/* * Copyright (C) 2014 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <stdio.h> #include <stdlib.h> #include <fstream> #include <functional> #include <iostream> #include <map> #include <set> #include <string> #include <unordered_set> #include <vector> #include "android-base/stringprintf.h" #include "art_field-inl.h" #include "art_method-inl.h" #include "base/os.h" #include "base/unix_file/fd_file.h" #include "class_linker.h" #include "gc/heap.h" #include "gc/space/image_space.h" #include "image.h" #include "mirror/class-inl.h" #include "mirror/object-inl.h" #include "oat.h" #include "oat_file.h" #include "oat_file_manager.h" #include "scoped_thread_state_change-inl.h" #include "backtrace/BacktraceMap.h" #include "cmdline.h" #include <signal.h> #include <sys/stat.h> #include <sys/types.h> namespace art { using android::base::StringPrintf; namespace { constexpr size_t kMaxAddressPrint = 5; enum class ProcessType { kZygote, kRemote }; enum class RemoteProcesses { kImageOnly, kZygoteOnly, kImageAndZygote }; struct MappingData { // The count of pages that are considered dirty by the OS. size_t dirty_pages = 0; // The count of pages that differ by at least one byte. size_t different_pages = 0; // The count of differing bytes. size_t different_bytes = 0; // The count of differing four-byte units. size_t different_int32s = 0; // The count of pages that have mapping count == 1. size_t private_pages = 0; // The count of private pages that are also dirty. size_t private_dirty_pages = 0; // The count of pages that are marked dirty but do not differ. size_t false_dirty_pages = 0; // Set of the local virtual page indices that are dirty. std::set<size_t> dirty_page_set; }; static std::string GetClassDescriptor(mirror::Class* klass) REQUIRES_SHARED(Locks::mutator_lock_) { CHECK(klass != nullptr); std::string descriptor; const char* descriptor_str = klass->GetDescriptor(&descriptor /*out*/); return std::string(descriptor_str); } static std::string PrettyFieldValue(ArtField* field, mirror::Object* object) REQUIRES_SHARED(Locks::mutator_lock_) { std::ostringstream oss; switch (field->GetTypeAsPrimitiveType()) { case Primitive::kPrimNot: { oss << object->GetFieldObject<mirror::Object, kVerifyNone, kWithoutReadBarrier>( field->GetOffset()); break; } case Primitive::kPrimBoolean: { oss << static_cast<bool>(object->GetFieldBoolean<kVerifyNone>(field->GetOffset())); break; } case Primitive::kPrimByte: { oss << static_cast<int32_t>(object->GetFieldByte<kVerifyNone>(field->GetOffset())); break; } case Primitive::kPrimChar: { oss << object->GetFieldChar<kVerifyNone>(field->GetOffset()); break; } case Primitive::kPrimShort: { oss << object->GetFieldShort<kVerifyNone>(field->GetOffset()); break; } case Primitive::kPrimInt: { oss << object->GetField32<kVerifyNone>(field->GetOffset()); break; } case Primitive::kPrimLong: { oss << object->GetField64<kVerifyNone>(field->GetOffset()); break; } case Primitive::kPrimFloat: { oss << object->GetField32<kVerifyNone>(field->GetOffset()); break; } case Primitive::kPrimDouble: { oss << object->GetField64<kVerifyNone>(field->GetOffset()); break; } case Primitive::kPrimVoid: { oss << "void"; break; } } return oss.str(); } template <typename K, typename V, typename D> static std::vector<std::pair<V, K>> SortByValueDesc( const std::map<K, D> map, std::function<V(const D&)> value_mapper = [](const D& d) { return static_cast<V>(d); }) { // Store value->key so that we can use the default sort from pair which // sorts by value first and then key std::vector<std::pair<V, K>> value_key_vector; for (const auto& kv_pair : map) { value_key_vector.push_back(std::make_pair(value_mapper(kv_pair.second), kv_pair.first)); } // Sort in reverse (descending order) std::sort(value_key_vector.rbegin(), value_key_vector.rend()); return value_key_vector; } // Fixup a remote pointer that we read from a foreign boot.art to point to our own memory. // Returned pointer will point to inside