptimizingUnitTest { protected: void TestCode(const std::vector<uint16_t>& data, bool has_result = false, int32_t expected = 0); void TestCodeLong(const std::vector<uint16_t>& data, bool has_result, int64_t expected); void TestComparison(IfCondition condition, int64_t i, int64_t j, DataType::Type type, const CodegenTargetConfig target_config); }; void CodegenTest::TestCode(const std::vector<uint16_t>& data, bool has_result, int32_t expected) { for (const CodegenTargetConfig& target_config : GetTargetConfigs()) { ResetPoolAndAllocator(); HGraph* graph = CreateCFG(data); // Remove suspend checks, they cannot be executed in this context. RemoveSuspendChecks(graph); RunCode(target_config, graph, [](HGraph*) {}, has_result, expected); } } void CodegenTest::TestCodeLong(const std::vector<uint16_t>& data, bool has_result, int64_t expected) { for (const CodegenTargetConfig& target_config : GetTargetConfigs()) { ResetPoolAndAllocator(); HGraph* graph = CreateCFG(data, DataType::Type::kInt64); // Remove suspend checks, they cannot be executed in this context. RemoveSuspendChecks(graph); RunCode(target_config, graph, [](HGraph*) {}, has_result, expected); } } TEST_F(CodegenTest, ReturnVoid) { const std::vector<uint16_t> data = ZERO_REGISTER_CODE_ITEM(Instruction::RETURN_VOID); TestCode(data); } TEST_F(CodegenTest, CFG1) { const std::vector<uint16_t> data = ZERO_REGISTER_CODE_ITEM( Instruction::GOTO | 0x100, Instruction::RETURN_VOID); TestCode(data); } TEST_F(CodegenTest, CFG2) { const std::vector<uint16_t> data = ZERO_REGISTER_CODE_ITEM( Instruction::GOTO | 0x100, Instruction::GOTO | 0x100, Instruction::RETURN_VOID); TestCode(data); } TEST_F(CodegenTest, CFG3) { const std::vector<uint16_t> data1 = ZERO_REGISTER_CODE_ITEM( Instruction::GOTO | 0x200, Instruction::RETURN_VOID, Instruction::GOTO | 0xFF00); TestCode(data1); const std::vector<uint16_t> data2 = ZERO_REGISTER_CODE_ITEM( Instruction::GOTO_16, 3, Instruction::RETURN_VOID, Instruction::GOTO_16, 0xFFFF); TestCode(data2); const std::vector<uint16_t> data3 = ZERO_REGISTER_CODE_ITEM( Instruction::GOTO_32, 4, 0, Instruction::RETURN_VOID, Instruction::GOTO_32, 0xFFFF, 0xFFFF); TestCode(data3); } TEST_F(CodegenTest, CFG4) { const std::vector<uint16_t> data = ZERO_REGISTER_CODE_ITEM( Instruction::RETURN_VOID, Instruction::GOTO | 0x100, Instruction::GOTO | 0xFE00); TestCode(data); } TEST_F(CodegenTest, CFG5) { const std::vector<uint16_t> data = ONE_REGISTER_CODE_ITEM( Instruction::CONST_4 | 0 | 0, Instruction::IF_EQ, 3, Instruction::GOTO | 0x100, Instruction::RETURN_VOID); TestCode(data); } TEST_F(CodegenTest, IntConstant) { const std::vector<uint16_t> data = ONE_REGISTER_CODE_ITEM( Instruction::CONST_4 | 0 | 0, Instruction::RETURN_VOID); TestCode(data); } TEST_F(CodegenTest, Return1) { const std::vector<uint16_t> data = ONE_REGISTER_CODE_ITEM( Instruction::CONST_4 | 0 | 0, Instruction::RETURN | 0); TestCode(data, true, 0); } TEST_F(CodegenTest, Return2) { const std::vector<uint16_t> data = TWO_REGISTERS_CODE_ITEM( Instruction::CONST_4 | 0 | 0, Instruction::CONST_4 | 0 | 1 << 8, Instruction::RETURN | 1 << 8); TestCode(data, true, 0); } TEST_F(CodegenTest, Return3) { const std::vector<uint16_t> data = TWO_REGISTERS_CODE_ITEM( Instruction::CONST_4 | 0 | 0, Instruction::CONST_4 | 1 << 8 | 1 << 12, Instruction::RETURN | 1 << 8); TestCode(data, true, 1); } TEST_F(CodegenTest, ReturnIf1) { const std::vector<uint16_t> data = TWO_REGISTERS_CODE_ITEM( Instruction::CONST_4 | 0 | 0, Instruction::CONST_4 | 1 << 8 | 1 << 12, Instruction::IF_EQ, 3, Instruction::RETURN | 0 << 8, Instruction::RETURN | 1 << 8); TestCode(data, true, 1); } TEST_F(CodegenTest, ReturnIf2) { const std::vector<uint16_t> data = TWO_REGISTERS_CODE_ITEM( Instruction::CONST_4 | 0 | 0, Instruction::CONST_4 | 1 << 8 | 1 << 12, Instruction::IF_EQ | 0 << 4 | 1 << 8, 3, Instruction::RETURN | 0 << 8, Instruction::RETURN | 1 << 8); TestCode(data, true, 0); } // Exercise bit-wise (one's complement) not-int instruction. #define NOT_INT_TEST(TEST_NAME, INPUT, EXPECTED_OUTPUT) \ TEST_F(CodegenTest, TEST_NAME) { \ const int32_t input = INPUT; \ const uint16_t input_lo = Low16Bits(input); \ const uint16_t input_hi = High16Bits(input); \ const std::vector<uint16_t> data = TWO_REGISTERS_CODE_ITEM( \ Instruction::CONST | 0 << 8, input_lo, input_hi, \ Instruction::NOT_INT | 1 << 8 | 0 << 12 , \ Instruction::RETURN | 1 << 8); \ \ TestCode(data, true, EXPECTED_OUTPUT); \ } NOT_INT_TEST(ReturnNotIntMinus2, -2, 1) NOT_INT_TEST(ReturnNotIntMinus1, -1, 0) NOT_INT_TEST(ReturnNotInt0, 0, -1) NOT_INT_TEST(ReturnNotInt1, 1, -2) NOT_INT_TEST(ReturnNotIntINT32_MIN, -2147483648, 2147483647) // (2^31) - 1 NOT_INT_TEST(ReturnNotIntINT32_MINPlus1, -2147483647, 2147483646) // (2^31) - 2 NOT_INT_TEST(ReturnNotIntINT32_MAXMinus1, 2147483646, -2147483647) // -(2^31) - 1 NOT_INT_TEST(ReturnNotIntINT32_MAX, 2147483647, -2147483648) // -(2^31) #undef NOT_INT_TEST // Exercise bit-wise (one's complement) not-long instruction. #define NOT_LONG_TEST(TEST_NAME, INPUT, EXPECTED_OUTPUT) \ TEST_F(CodegenTest, TEST_NAME) { \ const int64_t input = INPUT; \ const uint16_t word0 = Low16Bits(Low32Bits(input)); /* LSW. */ \ const uint16_t word1 = High16Bits(Low32Bits(input)); \ const uint16_t word2 = Low16Bits(High32Bits(input)); \ const uint16_t word3 = High16Bits(High32Bits(input)); /* MSW. */ \ const std::vector<uint16_t> data = FOUR_REGISTERS_CODE_ITEM( \ Instruction::CONST_WIDE | 0 << 8, word0, word1, word2, word3, \ Instruction::NOT_LONG | 2 << 8 | 0 << 12, \ Instruction::RETURN_WIDE | 2 << 8); \ \ TestCodeLong(data, true, EXPECTED_OUTPUT); \ } NOT_LONG_TEST(ReturnNotLongMinus2, INT64_C(-2), INT64_C(1)) NOT_LONG_TEST(ReturnNotLongMinus1, INT64_C(-1), INT64_C(0)) NOT_LONG_TEST(ReturnNotLong0, INT64_C(0), INT64_C(-1)) NOT_LONG_TEST(ReturnNotLong1, INT64_C(1), INT64_C(-2)) NOT_LONG_TEST(ReturnNotLongINT32_MIN, INT64_C(-2147483648), INT64_C(2147483647)) // (2^31) - 1 NOT_LONG_TEST(ReturnNotLongINT32_MINPlus1, INT64_C(-2147483647), INT64_C(2147483646)) // (2^31) - 2 NOT_LONG_TEST(ReturnNotLongINT32_MAXMinus1, INT64_C(2147483646), INT64_C(-2147483647)) // -(2^31) - 1 NOT_LONG_TEST(ReturnNotLongINT32_MAX, INT64_C(2147483647), INT64_C(-2147483648)) // -(2^31) // Note that the C++ compiler won't accept // INT64_C(-9223372036854775808) (that is, INT64_MIN) as a valid // int64_t literal, so we use INT64_C(-9223372036854775807)-1 instead. NOT_LONG_TEST(ReturnNotINT64_MIN, INT64_C(-9223372036854775807)-1, INT64_C(9223372036854775807)); // (2^63) - 