/* * Copyright (C) 2014 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "graph_checker.h" #include <algorithm> #include <sstream> #include <string> #include "android-base/stringprintf.h" #include "base/bit_vector-inl.h" #include "base/scoped_arena_allocator.h" #include "base/scoped_arena_containers.h" namespace art { using android::base::StringPrintf; static bool IsAllowedToJumpToExitBlock(HInstruction* instruction) { // Anything that returns is allowed to jump into the exit block. if (instruction->IsReturn() || instruction->IsReturnVoid()) { return true; } // Anything that always throws is allowed to jump into the exit block. if (instruction->IsGoto() && instruction->GetPrevious() != nullptr) { instruction = instruction->GetPrevious(); } return instruction->AlwaysThrows(); } static bool IsExitTryBoundaryIntoExitBlock(HBasicBlock* block) { if (!block->IsSingleTryBoundary()) { return false; } HTryBoundary* boundary = block->GetLastInstruction()->AsTryBoundary(); return block->GetPredecessors().size() == 1u && boundary->GetNormalFlowSuccessor()->IsExitBlock() && !boundary->IsEntry(); } void GraphChecker::VisitBasicBlock(HBasicBlock* block) { current_block_ = block; // Use local allocator for allocating memory. ScopedArenaAllocator allocator(GetGraph()->GetArenaStack()); // Check consistency with respect to predecessors of `block`. // Note: Counting duplicates with a sorted vector uses up to 6x less memory // than ArenaSafeMap<HBasicBlock*, size_t> and also allows storage reuse. ScopedArenaVector<HBasicBlock*> sorted_predecessors(allocator.Adapter(kArenaAllocGraphChecker)); sorted_predecessors.assign(block->GetPredecessors().begin(), block->GetPredecessors().end()); std::sort(sorted_predecessors.begin(), sorted_predecessors.end()); for (auto it = sorted_predecessors.begin(), end = sorted_predecessors.end(); it != end; ) { HBasicBlock* p = *it++; size_t p_count_in_block_predecessors = 1u; for (; it != end && *it == p; ++it) { ++p_count_in_block_predecessors; } size_t block_count_in_p_successors = std::count(p->GetSuccessors().begin(), p->GetSuccessors().end(), block); if (p_count_in_block_predecessors != block_count_in_p_successors) { AddError(StringPrintf( "Block %d lists %zu occurrences of block %d in its predecessors, whereas " "block %d lists %zu occurrences of block %d in its successors.", block->GetBlockId(), p_count_in_block_predecessors, p->GetBlockId(), p->GetBlockId(), block_count_in_p_successors, block->GetBlockId())); } } // Check consistency with respect to successors of `block`. // Note: Counting duplicates with a sorted vector uses up to 6x less memory // than ArenaSafeMap<HBasicBlock*, size_t> and also allows storage reuse. ScopedArenaVector<HBasicBlock*> sorted_successors(allocator.Adapter(kArenaAllocGraphChecker)); sorted_successors.assign(block->GetSuccessors().begin(), block->GetSuccessors().end()); std::sort(sorted_successors.begin(), sorted_successors.end()); for (auto it = sorted_successors.begin(), end = sorted_successors.end(); it != end; ) { HBasicBlock* s = *it++; size_t s_count_in_block_successors = 1u; for (; it != end && *it == s; ++it) { ++s_count_in_block_successors; } size_t block_count_in_s_predecessors = std::count(s->GetPredecessors().begin(), s->GetPredecessors().end(), block); if (s_count_in_block_successors != block_count_in_s_predecessors) { AddError(StringPrintf( "Block %d lists %zu occurrences of block %d in its successors, whereas " "block %d lists %zu occurrences of block %d in its predecessors.", block->GetBlockId(), s_count_in_block_successors, s->GetBlockId(), s->GetBlockId(), block_count_in_s_predecessors, block->GetBlockId())); } } // Ensure `block` ends with a branch instruction. // This invariant is not enforced on non-SSA graphs. Graph built from DEX with // dead code that falls out of the method will not end with a control-flow // instruction. Such code is removed during the SSA-building DCE phase. if (GetGraph()->IsInSsaForm() && !block->EndsWithControlFlowInstruction()) { AddError(StringPrintf("Block %d does not end with a branch instruction.", block->GetBlockId())); } // Ensure that only Return(Void) and Throw jump to Exit. An exiting TryBoundary // may be between the instructions if the Throw/Return(Void) is in a try block. if (block->IsExitBlock()) { for (HBasicBlock* predecessor : block->GetPredecessors()) { HInstruction* last_instruction = IsExitTryBoundaryIntoExitBlock(predecessor) ? predecessor->GetSinglePredecessor()->GetLastInstruction() : predecessor->GetLastInstruction(); if (!IsAllowedToJumpToExitBlock(last_instruction)) { AddError(StringPrintf("Unexpected instruction %s:%d jumps into the exit block.", last_instruction->DebugName(), last_instruction->GetId())); } } } // Visit this block's list of phis. for (HInstructionIterator it(block->GetPhis()); !it.Done(); it.Advance()) { HInstruction* current = it.Current(); // Ensure this block's list of phis contains only phis. if (!current->IsPhi()) { AddError(StringPrintf("Block %d has a non-phi in its phi list.", current_block_->GetBlockId())); } if (current->GetNext() == nullptr && current != block->GetLastPhi()) { AddError(StringPrintf("The recorded last phi of block %d does not match " "the actual last phi %d.", current_block_->GetBlockId(), current->GetId())); } current->Accept(this); } // Visit this block's list of instructions. for (HInstructionIterator it(block->GetInstructions()); !it.Done(); it.Advance()) { HInstruction* current = it.Current(); // Ensure this block's list of instructions does not contains phis. if (current->IsPhi()) { AddError(StringPrintf("Block %d has a phi in its non-phi list.", current_block_->GetBlockId())); } if (current->GetNext() == nullptr && current != block->GetLastInstruction()) { AddError(StringPrintf("The recorded last instruction of block %d does not match " "the actual last instruction %d.", current_block_->GetBlockId(), current->GetId())); } current->Accept(this); } // Ensure that catch blocks are not normal successors, and normal blocks are // never exceptional successors. for (HBasicBlock* successor : block->GetNormalSuccessors()) { if (successor->IsCatchBlock()) { AddError(StringPrintf("Catch block %d is a normal successor of block %d.", successor->GetBlockId(), block->GetBlockId())); } } for (HBasicBlock* successor : block->GetExceptionalSuccessors()) { if (!successor->IsCatchBlock()) { AddError(StringPrintf("Normal block %d is an exceptional successor of block %d.", successor->GetBlockId(), block->GetBlockId())); } } // Ensure dominated blocks have `block` as the dominator. for (HBasicBlock* dominated : block->GetDominatedBlocks()) { if (dominated->GetDominator() != block) { AddError(StringPrintf("Block %d should be the dominator of %d.", block->GetBlockId(), dominated->GetBlockId())); } } // Ensure there is no critical edge (i.e., an edge connecting a // block with multiple successors to a block with multiple // predecessors). Exceptional edges are synthesized and hence // not accounted for. if (block->GetSuccessors().size() > 1) { if (IsExitTryBoundaryIntoExitBlock(block)) { // Allowed critical edge (Throw/Return/ReturnVoid)->TryBoundary->Exit. } else { for (HBasicBlock* successor : block->GetNormalSuccessors()) { if (successor->GetPredecessors().size() > 1) { AddError(StringPrintf("Critical edge between blocks %d and %d.", block->GetBlockId(), successor->GetBlockId())); } } } } // Ensure try membership information is consistent. if (block->IsCatchBlock()) { if (block->IsTryBlock()) { const HTryBoundary& try_entry = block->GetTryCatchInformation()->GetTryEntry(); AddError(StringPrintf("Catch blocks should not be try blocks but catch block %d " "has try entry %s:%d.", block->GetBlockId(), try_entry.DebugName(), try_entry.GetId())); } if (block->IsLoopHeader()) { AddError(StringPrintf("Catch blocks should not be loop headers but catch block %d is.", block->GetBlockId())); } } else { for (HBasicBlock* predecessor : block->GetPredecessors()) { const HTryBoundary* incoming_try_entry = predecessor->ComputeTryEntryOfSuccessors(); if (block->IsTryBlock()) { const HTryBoundary& stored_try_entry = block->GetTryCatchInformation()->GetTryEntry(); if (incoming_try_entry == nullptr) { AddError(StringPrintf("Block %d has try entry %s:%d but no try entry follows " "from predecessor %d.", block->GetBlockId(), stored_try_entry.DebugName(), stored_try_entry.GetId(), predecessor->GetBlockId())); } else if (!incoming_try_entry->HasSameExceptionHandlersAs(stored_try_entry)) { AddError(StringPrintf("Block %d has try entry %s:%d which is not consistent " "with %s:%d that follows from predecessor %d.", block->GetBlockId(), stored_try_entry.DebugName(), stored_try_entry.GetId(), incoming_try_entry->DebugName(), incoming_try_entry->GetId(), predecessor->GetBlockId())); } } else if (incoming_try_entry != nullptr) { AddError(StringPrintf("Block %d is not a try block but try entry %s:%d follows " "from predecessor %d.", block->GetBlockId(), incoming_try_entry->DebugName(), incoming_try_entry->GetId(), predecessor->GetBlockId())); } } } if (block->IsLoopHeader()) { HandleLoop(block); } } void GraphChecker::VisitBoundsCheck(HBoundsCheck* check) { if (!GetGraph()->HasBoundsChecks()) { AddError(StringPrintf("Instruction %s:%d is a HBoundsCheck, " "but HasBoundsChecks() returns false", check->DebugName(), check->GetId())); } // Perform the instruction base checks too. VisitInstruction(check); } void GraphChecker::VisitDeoptimize(HDeoptimize* deopt) { if (GetGraph()->IsCompilingOsr()) { AddError(StringPrintf("A graph compiled OSR cannot have a HDeoptimize instruction")); } // Perform the instruction base checks too. VisitInstruction(deopt); } void GraphChecker::VisitTryBoundary(HTryBoundary* try_boundary) { ArrayRef<HBasicBlock* const> handlers = try_boundary->GetExceptionHandlers(); // Ensure that all exception handlers are catch blocks. // Note that a normal-flow successor may be a catch block before CFG // simplification. We only test normal-flow successors in GraphChecker. for (HBasicBlock* handler : handlers) { if (!handler->IsCatchBlock()) { AddError(StringPrintf("Block %d with %s:%d has exceptional successor %d which " "is not a catch block.", current_block_->GetBlockId(), try_boundary->DebugName(), try_boundary->GetId(), handler->GetBlockId())); } } // Ensure that handlers are not listed multiple times. for (size_t i = 0, e = handlers.size(); i < e; ++i) { if (ContainsElement(handlers, handlers[i], i + 1)) { AddError(StringPrintf("Exception handler block %d of %s:%d is listed multiple times.", handlers[i]->GetBlockId(), try_boundary->DebugName(), try_boundary->GetId())); } } VisitInstruction(try_boundary); } void GraphChecker::VisitLoadException(HLoadException* load) { // Ensure that LoadException is the first instruction in a catch block. if (!load->GetBlock()->IsCatchBlock()) { AddError(StringPrintf("%s:%d is in a non-catch block %d.", load->DebugName(), load->GetId(), load->GetBlock()->GetBlockId())); } else if (load->GetBlock()->GetFirstInstruction() != load) { AddError(StringPrintf("%s:%d is not the first instruction in catch block %d.", load->DebugName(), load->GetId(), load->GetBlock()->GetBlockId())); } } void GraphChecker::VisitInstruction(HInstruction* instruction) { if (seen_ids_.IsBitSet(instruction->GetId())) { AddError(StringPrintf("Instruction id %d is duplicate in graph.", instruction->GetId())); } else { seen_ids_.SetBit(instruction->GetId()); } // Ensure `instruction` is associated with `current_block_`. if (instruction->GetBlock() == nullptr) { AddError(StringPrintf("%s %d in block %d not associated with any block.", instruction->IsPhi() ? "Phi" : "Instruction", instruction->GetId(), current_block_->GetBlockId())); } else if (instruction->GetBlock() != current_block_) { AddError(StringPrintf("%s %d in block %d associated with block %d.", instruction->IsPhi() ? "Phi" : "Instruction", instruction->GetId(), current_block_->GetBlockId(), instruction->GetBlock()->GetBlockId())); } // Ensure the inputs of `instruction` are defined in a block of the graph. for (HInstruction* input : instruction->GetInputs()) { if (input->GetBlock() == nullptr) { AddError(StringPrintf("Input %d of instruction %d is not in any " "basic block of the control-flow graph.", input->GetId(), instruction->GetId())); } else { const HInstructionList& list = input->IsPhi() ? input->GetBlock()->GetPhis() : input->GetBlock()->GetInstructions(); if (!list.Contains(input)) { AddError(StringPrintf("Input %d of instruction %d is not defined " "in a basic block of the control-flow graph.", input->GetId(), instruction->GetId())); } } } // Ensure the uses of `instruction` are defined in a block of the graph, // and the entry in the use list is consistent. for (const HUseListNode<HInstruction*>& use : instruction->GetUses()) { HInstruction* user = use.GetUser(); const HInstructionList& list = user->IsPhi() ? user->GetBlock()->GetPhis() : user->GetBlock()->GetInstructions(); if (!list.Contains(user)) { AddError(StringPrintf("User %s:%d of instruction %d is not defined " "in a basic block of the control-flow graph.", user->DebugName(), user->GetId(), instruction->GetId())); } size_t use_index = use.GetIndex(); HConstInputsRef user_inputs = user->GetInputs(); if ((use_index >= user_inputs.size()) || (user_inputs[use_index] != instruction)) { AddError(StringPrintf("User %s:%d of instruction %s:%d has a wrong " "UseListNode index.", user->DebugName(), user->GetId(), instruction->DebugName(), instruction->GetId())); } } // Ensure the environment uses entries are consistent. for (const HUseListNode<HEnvironment*>& use : instruction->GetEnvUses()) { HEnvironment* user = use.GetUser(); size_t use_index = use.GetIndex(); if ((use_index >= user->Size()) || (user->GetInstructionAt(use_index) != instruction)) { AddError(StringPrintf("Environment user of %s:%d has a wrong " "UseListNode index.", instruction->DebugName(), instruction->GetId())); } } // Ensure 'instruction' has pointers to its inputs' use entries. auto&& input_records = instruction->GetInputRecords(); for (size_t i = 0; i < input_records.size(); ++i) { const HUserRecord<HInstruction*>& input_record = input_records[i]; HInstruction* input = input_record.GetInstruction(); if ((input_record.GetBeforeUseNode() == input->GetUses().end()) || (input_record.GetUseNode() == input->GetUses().end()) || !input->GetUses().ContainsNode(*input_record.GetUseNode()) || (input_record.GetUseNode()->GetIndex() != i)) { AddError(StringPrintf("Instruction %s:%d has an invalid iterator before use entry " "at input %u (%s:%d).", instruction->DebugName(), instruction->GetId(), static_cast<unsigned>(i), input->DebugName(), input->GetId())); } } // Ensure an instruction dominates all its uses. for (const HUseListNode<HInstruction*>& use : instruction->GetUses()) { HInstruction* user = use.GetUser(); if (!user->IsPhi() && !instruction->StrictlyDominates(user)) { AddError(StringPrintf("Instruction %s:%d in block %d does not dominate " "use %s:%d in block %d.", instruction->DebugName(), instruction->GetId(), current_block_->GetBlockId(), user->DebugName(), user->GetId(), user->GetBlock()->GetBlockId())); } } if (instruction->NeedsEnvironment() && !instruction->HasEnvironment()) { AddError(StringPrintf("Instruction %s:%d in block %d requires an environment " "but does not have one.", instruction->DebugName(), instruction->GetId(), current_block_->GetBlockId())); } // Ensure an instruction having an environment is dominated by the // instructions contained in the environment. for (HEnvironment* environment = instruction->GetEnvironment(); environment != nullptr; environment = environment->GetParent()) { for (size_t i = 0, e = environment->Size(); i < e; ++i) { HInstruction* env_instruction = environment->GetInstructionAt(i); if (env_instruction != nullptr && !env_instruction->StrictlyDominates(instruction)) { AddError(StringPrintf("Instruction %d in environment of instruction %d " "from block %d does not dominate instruction %d.", env_instruction->GetId(), instruction->GetId(), current_block_->GetBlockId(), instruction->GetId())); } } } // Ensure that reference type instructions have reference type info. if (instruction->GetType() == DataType::Type::kReference) { if (!instruction->GetReferenceTypeInfo().IsValid()) { AddError(StringPrintf("Reference type instruction %s:%d does not have " "valid reference type information.", instruction->DebugName(), instruction->GetId())); } } if (instruction->CanThrowIntoCatchBlock()) { // Find the top-level environment. This corresponds to the environment of // the catch block since we do not inline methods with try/catch. HEnvironment* environment = instruction->GetEnvironment(); while (environment->GetParent() != nullptr) { environment = environment->GetParent(); } // Find all catch blocks and test that `instruction` has an environment // value for each one. const HTryBoundary& entry = instruction->GetBlock()->GetTryCatchInformation()->GetTryEntry(); for (HBasicBlock* catch_block : entry.GetExceptionHandlers()) { for (HInstructionIterator phi_it(catch_block->GetPhis()); !phi_it.Done(); phi_it.Advance()) { HPhi* catch_phi = phi_it.Current()->AsPhi(); if (environment->GetInstructionAt(catch_phi->GetRegNumber()) == nullptr) { AddError(StringPrintf("Instruction %s:%d throws into catch block %d " "with catch phi %d for vreg %d but its " "corresponding environment slot is empty.", instruction->DebugName(), instruction->GetId(), catch_block->GetBlockId(), catch_phi->GetId(), catch_phi->GetRegNumber())); } } } } } void GraphChecker::VisitInvokeStaticOrDirect(HInvokeStaticOrDirect* invoke) { VisitInstruction(invoke); if (invoke->IsStaticWithExplicitClinitCheck()) { const HInstruction* last_input = invoke->GetInputs().back(); if (last_input == nullptr) { AddError(StringPrintf("Static invoke %s:%d marked as having an explicit clinit check " "has a null pointer as last input.", invoke->DebugName(), invoke->GetId())); } else if (!last_input->IsClinitCheck() && !last_input->IsLoadClass()) { AddError(StringPrintf("Static invoke %s:%d marked as having an explicit clinit check " "has a last instruction (%s:%d) which is neither a clinit check " "nor a load class instruction.", invoke->DebugName(), invoke->GetId(), last_input->DebugName(), last_input->GetId())); } } } void GraphChecker::VisitReturn(HReturn* ret) { VisitInstruction(ret); HBasicBlock* successor = ret->GetBlock()->GetSingleSuccessor(); if (!successor->IsExitBlock() && !IsExitTryBoundaryIntoExitBlock(successor)) { AddError(StringPrintf("%s:%d does not jump to the exit block.", ret->DebugName(), ret->GetId())); } } void GraphChecker::VisitReturnVoid(HReturnVoid* ret) { VisitInstruction(ret); HBasicBlock* successor = ret->GetBlock()->GetSingleSuccessor(); if (!successor->IsExitBlock() && !IsExitTryBoundaryIntoExitBlock(successor)) { AddError(StringPrintf("%s:%d does not jump to the exit block.", ret->DebugName(), ret->GetId())); } } void GraphChecker::VisitCheckCast(HCheckCast* check) { VisitInstruction(check); HInstruction* input = check->InputAt(1); if (!input->IsLoadClass()) { AddError(StringPrintf("%s:%d expects a HLoadClass as second input, not %s:%d.", check->DebugName(), check->GetId(), input->DebugName(), input->GetId())); } } void GraphChecker::VisitInstanceOf(HInstanceOf* instruction) { VisitInstruction(instruction); HInstruction* input = instruction->InputAt(1); if (!input->IsLoadClass()) { AddError(StringPrintf("%s:%d expects a HLoadClass as second input, not %s:%d.", instruction->DebugName(), instruction->GetId(), input->DebugName(), input->GetId())); } } void GraphChecker::HandleLoop(HBasicBlock* loop_header) { int id = loop_header->GetBlockId(); HLoopInformation* loop_information = loop_header->GetLoopInformation(); if (loop_information->GetPreHeader()->GetSuccessors().size() != 1) { AddError(StringPrintf( "Loop pre-header %d of loop defined by header %d has %zu successors.", loop_information->GetPreHeader()->GetBlockId(), id, loop_information->GetPreHeader()->GetSuccessors().size())); } if (loop_information->GetSuspendCheck() == nullptr) { AddError(StringPrintf( "Loop with header %d does not have a suspend check.", loop_header->GetBlockId())); } if (loop_information->GetSuspendCheck() != loop_header->GetFirstInstructionDisregardMoves()) { AddError(StringPrintf( "Loop header %d does not have the loop suspend check as the first instruction.", loop_header->GetBlockId())); } // Ensure the loop header has only one incoming branch and the remaining // predecessors are back edges. size_t num_preds = loop_header->GetPredecessors().size(); if (num_preds < 2) { AddError(StringPrintf( "Loop header %d has less than two predecessors: %zu.", id, num_preds)); } else { HBasicBlock* first_predecessor = loop_header->GetPredecessors()[0]; if (loop_information->IsBackEdge(*first_predecessor)) { AddError(StringPrintf( "First predecessor of loop header %d is a back edge.", id)); } for (size_t i = 1, e = loop_header->GetPredecessors().size(); i < e; ++i) { HBasicBlock* predecessor = loop_header->GetPredecessors()[i]; if (!loop_information->IsBackEdge(*predecessor)) { AddError(StringPrintf( "Loop header %d has multiple incoming (non back edge) blocks: %d.", id, predecessor->GetBlockId())); } } } const ArenaBitVector& loop_blocks = loop_information->GetBlocks(); // Ensure back edges belong to the loop. if (loop_information->NumberOfBackEdges() == 0) { AddError(StringPrintf( "Loop defined by header %d has no back edge.", id)); } else { for (HBasicBlock* back_edge : loop_information->GetBackEdges()) { int back_edge_id = back_edge->GetBlockId(); if (!loop_blocks.IsBitSet(back_edge_id)) { AddError(StringPrintf( "Loop defined by header %d has an invalid back edge %d.", id, back_edge_id)); } else if (back_edge->GetLoopInformation() != loop_information) { AddError(StringPrintf( "Back edge %d of loop defined by header %d belongs to nested loop " "with header %d.", back_edge_id, id, back_edge->GetLoopInformation()->GetHeader()->GetBlockId())); } } } // If this is a nested loop, ensure the outer loops contain a superset of the blocks. for (HLoopInformationOutwardIterator it(*loop_header); !it.Done(); it.Advance()) { HLoopInformation* outer_info = it.Current(); if (!loop_blocks.IsSubsetOf(&outer_info->GetBlocks())) { AddError(StringPrintf("Blocks of loop defined by header %d are not a subset of blocks of " "an outer loop defined by header %d.", id, outer_info->GetHeader()->GetBlockId())); } } // Ensure the pre-header block is first in the list of predecessors of a loop // header and that the header block is its only successor. if (!loop_header->IsLoopPreHeaderFirstPredecessor()) { AddError(StringPrintf( "Loop