/* * Copyright (C) 2017 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "superblock_cloner.h" #include "common_dominator.h" #include "graph_checker.h" #include <iostream> namespace art { using HBasicBlockMap = SuperblockCloner::HBasicBlockMap; using HInstructionMap = SuperblockCloner::HInstructionMap; using HBasicBlockSet = SuperblockCloner::HBasicBlockSet; using HEdgeSet = SuperblockCloner::HEdgeSet; void HEdge::Dump(std::ostream& stream) const { stream << "(" << from_ << "->" << to_ << ")"; } // // Static helper methods. // // Returns whether instruction has any uses (regular or environmental) outside the region, // defined by basic block set. static bool IsUsedOutsideRegion(const HInstruction* instr, const HBasicBlockSet& bb_set) { auto& uses = instr->GetUses(); for (auto use_node = uses.begin(), e = uses.end(); use_node != e; ++use_node) { HInstruction* user = use_node->GetUser(); if (!bb_set.IsBitSet(user->GetBlock()->GetBlockId())) { return true; } } auto& env_uses = instr->GetEnvUses(); for (auto use_node = env_uses.begin(), e = env_uses.end(); use_node != e; ++use_node) { HInstruction* user = use_node->GetUser()->GetHolder(); if (!bb_set.IsBitSet(user->GetBlock()->GetBlockId())) { return true; } } return false; } // Returns whether the phi's inputs are the same HInstruction. static bool ArePhiInputsTheSame(const HPhi* phi) { HInstruction* first_input = phi->InputAt(0); for (size_t i = 1, e = phi->InputCount(); i < e; i++) { if (phi->InputAt(i) != first_input) { return false; } } return true; } // Returns a common predecessor of loop1 and loop2 in the loop tree or nullptr if it is the whole // graph. static HLoopInformation* FindCommonLoop(HLoopInformation* loop1, HLoopInformation* loop2) { if (loop1 != nullptr || loop2 != nullptr) { return nullptr; } if (loop1->IsIn(*loop2)) { return loop2; } else if (loop2->IsIn(*loop1)) { return loop1; } HBasicBlock* block = CommonDominator::ForPair(loop1->GetHeader(), loop2->GetHeader()); return block->GetLoopInformation(); } // Calls HGraph::OrderLoopHeaderPredecessors for each loop in the graph. static void OrderLoopsHeadersPredecessors(HGraph* graph) { for (HBasicBlock* block : graph->GetPostOrder()) { if (block->IsLoopHeader()) { graph->OrderLoopHeaderPredecessors(block); } } } // // Helpers for CloneBasicBlock. // void SuperblockCloner::ReplaceInputsWithCopies(HInstruction* copy_instr) { DCHECK(!copy_instr->IsPhi()); for (size_t i = 0, e = copy_instr->InputCount(); i < e; i++) { // Copy instruction holds the same input as the original instruction holds. HInstruction* orig_input = copy_instr->InputAt(i); if (!IsInOrigBBSet(orig_input->GetBlock())) { // Defined outside the subgraph. continue; } HInstruction* copy_input = GetInstrCopy(orig_input); // copy_instr will be registered as a user of copy_inputs after returning from this function: // 'copy_block->AddInstruction(copy_instr)'. copy_instr->SetRawInputAt(i, copy_input); } } void SuperblockCloner::DeepCloneEnvironmentWithRemapping(HInstruction* copy_instr, const HEnvironment* orig_env) { if (orig_env->GetParent() != nullptr) { DeepCloneEnvironmentWithRemapping(copy_instr, orig_env->GetParent()); } HEnvironment* copy_env = new (arena_) HEnvironment(arena_, *orig_env, copy_instr); for (size_t i = 0; i < orig_env->Size(); i++) { HInstruction* env_input = orig_env->GetInstructionAt(i); if (env_input != nullptr && IsInOrigBBSet(env_input->GetBlock())) { env_input = GetInstrCopy(env_input); DCHECK(env_input != nullptr && env_input->GetBlock() != nullptr); } copy_env->SetRawEnvAt(i, env_input); if (env_input != nullptr) { env_input->AddEnvUseAt(copy_env, i); } } // InsertRawEnvironment assumes that instruction already has an environment that's why we use // SetRawEnvironment in the 'else' case. // As this function calls itself recursively with