1 NOT_LONG_TEST(ReturnNotINT64_MINPlus1, INT64_C(-9223372036854775807), INT64_C(9223372036854775806)); // (2^63) - 2 NOT_LONG_TEST(ReturnNotLongINT64_MAXMinus1, INT64_C(9223372036854775806), INT64_C(-9223372036854775807)); // -(2^63) - 1 NOT_LONG_TEST(ReturnNotLongINT64_MAX, INT64_C(9223372036854775807), INT64_C(-9223372036854775807)-1); // -(2^63) #undef NOT_LONG_TEST TEST_F(CodegenTest, IntToLongOfLongToInt) { const int64_t input = INT64_C(4294967296); // 2^32 const uint16_t word0 = Low16Bits(Low32Bits(input)); // LSW. const uint16_t word1 = High16Bits(Low32Bits(input)); const uint16_t word2 = Low16Bits(High32Bits(input)); const uint16_t word3 = High16Bits(High32Bits(input)); // MSW. const std::vector<uint16_t> data = FIVE_REGISTERS_CODE_ITEM( Instruction::CONST_WIDE | 0 << 8, word0, word1, word2, word3, Instruction::CONST_WIDE | 2 << 8, 1, 0, 0, 0, Instruction::ADD_LONG | 0, 0 << 8 | 2, // v0 <- 2^32 + 1 Instruction::LONG_TO_INT | 4 << 8 | 0 << 12, Instruction::INT_TO_LONG | 2 << 8 | 4 << 12, Instruction::RETURN_WIDE | 2 << 8); TestCodeLong(data, true, 1); } TEST_F(CodegenTest, ReturnAdd1) { const std::vector<uint16_t> data = TWO_REGISTERS_CODE_ITEM( Instruction::CONST_4 | 3 << 12 | 0, Instruction::CONST_4 | 4 << 12 | 1 << 8, Instruction::ADD_INT, 1 << 8 | 0, Instruction::RETURN); TestCode(data, true, 7); } TEST_F(CodegenTest, ReturnAdd2) { const std::vector<uint16_t> data = TWO_REGISTERS_CODE_ITEM( Instruction::CONST_4 | 3 << 12 | 0, Instruction::CONST_4 | 4 << 12 | 1 << 8, Instruction::ADD_INT_2ADDR | 1 << 12, Instruction::RETURN); TestCode(data, true, 7); } TEST_F(CodegenTest, ReturnAdd3) { const std::vector<uint16_t> data = ONE_REGISTER_CODE_ITEM( Instruction::CONST_4 | 4 << 12 | 0 << 8, Instruction::ADD_INT_LIT8, 3 << 8 | 0, Instruction::RETURN); TestCode(data, true, 7); } TEST_F(CodegenTest, ReturnAdd4) { const std::vector<uint16_t> data = ONE_REGISTER_CODE_ITEM( Instruction::CONST_4 | 4 << 12 | 0 << 8, Instruction::ADD_INT_LIT16, 3, Instruction::RETURN); TestCode(data, true, 7); } TEST_F(CodegenTest, ReturnMulInt) { const std::vector<uint16_t> data = TWO_REGISTERS_CODE_ITEM( Instruction::CONST_4 | 3 << 12 | 0, Instruction::CONST_4 | 4 << 12 | 1 << 8, Instruction::MUL_INT, 1 << 8 | 0, Instruction::RETURN); TestCode(data, true, 12); } TEST_F(CodegenTest, ReturnMulInt2addr) { const std::vector<uint16_t> data = TWO_REGISTERS_CODE_ITEM( Instruction::CONST_4 | 3 << 12 | 0, Instruction::CONST_4 | 4 << 12 | 1 << 8, Instruction::MUL_INT_2ADDR | 1 << 12, Instruction::RETURN); TestCode(data, true, 12); } TEST_F(CodegenTest, ReturnMulLong) { const std::vector<uint16_t> data = FOUR_REGISTERS_CODE_ITEM( Instruction::CONST_WIDE | 0 << 8, 3, 0, 0, 0, Instruction::CONST_WIDE | 2 << 8, 4, 0, 0, 0, Instruction::MUL_LONG, 2 << 8 | 0, Instruction::RETURN_WIDE); TestCodeLong(data, true, 12); } TEST_F(CodegenTest, ReturnMulLong2addr) { const std::vector<uint16_t> data = FOUR_REGISTERS_CODE_ITEM( Instruction::CONST_WIDE | 0 << 8, 3, 0, 0, 0, Instruction::CONST_WIDE | 2 << 8, 4, 0, 0, 0, Instruction::MUL_LONG_2ADDR | 2 << 12, Instruction::RETURN_WIDE); TestCodeLong(data, true, 12); } TEST_F(CodegenTest, ReturnMulIntLit8) { const std::vector<uint16_t> data = ONE_REGISTER_CODE_ITEM( Instruction::CONST_4 | 4 << 12 | 0 << 8, Instruction::MUL_INT_LIT8, 3 << 8 | 0, Instruction::RETURN); TestCode(data, true, 12); } TEST_F(CodegenTest, ReturnMulIntLit16) { const std::vector<uint16_t> data = ONE_REGISTER_CODE_ITEM( Instruction::CONST_4 | 4 << 12 | 0 << 8, Instruction::MUL_INT_LIT16, 3, Instruction::RETURN); TestCode(data, true, 12); } TEST_F(CodegenTest, NonMaterializedCondition) { for (CodegenTargetConfig target_config : GetTargetConfigs()) { HGraph* graph = CreateGraph(); HBasicBlock* entry = new (GetAllocator()) HBasicBlock(graph); graph->AddBlock(entry); graph->SetEntryBlock(entry); entry->AddInstruction(new (GetAllocator()) HGoto()); HBasicBlock* first_block = new (GetAllocator()) HBasicBlock(graph); graph->AddBlock(first_block); entry->AddSuccessor(first_block); HIntConstant* constant0 = graph->GetIntConstant(0); HIntConstant* constant1 = graph->GetIntConstant(1); HEqual* equal = new (GetAllocator()) HEqual(constant0, constant0); first_block->AddInstruction(equal); first_block->AddInstruction(new (GetAllocator()) HIf(equal)); HBasicBlock* then_block = new (GetAllocator()) HBasicBlock(graph); HBasicBlock* else_block = new (GetAllocator()) HBasicBlock(graph); HBasicBlock* exit_block = new (GetAllocator()) HBasicBlock(graph); graph->SetExitBlock(exit_block); graph->AddBlock(then_block); graph->AddBlock(else_block); graph->AddBlock(exit_block); first_block->AddSuccessor(then_block); first_block->AddSuccessor(else_block); then_block->AddSuccessor(exit_block); else_block->AddSuccessor(exit_block); exit_block->AddInstruction(new (GetAllocator()) HExit()); then_block->AddInstruction(new (GetAllocator()) HReturn(constant0)); else_block->AddInstruction(new (GetAllocator()) HReturn(constant1)); ASSERT_FALSE(equal->IsEmittedAtUseSite()); graph->BuildDominatorTree(); PrepareForRegisterAllocation(graph).Run(); ASSERT_TRUE(equal->IsEmittedAtUseSite()); auto hook_before_codegen = [](HGraph* graph_in) { HBasicBlock* block = graph_in->GetEntryBlock()->GetSuccessors()[0]; HParallelMove* move = new (graph_in->GetAllocator()) HParallelMove(graph_in->GetAllocator()); block->InsertInstructionBefore(move, block->GetLastInstruction()); }; RunCode(target_config, graph, hook_before_codegen, true, 0); } } TEST_F(CodegenTest, MaterializedCondition1) { for (CodegenTargetConfig target_config : GetTargetConfigs()) { // Check that condition are materialized correctly. A materialized condition // should yield `1` if it evaluated to true, and `0` otherwise. // We force the materialization of comparisons for different combinations of // inputs and check the results. int lhs[] = {1, 2, -1, 2, 0xabc}; int rhs[] = {2, 1, 2, -1, 0xabc}; for (size_t i = 0; i < arraysize(lhs); i++) { HGraph* graph = CreateGraph(); HBasicBlock* entry_block = new (GetAllocator()) HBasicBlock(graph); graph->AddBlock(entry_block); graph->SetEntryBlock(entry_block); entry_block->AddInstruction(new (GetAllocator()) HGoto()); HBasicBlock* code_block = new (GetAllocator()) HBasicBlock(graph); graph->AddBlock(code_block); HBasicBlock* exit_block = new (GetAllocator()) HBasicBlock(graph); graph->AddBlock(exit_block); exit_block->AddInstruction(new (GetAllocator()) HExit()); entry_block->AddSuccessor(code_block); code_block->AddSuccessor(exit_block); graph->SetExitBlock(exit_block); HIntConstant* cst_lhs = graph->GetIntConstant(lhs[i]); HIntConstant* cst_rhs = graph->GetIntConstant(rhs[i]); HLessThan cmp_lt(cst_lhs, cst_rhs); code_block->AddInstruction(&cmp_lt); HReturn ret(&cmp_lt); code_block->AddInstruction(&ret); graph->BuildDominatorTree(); auto hook_before_codegen = [](HGraph* graph_in) { HBasicBlock* block = graph_in->GetEntryBlock()->GetSuccessors()[0]; HParallelMove* move = new (graph_in->GetAllocator()) HParallelMove(graph_in->GetAllocator()); block->InsertInstructionBefore(move, block->GetLastInstruction()); }; RunCode(target_config, graph, hook_before_codegen, true, lhs[i] < rhs[i]); } } } TEST_F(CodegenTest, MaterializedCondition2) { for (CodegenTargetConfig target_config : GetTargetConfigs()) { // Check that HIf correctly interprets a materialized condition. // We force the materialization of comparisons for different combinations of // inputs. An HIf takes the materialized combination as input and returns a // value that we verify. int lhs[] = {1, 2, -1, 2, 0xabc}; int rhs[] = {2, 1, 2, -1, 0xabc}; for (size_t i = 0; i < arraysize(lhs); i++) { HGraph* graph = CreateGraph(); HBasicBlock* entry_block = new (GetAllocator()) HBasicBlock(graph); graph->AddBlock(entry_block); graph->SetEntryBlock(entry_block); entry_block->AddInstruction(new (GetAllocator()) HGoto()); HBasicBlock* if_block = new (GetAllocator()) HBasicBlock(graph); graph->AddBlock(if_block); HBasicBlock* if_true_block = new (GetAllocator()) HBasicBlock(graph); graph->AddBlock(if_true_block); HBasicBlock* if_false_block = new (GetAllocator()) HBasicBlock(graph); graph->AddBlock(if_false_block); HBasicBlock* exit_block = new (GetAllocator()) HBasicBlock(graph); graph->AddBlock(exit_block); exit_block->AddInstruction(new (GetAllocator()) HExit()); graph->SetEntryBlock(entry_block); entry_block->AddSuccessor(if_block); if_block->AddSuccessor(if_true_block); if_block->AddSuccessor(if_false_block); if_true_block->AddSuccessor(exit_block); if_false_block->AddSuccessor(exit_block); graph->SetExitBlock(exit_block); HIntConstant* cst_lhs = graph->GetIntConstant(lhs[i]); HIntConstant* cst_rhs = graph->GetIntConstant(rhs[i]); HLessThan cmp_lt(cst_lhs, cst_rhs); if_block->AddInstruction(&cmp_lt); // We insert a dummy instruction to separate the HIf from the HLessThan // and force the materialization of the condition. HMemoryBarrier force_materialization(MemBarrierKind::kAnyAny, 0); if_block->AddInstruction(&force_materialization); HIf if_lt(&cmp_lt); if_block->AddInstruction(&if_lt); HIntConstant* cst_lt = graph->GetIntConstant(1); HReturn ret_lt(cst_lt); if_true_block->AddInstruction(&ret_lt); HIntConstant* cst_ge = graph->GetIntConstant(0); HReturn ret_ge(cst_ge); if_false_block->AddInstruction(&ret_ge); graph->BuildDominatorTree(); auto hook_before_codegen = [](HGraph* graph_in) { HBasicBlock* block = graph_in->GetEntryBlock()->GetSuccessors()[0]; HParallelMove* move = new (graph_in->GetAllocator()) HParallelMove(graph_in->GetAllocator()); block->InsertInstructionBefore(move, block->GetLastInstruction()); }; RunCode(target_config, graph, hook_before_codegen, true, lhs[i] < rhs[i]); } } } TEST_F(CodegenTest, ReturnDivIntLit8) { const