pre-header is not the first predecessor of the loop header %d.", id)); } // Ensure all blocks in the loop are live and dominated by the loop header in // the case of natural loops. for (uint32_t i : loop_blocks.Indexes()) { HBasicBlock* loop_block = GetGraph()->GetBlocks()[i]; if (loop_block == nullptr) { AddError(StringPrintf("Loop defined by header %d contains a previously removed block %d.", id, i)); } else if (!loop_information->IsIrreducible() && !loop_header->Dominates(loop_block)) { AddError(StringPrintf("Loop block %d not dominated by loop header %d.", i, id)); } } } static bool IsSameSizeConstant(const HInstruction* insn1, const HInstruction* insn2) { return insn1->IsConstant() && insn2->IsConstant() && DataType::Is64BitType(insn1->GetType()) == DataType::Is64BitType(insn2->GetType()); } static bool IsConstantEquivalent(const HInstruction* insn1, const HInstruction* insn2, BitVector* visited) { if (insn1->IsPhi() && insn1->AsPhi()->IsVRegEquivalentOf(insn2)) { HConstInputsRef insn1_inputs = insn1->GetInputs(); HConstInputsRef insn2_inputs = insn2->GetInputs(); if (insn1_inputs.size() != insn2_inputs.size()) { return false; } // Testing only one of the two inputs for recursion is sufficient. if (visited->IsBitSet(insn1->GetId())) { return true; } visited->SetBit(insn1->GetId()); for (size_t i = 0; i < insn1_inputs.size(); ++i) { if (!IsConstantEquivalent(insn1_inputs[i], insn2_inputs[i], visited)) { return false; } } return true; } else if (IsSameSizeConstant(insn1, insn2)) { return insn1->AsConstant()->GetValueAsUint64() == insn2->AsConstant()->GetValueAsUint64(); } else { return false; } } void GraphChecker::VisitPhi(HPhi* phi) { VisitInstruction(phi); // Ensure the first input of a phi is not itself. ArrayRef<HUserRecord<HInstruction*>> input_records = phi->GetInputRecords(); if (input_records[0].GetInstruction() == phi) { AddError(StringPrintf("Loop phi %d in block %d is its own first input.", phi->GetId(), phi->GetBlock()->GetBlockId())); } // Ensure that the inputs have the same primitive kind as the phi. for (size_t i = 0; i < input_records.size(); ++i) { HInstruction* input = input_records[i].GetInstruction(); if (DataType::Kind(input->GetType()) != DataType::Kind(phi->GetType())) { AddError(StringPrintf( "Input %d at index %zu of phi %d from block %d does not have the " "same kind as the phi: %s versus %s", input->GetId(), i, phi->GetId(), phi->GetBlock()->GetBlockId(), DataType::PrettyDescriptor(input->GetType()), DataType::PrettyDescriptor(phi->GetType()))); } } if (phi->GetType() != HPhi::ToPhiType(phi->GetType())) { AddError(StringPrintf("Phi %d in block %d does not have an expected phi type: %s", phi->GetId(), phi->GetBlock()->GetBlockId(), DataType::PrettyDescriptor(phi->GetType()))); } if (phi->IsCatchPhi()) { // The number of inputs of a catch phi should be the total number of throwing // instructions caught by this catch block. We do not enforce this, however, // because we do not remove the corresponding inputs when we prove that an // instruction cannot throw. Instead, we at least test that all phis have the // same, non-zero number of inputs (b/24054676). if (input_records.empty()) { AddError(StringPrintf("Phi %d in catch block %d has zero inputs.", phi->GetId(), phi->GetBlock()->GetBlockId())); } else { HInstruction* next_phi = phi->GetNext(); if (next_phi != nullptr) { size_t input_count_next = next_phi->InputCount(); if (input_records.size() != input_count_next) { AddError(StringPrintf("Phi %d in catch block %d has %zu inputs, " "but phi %d has %zu inputs.", phi->GetId(), phi->GetBlock()->GetBlockId(), input_records.size(), next_phi->GetId(), input_count_next)); } } } } else { // Ensure the number of inputs of a non-catch phi is the same as the number // of its predecessors. const ArenaVector<HBasicBlock*>& predecessors = phi->GetBlock()->GetPredecessors(); if (input_records.size() != predecessors.size()) { AddError(StringPrintf( "Phi %d in block %d has %zu inputs, " "but block %d has %zu predecessors.", phi->GetId(), phi->GetBlock()->GetBlockId(), input_records.size(), phi->GetBlock()->GetBlockId(), predecessors.size())); } else { // Ensure phi input at index I either comes from the Ith // predecessor or from a block that dominates this predecessor. for (size_t i = 0; i < input_records.size(); ++i) { HInstruction* input = input_records[i].GetInstruction(); HBasicBlock* predecessor = predecessors[i]; if (!