the same copy_instr - this copy_instr may // have partially copied chain of HEnvironments. if (copy_instr->HasEnvironment()) { copy_instr->InsertRawEnvironment(copy_env); } else { copy_instr->SetRawEnvironment(copy_env); } } // // Helpers for RemapEdgesSuccessors. // void SuperblockCloner::RemapOrigInternalOrIncomingEdge(HBasicBlock* orig_block, HBasicBlock* orig_succ) { DCHECK(IsInOrigBBSet(orig_succ)); HBasicBlock* copy_succ = GetBlockCopy(orig_succ); size_t this_index = orig_succ->GetPredecessorIndexOf(orig_block); size_t phi_input_count = 0; // This flag reflects whether the original successor has at least one phi and this phi // has been already processed in the loop. Used for validation purposes in DCHECK to check that // in the end all of the phis in the copy successor have the same number of inputs - the number // of copy successor's predecessors. bool first_phi_met = false; for (HInstructionIterator it(orig_succ->GetPhis()); !it.Done(); it.Advance()) { HPhi* orig_phi = it.Current()->AsPhi(); HPhi* copy_phi = GetInstrCopy(orig_phi)->AsPhi(); HInstruction* orig_phi_input = orig_phi->InputAt(this_index); // Remove corresponding input for original phi. orig_phi->RemoveInputAt(this_index); // Copy phi doesn't yet have either orig_block as predecessor or the input that corresponds // to orig_block, so add the input at the end of the list. copy_phi->AddInput(orig_phi_input); if (!first_phi_met) { phi_input_count = copy_phi->InputCount(); first_phi_met = true; } else { DCHECK_EQ(phi_input_count, copy_phi->InputCount()); } } // orig_block will be put at the end of the copy_succ's predecessors list; that corresponds // to the previously added phi inputs position. orig_block->ReplaceSuccessor(orig_succ, copy_succ); DCHECK(!first_phi_met || copy_succ->GetPredecessors().size() == phi_input_count); } void SuperblockCloner::AddCopyInternalEdge(HBasicBlock* orig_block, HBasicBlock* orig_succ) { DCHECK(IsInOrigBBSet(orig_succ)); HBasicBlock* copy_block = GetBlockCopy(orig_block); HBasicBlock* copy_succ = GetBlockCopy(orig_succ); copy_block->AddSuccessor(copy_succ); size_t orig_index = orig_succ->GetPredecessorIndexOf(orig_block); for (HInstructionIterator it(orig_succ->GetPhis()); !it.Done(); it.Advance()) { HPhi* orig_phi = it.Current()->AsPhi(); HPhi* copy_phi = GetInstrCopy(orig_phi)->AsPhi(); HInstruction* orig_phi_input = orig_phi->InputAt(orig_index); copy_phi->AddInput(orig_phi_input); } } void SuperblockCloner::RemapCopyInternalEdge(HBasicBlock* orig_block, HBasicBlock* orig_succ) { DCHECK(IsInOrigBBSet(orig_succ)); HBasicBlock* copy_block = GetBlockCopy(orig_block); copy_block->AddSuccessor(orig_succ); DCHECK(copy_block->HasSuccessor(orig_succ)); size_t orig_index = orig_succ->GetPredecessorIndexOf(orig_block); for (HInstructionIterator it(orig_succ->GetPhis()); !it.Done(); it.Advance()) { HPhi* orig_phi = it.Current()->AsPhi(); HInstruction* orig_phi_input = orig_phi->InputAt(orig_index); orig_phi->AddInput(orig_phi_input); } } // // Local versions of CF calculation/adjustment routines. // // TODO: merge with the original version in nodes.cc. The concern is that we don't want to affect // the performance of the base version by checking the local set. // TODO: this version works when updating the back edges info for natural loop-based local_set. // Check which exactly types of subgraphs can be analysed or rename it to // FindBackEdgesInTheNaturalLoop. void SuperblockCloner::FindBackEdgesLocal(HBasicBlock* entry_block, ArenaBitVector* local_set) { ArenaBitVector visited(arena_, graph_->GetBlocks().size(), false, kArenaAllocSuperblockCloner); // "visited" must be empty on entry, it's an output argument for all visited (i.e. live) blocks. DCHECK_EQ(visited.GetHighestBitSet(), -1); // Nodes that we're currently visiting, indexed by block id. ArenaBitVector