std::vector<uint16_t> data = ONE_REGISTER_CODE_ITEM( Instruction::CONST_4 | 4 << 12 | 0 << 8, Instruction::DIV_INT_LIT8, 3 << 8 | 0, Instruction::RETURN); TestCode(data, true, 1); } TEST_F(CodegenTest, ReturnDivInt2Addr) { const std::vector<uint16_t> data = TWO_REGISTERS_CODE_ITEM( Instruction::CONST_4 | 4 << 12 | 0, Instruction::CONST_4 | 2 << 12 | 1 << 8, Instruction::DIV_INT_2ADDR | 1 << 12, Instruction::RETURN); TestCode(data, true, 2); } // Helper method. void CodegenTest::TestComparison(IfCondition condition, int64_t i, int64_t j, DataType::Type type, const CodegenTargetConfig target_config) { HGraph* graph = CreateGraph(); HBasicBlock* entry_block = new (GetAllocator()) HBasicBlock(graph); graph->AddBlock(entry_block); graph->SetEntryBlock(entry_block); entry_block->AddInstruction(new (GetAllocator()) HGoto()); HBasicBlock* block = new (GetAllocator()) HBasicBlock(graph); graph->AddBlock(block); HBasicBlock* exit_block = new (GetAllocator()) HBasicBlock(graph); graph->AddBlock(exit_block); graph->SetExitBlock(exit_block); exit_block->AddInstruction(new (GetAllocator()) HExit()); entry_block->AddSuccessor(block); block->AddSuccessor(exit_block); HInstruction* op1; HInstruction* op2; if (type == DataType::Type::kInt32) { op1 = graph->GetIntConstant(i); op2 = graph->GetIntConstant(j); } else { DCHECK_EQ(type, DataType::Type::kInt64); op1 = graph->GetLongConstant(i); op2 = graph->GetLongConstant(j); } HInstruction* comparison = nullptr; bool expected_result = false; const uint64_t x = i; const uint64_t y = j; switch (condition) { case kCondEQ: comparison = new (GetAllocator()) HEqual(op1, op2); expected_result = (i == j); break; case kCondNE: comparison = new (GetAllocator()) HNotEqual(op1, op2); expected_result = (i != j); break; case kCondLT: comparison = new (GetAllocator()) HLessThan(op1, op2); expected_result = (i < j); break; case kCondLE: comparison = new (GetAllocator()) HLessThanOrEqual(op1, op2); expected_result = (i <= j); break; case kCondGT: comparison = new (GetAllocator()) HGreaterThan(op1, op2); expected_result = (i > j); break; case kCondGE: comparison = new (GetAllocator()) HGreaterThanOrEqual(op1, op2); expected_result = (i >= j); break; case kCondB: comparison = new (GetAllocator()) HBelow(op1, op2); expected_result = (x < y); break; case kCondBE: comparison = new (GetAllocator()) HBelowOrEqual(op1, op2); expected_result = (x <= y); break; case kCondA: comparison = new (GetAllocator()) HAbove(op1, op2); expected_result = (x > y); break; case kCondAE: comparison = new (GetAllocator()) HAboveOrEqual(op1, op2); expected_result = (x >= y); break; } block->AddInstruction(comparison); block->AddInstruction(new (GetAllocator()) HReturn(comparison)); graph->BuildDominatorTree(); RunCode(target_config, graph, [](HGraph*) {}, true, expected_result); } TEST_F(CodegenTest, ComparisonsInt) { for (CodegenTargetConfig target_config : GetTargetConfigs()) { for (int64_t i = -1; i <= 1; i++) { for (int64_t j = -1; j <= 1; j++) { for (int cond = kCondFirst; cond <= kCondLast; cond++) { TestComparison( static_cast<IfCondition>(cond), i, j, DataType::Type::kInt32, target_config); } } } } } TEST_F(CodegenTest, ComparisonsLong) { for (CodegenTargetConfig target_config : GetTargetConfigs()) { for (int64_t i = -1; i <= 1; i++) { for (int64_t j = -1; j <= 1; j++) { for (int cond = kCondFirst; cond <= kCondLast; cond++) { TestComparison( static_cast<IfCondition>(cond), i, j, DataType::Type::kInt64, target_config); } } } } } #ifdef ART_ENABLE_CODEGEN_arm TEST_F(CodegenTest, ARMVIXLParallelMoveResolver) { std::unique_ptr<const ArmInstructionSetFeatures> features( ArmInstructionSetFeatures::FromCppDefines()); HGraph* graph = CreateGraph(); arm::CodeGeneratorARMVIXL codegen(graph, *features.get(), CompilerOptions()); codegen.Initialize(); // This will result in calling EmitSwap -> void ParallelMoveResolverARMVIXL::Exchange(int mem1, // int mem2) which was faulty (before the fix). So previously GPR and FP scratch registers were // used as temps; however GPR scratch register is required for big stack offsets which don't fit // LDR encoding. So the following code is a regression test for that situation. HParallelMove* move = new (graph->GetAllocator()) HParallelMove(graph->GetAllocator()); move->AddMove(Location::StackSlot(0), Location::StackSlot(8192), DataType::Type::kInt32, nullptr); move->AddMove(Location::StackSlot(8192), Location::StackSlot(0), DataType::Type::kInt32, nullptr); codegen.GetMoveResolver()->EmitNativeCode(move); InternalCodeAllocator code_allocator; codegen.Finalize(&code_allocator); } #endif #ifdef ART_ENABLE_CODEGEN_arm64 // Regression test for b/34760542. TEST_F(CodegenTest, ARM64ParallelMoveResolverB34760542) { std::unique_ptr<const Arm64InstructionSetFeatures> features( Arm64InstructionSetFeatures::FromCppDefines()); HGraph* graph = CreateGraph(); arm64::CodeGeneratorARM64 codegen(graph, *features.get(), CompilerOptions()); codegen.Initialize(); // The following ParallelMove used to fail this assertion: // // Assertion failed (!available->IsEmpty()) // // in vixl::aarch64::UseScratchRegisterScope::AcquireNextAvailable, // because of the following situation: // // 1. a temp register (IP0) is allocated as a scratch register by // the parallel move resolver to solve a cycle (swap): // // [ source=DS0 destination=DS257 type=PrimDouble instruction=null ] // [ source=DS257 destination=DS0 type=PrimDouble instruction=null ] // // 2. within CodeGeneratorARM64::MoveLocation, another temp // register (IP1) is allocated to generate the swap between two // double stack slots; // // 3. VIXL requires a third temp register to emit the `Ldr` or // `Str` operation from CodeGeneratorARM64::MoveLocation (as // one of the stack slots' offsets cannot be encoded as an // immediate), but the pool of (core) temp registers is now // empty. // // The solution used so far is to use a floating-point temp register // (D31) in step #2, so that IP1 is available for step #3. HParallelMove* move = new (graph->GetAllocator()) HParallelMove(graph->GetAllocator()); move->AddMove(Location::DoubleStackSlot(0), Location::DoubleStackSlot(257), DataType::Type::kFloat64, nullptr); move->AddMove(Location::DoubleStackSlot(257), Location::DoubleStackSlot(0), DataType::Type::kFloat64, nullptr); codegen.GetMoveResolver()->EmitNativeCode(move); InternalCodeAllocator code_allocator; codegen.Finalize(&code_allocator); } // Check that ParallelMoveResolver works fine for ARM64 