(input->GetBlock() == predecessor || input->GetBlock()->Dominates(predecessor))) { AddError(StringPrintf( "Input %d at index %zu of phi %d from block %d is not defined in " "predecessor number %zu nor in a block dominating it.", input->GetId(), i, phi->GetId(), phi->GetBlock()->GetBlockId(), i)); } } } } // Ensure that catch phis are sorted by their vreg number, as required by // the register allocator and code generator. This does not apply to normal // phis which can be constructed artifically. if (phi->IsCatchPhi()) { HInstruction* next_phi = phi->GetNext(); if (next_phi != nullptr && phi->GetRegNumber() > next_phi->AsPhi()->GetRegNumber()) { AddError(StringPrintf("Catch phis %d and %d in block %d are not sorted by their " "vreg numbers.", phi->GetId(), next_phi->GetId(), phi->GetBlock()->GetBlockId())); } } // Test phi equivalents. There should not be two of the same type and they should only be // created for constants which were untyped in DEX. Note that this test can be skipped for // a synthetic phi (indicated by lack of a virtual register). if (phi->GetRegNumber() != kNoRegNumber) { for (HInstructionIterator phi_it(phi->GetBlock()->GetPhis()); !phi_it.Done(); phi_it.Advance()) { HPhi* other_phi = phi_it.Current()->AsPhi(); if (phi != other_phi && phi->GetRegNumber() == other_phi->GetRegNumber()) { if (phi->GetType() == other_phi->GetType()) { std::stringstream type_str; type_str << phi->GetType(); AddError(StringPrintf("Equivalent phi (%d) found for VReg %d with type: %s.", phi->GetId(), phi->GetRegNumber(), type_str.str().c_str())); } else if (phi->GetType() == DataType::Type::kReference) { std::stringstream type_str; type_str << other_phi->GetType(); AddError(StringPrintf( "Equivalent non-reference phi (%d) found for VReg %d with type: %s.", phi->GetId(), phi->GetRegNumber(), type_str.str().c_str())); } else { // Use local allocator for allocating memory. ScopedArenaAllocator allocator(GetGraph()->GetArenaStack()); // If we get here, make sure we allocate all the necessary storage at once // because the BitVector reallocation strategy has very bad worst-case behavior. ArenaBitVector visited(&allocator, GetGraph()->GetCurrentInstructionId(), /* expandable */ false, kArenaAllocGraphChecker); visited.ClearAllBits(); if (!IsConstantEquivalent(phi, other_phi, &visited)) { AddError(StringPrintf("Two phis (%d and %d) found for VReg %d but they " "are not equivalents of constants.", phi->GetId(), other_phi->GetId(), phi->GetRegNumber())); } } } } } } void GraphChecker::HandleBooleanInput(HInstruction* instruction, size_t input_index) { HInstruction* input = instruction->InputAt(input_index); if (input->IsIntConstant()) { int32_t value = input->AsIntConstant()->GetValue(); if (value != 0 && value != 1) { AddError(StringPrintf( "%s instruction %d has a non-Boolean constant input %d whose value is: %d.", instruction->DebugName(), instruction->GetId(), static_cast<int>(input_index), value)); } } else if (DataType::Kind(input->GetType()) != DataType::Type::kInt32) { // TODO: We need a data-flow analysis to determine if an input like Phi, // Select or a binary operation is actually Boolean. Allow for now. AddError(StringPrintf( "%s instruction %d has a non-integer input %d whose type is: %s.", instruction->DebugName(), instruction->GetId(), static_cast<int>(input_index), DataType::PrettyDescriptor(input->GetType()))); } } void GraphChecker::VisitPackedSwitch(HPackedSwitch* instruction) { VisitInstruction(instruction); // Check that the number of block successors matches the switch count plus // one for the default block. HBasicBlock* block = instruction->GetBlock(); if (instruction->GetNumEntries() + 1u != block->GetSuccessors().size()) { AddError(StringPrintf( "%s instruction %d in block %d expects %u successors to the block, but found: %zu.", instruction->DebugName(), instruction->GetId(), block->GetBlockId(), instruction->GetNumEntries() + 1u, block->GetSuccessors().size())); } } void GraphChecker::VisitIf(HIf* instruction) { VisitInstruction(instruction); HandleBooleanInput(instruction, 0); } void GraphChecker::VisitSelect(HSelect* instruction) { VisitInstruction(instruction); HandleBooleanInput(instruction, 2); } void GraphChecker::VisitBooleanNot(HBooleanNot* instruction) { VisitInstruction(instruction); HandleBooleanInput(instruction, 0); } void GraphChecker::VisitCondition(HCondition* op) { VisitInstruction(op); if (op->GetType() != DataType::Type::kBool) { AddError(StringPrintf( "Condition %s %d has a non-Boolean result type: %s.", op->DebugName(), op->GetId(), DataType::PrettyDescriptor(op->GetType()))); } HInstruction* lhs = op->InputAt(0); HInstruction* rhs = op->InputAt(1); if (DataType::Kind(lhs->GetType()) != DataType::Kind(rhs->GetType())) { AddError(StringPrintf( "Condition %s %d has inputs of different kinds: %s, and %s.", op->DebugName(), op->GetId(), DataType::PrettyDescriptor(lhs->GetType()), DataType::PrettyDescriptor(rhs->GetType()))); } if (!op->IsEqual() && !op->IsNotEqual()) { if ((lhs->GetType() == DataType::Type::kReference)) { AddError(StringPrintf( "Condition %s %d uses an object as left-hand side input.", op->DebugName(), op->GetId())); } else if (rhs->GetType() == DataType::Type::kReference) { AddError(StringPrintf( "Condition %s %d uses an object as right-hand side input.", op->DebugName(), op->GetId())); } } } void GraphChecker::VisitNeg(HNeg* instruction) { VisitInstruction(instruction); DataType::Type input_type = instruction->InputAt(0)->GetType(); DataType::Type result_type = instruction->GetType(); if (result_type != DataType::Kind(input_type)) { AddError(StringPrintf("Binary operation %s %d has a result type different " "from its input kind: %s vs %s.", instruction->DebugName(), instruction->GetId(), DataType::PrettyDescriptor(result_type), DataType::PrettyDescriptor(input_type))); } } void GraphChecker::VisitBinaryOperation(HBinaryOperation* op) { VisitInstruction(op); DataType::Type lhs_type = op->InputAt(0)->GetType(); DataType::Type rhs_type = op->InputAt(1)->GetType(); DataType::Type result_type = op->GetType(); // Type consistency between inputs. if (op->IsUShr() || op->IsShr() || op->IsShl() || op->IsRor()) { if (DataType::Kind(rhs_type) != DataType::Type::kInt32) { AddError(StringPrintf("Shift/rotate operation %s %d has a non-int kind second input: " "%s of type %s.", op->DebugName(), op->GetId(), op->InputAt(1)->DebugName(), DataType::PrettyDescriptor(rhs_type))); } } else { if (DataType::Kind(lhs_type) != DataType::Kind(rhs_type)) { AddError(StringPrintf("Binary operation %s %d has inputs of different kinds: %s, and %s.", op->DebugName(), op->GetId(), DataType::PrettyDescriptor(lhs_type), DataType::PrettyDescriptor(rhs_type))); } } // Type consistency between result and input(s). if (op->IsCompare()) { if (result_type != DataType::Type::kInt32) { AddError(StringPrintf("Compare operation %d has a non-int result type: %s.", op->GetId(), DataType::PrettyDescriptor(result_type))); } } else if (op->IsUShr() || op->IsShr() || op->IsShl() || op->IsRor()) { // Only check the first input (value), as the second one (distance) // must invariably be of kind `int`. if (result_type != DataType::Kind(lhs_type)) { AddError(StringPrintf("Shift/rotate operation %s %d has a result type different " "from its left-hand side (value) input kind: %s vs %s.", op->DebugName(), op->GetId(), DataType::PrettyDescriptor(result_type), DataType::PrettyDescriptor(lhs_type))); } } else { if (DataType::Kind(result_type) != DataType::Kind(lhs_type)) { AddError(StringPrintf("Binary operation %s %d has a result kind different " "from its left-hand side input kind: %s vs %s.", op->DebugName(), op->GetId(), DataType::PrettyDescriptor(result_type), DataType::PrettyDescriptor(lhs_type))); } if (DataType::Kind(result_type) != DataType::Kind(rhs_type)) { AddError(StringPrintf("Binary operation %s %d has a result kind different " "from its right-hand side input kind: %s vs %s.", op->DebugName(), op->GetId(), DataType::PrettyDescriptor(result_type), DataType::PrettyDescriptor(rhs_type))); } } } void GraphChecker::VisitConstant(HConstant* instruction) { HBasicBlock* block = instruction->GetBlock(); if (!block->IsEntryBlock()) { AddError(StringPrintf( "%s %d should be in the entry block but is in block %d.", instruction->DebugName(), instruction->GetId(), block->GetBlockId())); } } void GraphChecker::VisitBoundType(HBoundType* instruction) { VisitInstruction(instruction); if (!instruction->GetUpperBound().IsValid()) { AddError(StringPrintf( "%s %d does not have a valid upper bound RTI.", instruction->DebugName(), instruction->GetId())); } } void GraphChecker::VisitTypeConversion(HTypeConversion* instruction) { VisitInstruction(instruction); DataType::Type result_type = instruction->GetResultType(); DataType::Type input_type = instruction->GetInputType(); // Invariant: We should never generate a conversion to a Boolean value. if (result_type == DataType::Type::kBool) { AddError(StringPrintf( "%s %d converts to a %s (from a %s).", instruction->DebugName(), instruction->GetId(), DataType::PrettyDescriptor(result_type), DataType::PrettyDescriptor(input_type))); } } } // namespace art