visiting(arena_, graph_->GetBlocks().size(), false, kArenaAllocGraphBuilder); // Number of successors visited from a given node, indexed by block id. ArenaVector<size_t> successors_visited(graph_->GetBlocks().size(), 0u, arena_->Adapter(kArenaAllocGraphBuilder)); // Stack of nodes that we're currently visiting (same as marked in "visiting" above). ArenaVector<HBasicBlock*> worklist(arena_->Adapter(kArenaAllocGraphBuilder)); constexpr size_t kDefaultWorklistSize = 8; worklist.reserve(kDefaultWorklistSize); visited.SetBit(entry_block->GetBlockId()); visiting.SetBit(entry_block->GetBlockId()); worklist.push_back(entry_block); while (!worklist.empty()) { HBasicBlock* current = worklist.back(); uint32_t current_id = current->GetBlockId(); if (successors_visited[current_id] == current->GetSuccessors().size()) { visiting.ClearBit(current_id); worklist.pop_back(); } else { HBasicBlock* successor = current->GetSuccessors()[successors_visited[current_id]++]; uint32_t successor_id = successor->GetBlockId(); if (!local_set->IsBitSet(successor_id)) { continue; } if (visiting.IsBitSet(successor_id)) { DCHECK(ContainsElement(worklist, successor)); successor->AddBackEdgeWhileUpdating(current); } else if (!visited.IsBitSet(successor_id)) { visited.SetBit(successor_id); visiting.SetBit(successor_id); worklist.push_back(successor); } } } } void SuperblockCloner::RecalculateBackEdgesInfo(ArenaBitVector* outer_loop_bb_set) { // TODO: DCHECK that after the transformation the graph is connected. HBasicBlock* block_entry = nullptr; if (outer_loop_ == nullptr) { for (auto block : graph_->GetBlocks()) { if (block != nullptr) { outer_loop_bb_set->SetBit(block->GetBlockId()); HLoopInformation* info = block->GetLoopInformation(); if (info != nullptr) { info->ResetBasicBlockData(); } } } block_entry = graph_->GetEntryBlock(); } else { outer_loop_bb_set->Copy(&outer_loop_bb_set_); block_entry = outer_loop_->GetHeader(); // Add newly created copy blocks. for (auto entry : *bb_map_) { outer_loop_bb_set->SetBit(entry.second->GetBlockId()); } // Clear loop_info for the whole outer loop. for (uint32_t idx : outer_loop_bb_set->Indexes()) { HBasicBlock* block = GetBlockById(idx); HLoopInformation* info = block->GetLoopInformation(); if (info != nullptr) { info->ResetBasicBlockData(); } } } FindBackEdgesLocal(block_entry, outer_loop_bb_set); for (uint32_t idx : outer_loop_bb_set->Indexes()) { HBasicBlock* block = GetBlockById(idx); HLoopInformation* info = block->GetLoopInformation(); // Reset LoopInformation for regular blocks and old headers which are no longer loop headers. if (info != nullptr && (info->GetHeader() != block || info->NumberOfBackEdges() == 0)) { block->SetLoopInformation(nullptr); } } } // This is a modified version of HGraph::AnalyzeLoops. GraphAnalysisResult SuperblockCloner::AnalyzeLoopsLocally(ArenaBitVector* outer_loop_bb_set) { // We iterate post order to ensure we visit inner loops before outer loops. // `PopulateRecursive` needs this guarantee to know whether a natural loop // contains an irreducible loop. for (HBasicBlock* block : graph_->GetPostOrder()) { if (!outer_loop_bb_set->IsBitSet(block->GetBlockId())) { continue; } if (block->IsLoopHeader()) { if (block->IsCatchBlock()) { // TODO: Dealing with exceptional back edges could be tricky because // they only approximate the real control flow. Bail out for now. return kAnalysisFailThrowCatchLoop; } block->GetLoopInformation()->Populate(); } } for (HBasicBlock* block : graph_->GetPostOrder()) { if (!outer_loop_bb_set->IsBitSet(block->GetBlockId())) { continue; } if (block->IsLoopHeader()) { HLoopInformation* cur_loop = block->GetLoopInformation(); HLoopInformation* outer_loop = cur_loop->GetPreHeader()->GetLoopInformation(); if (outer_loop != nullptr) { outer_loop->PopulateInnerLoopUpwards(cur_loop); } } } return