for both cases when SIMD is on and off. TEST_F(CodegenTest, ARM64ParallelMoveResolverSIMD) { std::unique_ptr<const Arm64InstructionSetFeatures> features( Arm64InstructionSetFeatures::FromCppDefines()); HGraph* graph = CreateGraph(); arm64::CodeGeneratorARM64 codegen(graph, *features.get(), CompilerOptions()); codegen.Initialize(); graph->SetHasSIMD(true); for (int i = 0; i < 2; i++) { HParallelMove* move = new (graph->GetAllocator()) HParallelMove(graph->GetAllocator()); move->AddMove(Location::SIMDStackSlot(0), Location::SIMDStackSlot(257), DataType::Type::kFloat64, nullptr); move->AddMove(Location::SIMDStackSlot(257), Location::SIMDStackSlot(0), DataType::Type::kFloat64, nullptr); move->AddMove(Location::FpuRegisterLocation(0), Location::FpuRegisterLocation(1), DataType::Type::kFloat64, nullptr); move->AddMove(Location::FpuRegisterLocation(1), Location::FpuRegisterLocation(0), DataType::Type::kFloat64, nullptr); codegen.GetMoveResolver()->EmitNativeCode(move); graph->SetHasSIMD(false); } InternalCodeAllocator code_allocator; codegen.Finalize(&code_allocator); } #endif #ifdef ART_ENABLE_CODEGEN_mips TEST_F(CodegenTest, MipsClobberRA) { std::unique_ptr<const MipsInstructionSetFeatures> features_mips( MipsInstructionSetFeatures::FromCppDefines()); if (!CanExecute(InstructionSet::kMips) || features_mips->IsR6()) { // HMipsComputeBaseMethodAddress and the NAL instruction behind it // should only be generated on non-R6. return; } HGraph* graph = CreateGraph(); HBasicBlock* entry_block = new (GetAllocator()) HBasicBlock(graph); graph->AddBlock(entry_block); graph->SetEntryBlock(entry_block); entry_block->AddInstruction(new (GetAllocator()) HGoto()); HBasicBlock* block = new (GetAllocator()) HBasicBlock(graph); graph->AddBlock(block); HBasicBlock* exit_block = new (GetAllocator()) HBasicBlock(graph); graph->AddBlock(exit_block); graph->SetExitBlock(exit_block); exit_block->AddInstruction(new (GetAllocator()) HExit()); entry_block->AddSuccessor(block); block->AddSuccessor(exit_block); // To simplify matters, don't create PC-relative HLoadClass or HLoadString. // Instead, generate HMipsComputeBaseMethodAddress directly. HMipsComputeBaseMethodAddress* base = new (GetAllocator()) HMipsComputeBaseMethodAddress(); block->AddInstruction(base); // HMipsComputeBaseMethodAddress is defined as int, so just make the // compiled method return it. block->AddInstruction(new (GetAllocator()) HReturn(base)); graph->BuildDominatorTree(); mips::CodeGeneratorMIPS codegenMIPS(graph, *features_mips.get(), CompilerOptions()); // Since there isn't HLoadClass or HLoadString, we need to manually indicate // that RA is clobbered and the method entry code should generate a stack frame // and preserve RA in it. And this is what we're testing here. codegenMIPS.ClobberRA(); // Without ClobberRA() the code would be: // nal # Sets RA to point to the jr instruction below // move v0, ra # and the CPU falls into an infinite loop. // jr ra // nop // The expected code is: // addiu sp, sp, -16 // sw ra, 12(sp) // sw a0, 0(sp) // nal # Sets RA to point to the lw instruction below. // move v0, ra // lw ra, 12(sp) // jr ra // addiu sp, sp, 16 RunCode(&codegenMIPS, graph, [](HGraph*) {}, false, 0); } #endif } // namespace art