kAnalysisSuccess; } void SuperblockCloner::CleanUpControlFlow() { // TODO: full control flow clean up for now, optimize it. graph_->ClearDominanceInformation(); ArenaBitVector outer_loop_bb_set( arena_, graph_->GetBlocks().size(), false, kArenaAllocSuperblockCloner); RecalculateBackEdgesInfo(&outer_loop_bb_set); // TODO: do it locally. graph_->SimplifyCFG(); graph_->ComputeDominanceInformation(); // AnalyzeLoopsLocally requires a correct post-ordering information which was calculated just // before in ComputeDominanceInformation. GraphAnalysisResult result = AnalyzeLoopsLocally(&outer_loop_bb_set); DCHECK_EQ(result, kAnalysisSuccess); // TODO: do it locally OrderLoopsHeadersPredecessors(graph_); graph_->ComputeTryBlockInformation(); } // // Helpers for ResolveDataFlow // void SuperblockCloner::ResolvePhi(HPhi* phi) { HBasicBlock* phi_block = phi->GetBlock(); for (size_t i = 0, e = phi->InputCount(); i < e; i++) { HInstruction* input = phi->InputAt(i); HBasicBlock* input_block = input->GetBlock(); // Originally defined outside the region. if (!IsInOrigBBSet(input_block)) { continue; } HBasicBlock* corresponding_block = phi_block->GetPredecessors()[i]; if (!IsInOrigBBSet(corresponding_block)) { phi->ReplaceInput(GetInstrCopy(input), i); } } } // // Main algorithm methods. // void SuperblockCloner::SearchForSubgraphExits(ArenaVector<HBasicBlock*>* exits) { DCHECK(exits->empty()); for (uint32_t block_id : orig_bb_set_.Indexes()) { HBasicBlock* block = GetBlockById(block_id); for (HBasicBlock* succ : block->GetSuccessors()) { if (!IsInOrigBBSet(succ)) { exits->push_back(succ); } } } } void SuperblockCloner::FindAndSetLocalAreaForAdjustments() { DCHECK(outer_loop_ == nullptr); ArenaVector<HBasicBlock*> exits(arena_->Adapter(kArenaAllocSuperblockCloner)); SearchForSubgraphExits(&exits); // For a reducible graph we need to update back-edges and dominance information only for // the outermost loop which is affected by the transformation - it can be found by picking // the common most outer loop of loops to which the subgraph exits blocks belong. // Note: it can a loop or the whole graph (outer_loop_ will be nullptr in this case). for (HBasicBlock* exit : exits) { HLoopInformation* loop_exit_loop_info = exit->GetLoopInformation(); if (loop_exit_loop_info == nullptr) { outer_loop_ = nullptr; break; } outer_loop_ = FindCommonLoop(outer_loop_, loop_exit_loop_info); } if (outer_loop_ != nullptr) { // Save the loop population info as it will be changed later. outer_loop_bb_set_.Copy(&outer_loop_->GetBlocks()); } } void SuperblockCloner::RemapEdgesSuccessors() { // Redirect incoming edges. for (HEdge e : *remap_incoming_) { HBasicBlock* orig_block = GetBlockById(e.GetFrom()); HBasicBlock* orig_succ = GetBlockById(e.GetTo()); RemapOrigInternalOrIncomingEdge(orig_block, orig_succ); } // Redirect internal edges. for (uint32_t orig_block_id : orig_bb_set_.Indexes()) { HBasicBlock* orig_block = GetBlockById(orig_block_id); for (HBasicBlock* orig_succ : orig_block->GetSuccessors()) { uint32_t orig_succ_id = orig_succ->GetBlockId(); // Check for outgoing edge. if (!IsInOrigBBSet(orig_succ)) { HBasicBlock* copy_block = GetBlockCopy(orig_block); copy_block->AddSuccessor(orig_succ); continue; } auto orig_redir = remap_orig_internal_->Find(HEdge(orig_block_id, orig_succ_id)); auto copy_redir = remap_copy_internal_->Find(HEdge(orig_block_id, orig_succ_id)); // Due to construction all successors of copied block were set to original. if (copy_redir != remap_copy_internal_->end()) { RemapCopyInternalEdge(orig_block, orig_succ); } else { AddCopyInternalEdge(orig_block, orig_succ); } if (orig_redir != remap_orig_internal_->end()) { RemapOrigInternalOrIncomingEdge(orig_block, orig_succ); } } } } void SuperblockCloner::AdjustControlFlowInfo() { ArenaBitVector outer_loop_bb_set( arena_, graph_->GetBlocks().size(), false, kArenaAllocSuperblockCloner); RecalculateBackEdgesInfo(&outer_loop_bb_set); graph_->ClearDominanceInformation(); // TODO: Do it locally. graph_->ComputeDominanceInformation(); } // TODO: Current FastCase restriction guarantees that instructions' inputs are already mapped to // the valid values; only phis' inputs must be adjusted. void SuperblockCloner::ResolveDataFlow() { for (auto entry : *bb_map_) { HBasicBlock* orig_block = entry.first; for (HInstructionIterator it(orig_block->GetPhis()); !it.Done(); it.Advance()) { HPhi* orig_phi = it.Current()->AsPhi(); HPhi* copy_phi = GetInstrCopy(orig_phi)->AsPhi(); ResolvePhi(orig_phi); ResolvePhi(copy_phi); } if (kIsDebugBuild) { // Inputs of instruction copies must be already mapped to correspondent inputs copies. for (HInstructionIterator it(orig_block->GetInstructions()); !it.Done(); it.Advance()) { CheckInstructionInputsRemapping(it.Current()); } } } } // // Debug and logging methods. // void SuperblockCloner::CheckInstructionInputsRemapping(HInstruction* orig_instr) { DCHECK(!orig_instr->IsPhi()); HInstruction* copy_instr = GetInstrCopy(orig_instr); for (size_t i = 0, e = orig_instr->InputCount(); i < e; i++) { HInstruction* orig_input = orig_instr->InputAt(i); DCHECK(orig_input->GetBlock()->Dominates(orig_instr->GetBlock())); // If original input is defined outside the region then it will remain for both original // instruction and the copy after the transformation. if (!IsInOrigBBSet(orig_input->GetBlock())) { continue; } HInstruction* copy_input = GetInstrCopy(orig_input); DCHECK(copy_input->GetBlock()->Dominates(copy_instr->GetBlock())); } // Resolve environment. if (orig_instr->HasEnvironment()) { HEnvironment* orig_env = orig_instr->GetEnvironment(); for (size_t i = 0, e = orig_env->Size(); i < e; ++i) { HInstruction* orig_input = orig_env->GetInstructionAt(i); // If original input is defined outside the region then it will remain for both original // instruction and the copy after the transformation. if (orig_input == nullptr || !IsInOrigBBSet(orig_input->GetBlock())) { continue; } HInstruction* copy_input = GetInstrCopy(orig_input); DCHECK(copy_input->GetBlock()->Dominates(copy_instr->GetBlock())); } } } // // Public methods. // SuperblockCloner::SuperblockCloner(HGraph* graph, const HBasicBlockSet* orig_bb_set, HBasicBlockMap* bb_map, HInstructionMap* hir_map) : graph_(graph), arena_(graph->GetAllocator()), orig_bb_set_(arena_, orig_bb_set->GetSizeOf(), true, kArenaAllocSuperblockCloner), remap_orig_internal_(nullptr), remap_copy_internal_(nullptr), remap_incoming_(nullptr), bb_map_(bb_map), hir_map_(hir_map), outer_loop_(nullptr), outer_loop_bb_set_(arena_, orig_bb_set->GetSizeOf(), true, kArenaAllocSuperblockCloner) { orig_bb_set_.Copy(orig_bb_set); } void SuperblockCloner::SetSuccessorRemappingInfo(const HEdgeSet* remap_orig_internal, const HEdgeSet* remap_copy_internal, const HEdgeSet* remap_incoming) { remap_orig_internal_ = remap_orig_internal; remap_copy_internal_ = remap_copy_internal; remap_incoming_ = remap_incoming; } bool SuperblockCloner::IsSubgraphClonable() const { // TODO: Support irreducible graphs and graphs with try-catch. if (graph_->HasIrreducibleLoops() || graph_->HasTryCatch()) { return false; } // Check that there are no instructions defined in the subgraph and used outside. // TODO: Improve this by accepting graph with such uses but only one exit. for (uint32_t idx : orig_bb_set_.Indexes()) { HBasicBlock* block = GetBlockById(idx); for (HInstructionIterator it(block->GetInstructions()); !it.Done(); it.Advance()) { HInstruction* instr = it.Current(); if (!instr->IsClonable() || IsUsedOutsideRegion(instr, orig_bb_set_)) { return false; } } for (HInstructionIterator it(block->GetPhis()); !it.Done(); it.Advance()) { HInstruction* instr = it.Current(); if (!instr->IsClonable() || IsUsedOutsideRegion(instr, orig_bb_set_)) { return false; } } } return true; } void SuperblockCloner::Run() { DCHECK(bb_map_ != nullptr); DCHECK(hir_map_ != nullptr); DCHECK(remap_orig_internal_ != nullptr && remap_copy_internal_ != nullptr && remap_incoming_ != nullptr); DCHECK(IsSubgraphClonable()); // Find an area in the graph for which control flow information should be adjusted. FindAndSetLocalAreaForAdjustments(); // Clone the basic blocks from the orig_bb_set_; data flow is invalid after the call and is to be // adjusted. CloneBasicBlocks(); // Connect the blocks together/remap successors and fix phis which are directly affected my the // remapping. RemapEdgesSuccessors(); // Recalculate dominance and backedge information which is required by the next stage. AdjustControlFlowInfo(); // Fix data flow of the graph. ResolveDataFlow(); } void SuperblockCloner::CleanUp() { CleanUpControlFlow(); // Remove phis which have all inputs being same. // When a block has a single predecessor it must not have any phis. However after the // transformation it could happen that there is such block with a phi with a single input. // As this is needed to be processed we also simplify phis with multiple same inputs here. for (auto entry : *bb_map_) { HBasicBlock* orig_block = entry.first; for (HInstructionIterator inst_it(orig_block->GetPhis()); !inst_it.Done(); inst_it.Advance()) { HPhi* phi = inst_it.Current()->AsPhi(); if (ArePhiInputsTheSame(phi)) { phi->ReplaceWith(phi->InputAt(0)); orig_block->RemovePhi(phi); } } HBasicBlock* copy_block = GetBlockCopy(orig_block); for (HInstructionIterator inst_it(copy_block->GetPhis()); !inst_it.Done(); inst_it.Advance()) { HPhi* phi = inst_it.Current()->AsPhi(); if (ArePhiInputsTheSame(phi)) { phi->ReplaceWith(phi->InputAt(0)); copy_block->RemovePhi(phi); } } } } HBasicBlock* SuperblockCloner::CloneBasicBlock(const HBasicBlock* orig_block) { HGraph* graph = orig_block->GetGraph(); HBasicBlock* copy_block = new (arena_) HBasicBlock(graph, orig_block->GetDexPc()); graph->AddBlock(copy_block); // Clone all the phis and add them to the map. for (HInstructionIterator it(orig_block->GetPhis()); !it.Done(); it.Advance()) { HInstruction* orig_instr = it.Current(); HInstruction* copy_instr = orig_instr->Clone(arena_); copy_block->AddPhi(copy_instr->AsPhi()); copy_instr->AsPhi()->RemoveAllInputs(); DCHECK(!orig_instr->HasEnvironment()); hir_map_->Put(orig_instr, copy_instr); } // Clone all the instructions and add them to the map. for (HInstructionIterator it(orig_block->GetInstructions()); !it.Done(); it.Advance()) { HInstruction* orig_instr = it.Current(); HInstruction* copy_instr = orig_instr->Clone(arena_); ReplaceInputsWithCopies(copy_instr); copy_block->AddInstruction(copy_instr); if (orig_instr->HasEnvironment()) { DeepCloneEnvironmentWithRemapping(copy_instr, orig_instr->GetEnvironment()); } hir_map_->Put(orig_instr, copy_instr); } return copy_block; } void SuperblockCloner::CloneBasicBlocks() { // By this time ReversePostOrder must be valid: in 'CloneBasicBlock' inputs of the copied // instructions might be replaced by copies of the original inputs (depending where those inputs // are defined). So the definitions of the original inputs must be visited before their original // uses. The property of the reducible graphs "if 'A' dom 'B' then rpo_num('A') >= rpo_num('B')" // guarantees that. for (HBasicBlock* orig_block : graph_->GetReversePostOrder()) { if (!IsInOrigBBSet(orig_block)) { continue; } HBasicBlock* copy_block = CloneBasicBlock(orig_block); bb_map_->Put(orig_block, copy_block); if (kSuperblockClonerLogging) { std::cout << "new block :" << copy_block->GetBlockId() << ": " << orig_block->GetBlockId() << std::endl; } } } } // namespace art