of remote_contents. template <typename T> static T* FixUpRemotePointer(T* remote_ptr, std::vector<uint8_t>& remote_contents, const backtrace_map_t& boot_map) { if (remote_ptr == nullptr) { return nullptr; } uintptr_t remote = reinterpret_cast<uintptr_t>(remote_ptr); CHECK_LE(boot_map.start, remote); CHECK_GT(boot_map.end, remote); off_t boot_offset = remote - boot_map.start; return reinterpret_cast<T*>(&remote_contents[boot_offset]); } template <typename T> static T* RemoteContentsPointerToLocal(T* remote_ptr, std::vector<uint8_t>& remote_contents, const ImageHeader& image_header) { if (remote_ptr == nullptr) { return nullptr; } uint8_t* remote = reinterpret_cast<uint8_t*>(remote_ptr); ptrdiff_t boot_offset = remote - &remote_contents[0]; const uint8_t* local_ptr = reinterpret_cast<const uint8_t*>(&image_header) + boot_offset; return reinterpret_cast<T*>(const_cast<uint8_t*>(local_ptr)); } template <typename T> size_t EntrySize(T* entry); template<> size_t EntrySize(mirror::Object* object) REQUIRES_SHARED(Locks::mutator_lock_) { return object->SizeOf(); } template<> size_t EntrySize(ArtMethod* art_method) REQUIRES_SHARED(Locks::mutator_lock_) { return sizeof(*art_method); } template <typename T> static bool EntriesDiffer(T* entry1, T* entry2) REQUIRES_SHARED(Locks::mutator_lock_) { return memcmp(entry1, entry2, EntrySize(entry1)) != 0; } template <typename T> struct RegionCommon { public: RegionCommon(std::ostream* os, std::vector<uint8_t>* remote_contents, std::vector<uint8_t>* zygote_contents, const backtrace_map_t& boot_map, const ImageHeader& image_header) : os_(*os), remote_contents_(remote_contents), zygote_contents_(zygote_contents), boot_map_(boot_map), image_header_(image_header), different_entries_(0), dirty_entry_bytes_(0), false_dirty_entry_bytes_(0) { CHECK(remote_contents != nullptr); CHECK(zygote_contents != nullptr); } void DumpSamplesAndOffsetCount() { os_ << " sample object addresses: "; for (size_t i = 0; i < dirty_entries_.size() && i < kMaxAddressPrint; ++i) { T* entry = dirty_entries_[i]; os_ << reinterpret_cast<void*>(entry) << ", "; } os_ << "\n"; os_ << " dirty byte +offset:count list = "; std::vector<std::pair<size_t, off_t>> field_dirty_count_sorted = SortByValueDesc<off_t, size_t, size_t>(field_dirty_count_); for (const std::pair<size_t, off_t>& pair : field_dirty_count_sorted) { off_t offset = pair.second; size_t count = pair.first; os_ << "+" << offset << ":" << count << ", "; } os_ << "\n"; } size_t GetDifferentEntryCount() const { return different_entries_; } size_t GetDirtyEntryBytes() const { return dirty_entry_bytes_; } size_t GetFalseDirtyEntryCount() const { return false_dirty_entries_.size(); } size_t GetFalseDirtyEntryBytes() const { return false_dirty_entry_bytes_; } size_t GetZygoteDirtyEntryCount() const { return zygote_dirty_entries_.size(); } protected: bool IsEntryOnDirtyPage(T* entry, const std::set<size_t>& dirty_pages) const REQUIRES_SHARED(Locks::mutator_lock_) { size_t size = EntrySize(entry); size_t page_off = 0; size_t current_page_idx; uintptr_t entry_address = reinterpret_cast<uintptr_t>(entry); // Iterate every page this entry belongs to do { current_page_idx = entry_address / kPageSize + page_off; if (dirty_pages.find(current_page_idx) != dirty_pages.end()) { // This entry is on a dirty page return true; } page_off++; } while ((current_page_idx * kPageSize) < RoundUp(entry_address + size, kObjectAlignment)); return false; } void AddZygoteDirtyEntry(T* entry) REQUIRES_SHARED(Locks::mutator_lock_) { zygote_dirty_entries_.insert(entry); } void AddImageDirtyEntry(T* entry) REQUIRES_SHARED(Locks::mutator_lock_) { image_dirty_entries_.insert(entry); } void AddFalseDirtyEntry(T* entry) REQUIRES_SHARED(Locks::mutator_lock_) { false_dirty_entries_.push_back(entry); false_dirty_entry_bytes_ += EntrySize(entry); } // The output stream to write to. std::ostream& os_; // The byte contents of the remote (image) process' image. std::vector<uint8_t>* remote_contents_; // The byte contents of the zygote process' image. std::vector<uint8_t>* zygote_contents_; const backtrace_map_t& boot_map_; const ImageHeader& image_header_; // Count of entries that are different. size_t different_entries_; // Local entries that are dirty (differ in at least one byte). size_t dirty_entry_bytes_; std::vector<T*> dirty_entries_; // Local entries that are clean, but located on dirty pages. size_t false_dirty_entry_bytes_; std::vector<T*> false_dirty_entries_; // Image dirty entries // If zygote_pid_only_ == true, these are shared dirty entries in the zygote. // If zygote_pid_only_ == false, these are private dirty entries in the application. std::set<T*> image_dirty_entries_; // Zygote dirty entries (probably private dirty). // We only add entries here if they differed in both the image and the zygote, so // they are probably private dirty. std::set<T*> zygote_dirty_entries_; std::map<off_t /* field offset */, size_t /* count */> field_dirty_count_; private: DISALLOW_COPY_AND_ASSIGN(RegionCommon); }; template <typename T> class RegionSpecializedBase : public RegionCommon<T> { }; // Region analysis for mirror::Objects class ImgObjectVisitor : public ObjectVisitor { public: using ComputeDirtyFunc = std::function<void(mirror::Object* object, const uint8_t* begin_image_ptr, const std::set<size_t>& dirty_pages)>; ImgObjectVisitor(ComputeDirtyFunc dirty_func, const uint8_t* begin_image_ptr, const std::set<size_t>& dirty_pages) : dirty_func_(dirty_func), begin_image_ptr_(begin_image_ptr), dirty_pages_(dirty_pages) { } virtual ~ImgObjectVisitor() OVERRIDE { } virtual void Visit(mirror::Object* object) OVERRIDE REQUIRES_SHARED(Locks::mutator_lock_) { // Sanity check that we are reading a real mirror::Object CHECK(object->GetClass() != nullptr) << "Image object at address " << object << " has null class"; if (kUseBakerReadBarrier) { object->AssertReadBarrierState(); } dirty_func_(object, begin_image_ptr_, dirty_pages_); } private: ComputeDirtyFunc dirty_func_; const uint8_t* begin_image_ptr_; const std::set<size_t>& dirty_pages_; }; template<> class RegionSpecializedBase<mirror::Object> : public RegionCommon<mirror::Object> { public: RegionSpecializedBase(std::ostream* os, std::vector<uint8_t>* remote_contents, std::vector<uint8_t>* zygote_contents, const backtrace_map_t& boot_map, const ImageHeader& image_header, bool dump_dirty_objects) : RegionCommon<mirror::Object>(os, remote_contents, zygote_contents, boot_map, image_header), os_(*os), dump_dirty_objects_(dump_dirty_objects) { } // Define a common public type name for use by RegionData. using VisitorClass = ImgObjectVisitor; void VisitEntries(VisitorClass* visitor, uint8_t* base, PointerSize pointer_size) REQUIRES_SHARED(Locks::mutator_lock_) { RegionCommon<mirror::Object>::image_header_.VisitObjects(visitor, base, pointer_size); } void VisitEntry(mirror::Object* entry) REQUIRES_SHARED(Locks::mutator_lock_) { // Unconditionally store the class descriptor in case we need it later mirror::Class* klass = entry->GetClass(); class_data_[klass].descriptor = GetClassDescriptor(klass); } void AddCleanEntry(mirror::Object* entry) REQUIRES_SHARED(Locks::mutator_lock_) { class_data_[entry->GetClass()].AddCleanObject(); } void AddFalseDirtyEntry(mirror::Object* entry) REQUIRES_SHARED(Locks::mutator_lock_) { RegionCommon<mirror::Object>::AddFalseDirtyEntry(entry); class_data_[entry->GetClass()].AddFalseDirtyObject(entry); } void AddDirtyEntry(mirror::Object* entry, mirror::Object* entry_remote) REQUIRES_SHARED(Locks::mutator_lock_) { size_t entry_size = EntrySize(entry); ++different_entries_; dirty_entry_bytes_ += entry_size; // Log dirty count and objects for class objects only. mirror::Class* klass = entry->GetClass(); if (klass->IsClassClass()) { // Increment counts for the fields that are dirty const uint8_t* current = reinterpret_cast<const uint8_t*>(entry); const uint8_t* current_remote = reinterpret_cast<const uint8_t*>(entry_remote); for (size_t i = 0; i < entry_size; ++i) { if (current[i] != current_remote[i]) { field_dirty_count_[i]++; } } dirty_entries_.push_back(entry); } class_data_[klass].AddDirtyObject(entry, entry_remote); } void DiffEntryContents(mirror::Object* entry, uint8_t* remote_bytes, const uint8_t* base_ptr, bool log_dirty_objects) REQUIRES_SHARED(Locks::mutator_lock_) { const char* tabs = " "; // Attempt to find fields for all dirty bytes. mirror::Class* klass = entry->GetClass(); if (entry->IsClass()) { os_ << tabs << "Class " << mirror::Class::PrettyClass(entry->AsClass()) << " " << entry << "\n"; } else { os_ << tabs << "Instance of " << mirror::Class::PrettyClass(klass) << " " << entry << "\n"; } std::unordered_set<ArtField*> dirty_instance_fields; std::unordered_set<ArtField*> dirty_static_fields; // Examine the bytes comprising the Object, computing which fields are dirty // and recording them for later display. If the Object is an array object, // compute the dirty entries. mirror::Object* remote_entry = reinterpret_cast<mirror::Object*>(remote_bytes); for (size_t i = 0, count = entry->SizeOf(); i < count; ++i) { if (base_ptr[i] != remote_bytes[i]) { ArtField* field = ArtField::FindInstanceFieldWithOffset</*exact*/false>(klass, i); if (field != nullptr) { dirty_instance_fields.insert(field); } else if (entry->IsClass()) { field = ArtField::FindStaticFieldWithOffset</*exact*/false>(entry->AsClass(), i); if (field != nullptr) { dirty_static_fields.insert(field); } } if (field == nullptr) { if (klass->IsArrayClass()) { mirror::Class* component_type = klass->GetComponentType(); Primitive::Type primitive_type = component_type->GetPrimitiveType(); size_t component_size = Primitive::ComponentSize(primitive_type); size_t data_offset = mirror::Array::DataOffset(component_size).Uint32Value(); if (i >= data_offset) { os_ << tabs << "Dirty array element " << (i - data_offset) / component_size << "\n"; // Skip to next element to prevent spam. i += component_size - 1; continue; } } os_ << tabs << "No field for byte offset " << i << "\n"; } } } // Dump different fields. if (!dirty_instance_fields.empty()) { os_ << tabs << "Dirty instance fields " << dirty_instance_fields.size() << "\n"; for (ArtField* field : dirty_instance_fields) { os_ << tabs << ArtField::PrettyField(field) << " original=" << PrettyFieldValue(field, entry) << " remote=" << PrettyFieldValue(field, remote_entry) << "\n"; } } if (!dirty_static_fields.empty()) { if (dump_dirty_objects_ && log_dirty_objects) { dirty_objects_.insert(entry); } os_ << tabs << "Dirty static fields " << dirty_static_fields.size() << "\n"; for (ArtField* field : dirty_static_fields) { os_ << tabs << ArtField::PrettyField(field) << " original=" << PrettyFieldValue(field, entry) << " remote=" << PrettyFieldValue(field, remote_entry) << "\n"; } } os_ << "\n"; } void DumpDirtyObjects() REQUIRES_SHARED(Locks::mutator_lock_) { for (mirror::Object* obj : dirty_objects_) { if (obj->IsClass()) { os_ << "Private dirty object: " << obj->AsClass()->PrettyDescriptor() << "\n"; } } } void DumpDirtyEntries() REQUIRES_SHARED(Locks::mutator_lock_) { // vector of pairs (size_t count, Class*) auto dirty_object_class_values = SortByValueDesc<mirror::Class*, size_t, ClassData>( class_data_, [](const ClassData& d) { return d.dirty_object_count; }); os_ << "\n" << " Dirty object count by class:\n"; for (const auto& vk_pair : dirty_object_class_values) { size_t dirty_object_count = vk_pair.first; mirror::Class* klass = vk_pair.second; ClassData& class_data = class_data_[klass]; size_t object_sizes = class_data.dirty_object_size_in_bytes; float avg_dirty_bytes_per_class = class_data.dirty_object_byte_count * 1.0f / object_sizes; float avg_object_size = object_sizes * 1.0f / dirty_object_count; const std::string& descriptor = class_data.descriptor; os_ << " " << mirror::Class::PrettyClass(klass) << " (" << "objects: " << dirty_object_count << ", " << "avg dirty bytes: " << avg_dirty_bytes_per_class << ", " << "avg object size: " << avg_object_size << ", " << "class descriptor: '" << descriptor << "'" << ")\n"; if (strcmp(descriptor.c_str(), "Ljava/lang/Class;") == 0) { DumpSamplesAndOffsetCount(); os_ << " field contents:\n"; for (mirror::Object* object : class_data.dirty_objects) { // remote class object auto remote_klass = reinterpret_cast<mirror::Class*>(object); // local class object auto local_klass = RemoteContentsPointerToLocal(remote_klass, *RegionCommon<mirror::Object>::remote_contents_, RegionCommon<mirror::Object>::image_header_); os_ << " " << reinterpret_cast<const void*>(object) << " "; os_ << " class_status (remote): " << remote_klass->GetStatus() << ", "; os_ << " class_status (local): " << local_klass->GetStatus(); os_ << "\n"; } } } } void DumpFalseDirtyEntries() REQUIRES_SHARED(Locks::mutator_lock_) { // vector of pairs (size_t count, Class*) auto false_dirty_object_class_values = SortByValueDesc<mirror::Class*, size_t, ClassData>( class_data_, [](const ClassData& d) { return d.false_dirty_object_count; }); os_ << "\n" << " False-dirty object count by class:\n"; for (const auto& vk_pair : false_dirty_object_class_values) { size_t object_count = vk_pair.first; mirror::Class* klass = vk_pair.second; ClassData& class_data = class_data_[klass]; size_t object_sizes = class_data.false_dirty_byte_count; float avg_object_size = object_sizes * 1.0f / object_count; const std::string& descriptor = class_data.descriptor; os_ << " " << mirror::Class::PrettyClass(klass) << " (" << "objects: " << object_count << ", " << "avg object size: " << avg_object_size << ", " << "total bytes: " << object_sizes << ", " << "class descriptor: '" << descriptor << "'" << ")\n"; } } void DumpCleanEntries() REQUIRES_SHARED(Locks::mutator_lock_) { // vector of pairs (size_t count, Class*) auto clean_object_class_values = SortByValueDesc<mirror::Class*, size_t, ClassData>( class_data_, [](const ClassData& d) { return d.clean_object_count; }); os_ << "\n" << " Clean object count by class:\n"; for (const auto& vk_pair : clean_object_class_values) { os_ << " " << mirror::Class::PrettyClass(vk_pair.second) << " (" << vk_pair.first << ")\n"; } } private: // Aggregate and detail class data from an image diff. struct ClassData { size_t dirty_object_count = 0; // Track only the byte-per-byte dirtiness (in bytes) size_t dirty_object_byte_count = 0; // Track the object-by-object dirtiness (in bytes) size_t dirty_object_size_in_bytes = 0; size_t clean_object_count = 0; std::string descriptor; size_t false_dirty_byte_count = 0; size_t false_dirty_object_count = 0; std::vector<mirror::Object*> false_dirty_objects; // Remote pointers to dirty objects std::vector<mirror::Object*> dirty_objects; void AddCleanObject() REQUIRES_SHARED(Locks::mutator_lock_) { ++clean_object_count; } void AddDirtyObject(mirror::Object* object, mirror::Object* object_remote) REQUIRES_SHARED(Locks::mutator_lock_) { ++dirty_object_count; dirty_object_byte_count += CountDirtyBytes(object, object_remote); dirty_object_size_in_bytes += EntrySize(object); dirty_objects.push_back(object_remote); } void AddFalseDirtyObject(mirror::Object* object) REQUIRES_SHARED(Locks::mutator_lock_) { ++false_dirty_object_count; false_dirty_objects.push_back(object); false_dirty_byte_count += EntrySize(object); } private: // Go byte-by-byte and figure out what exactly got dirtied static size_t CountDirtyBytes(mirror::Object* object1, mirror::Object* object2) REQUIRES_SHARED(Locks::mutator_lock_) { const uint8_t* cur1 = reinterpret_cast<const uint8_t*>(object1); const uint8_t* cur2 = reinterpret_cast<const uint8_t*>(object2); size_t dirty_bytes = 0; size_t object_size = EntrySize(object1); for (size_t i = 0; i < object_size; ++i) { if (cur1[i] != cur2[i]) { dirty_bytes++; } } return dirty_bytes; } }; std::ostream& os_; bool dump_dirty_objects_; std::unordered_set<mirror::Object*> dirty_objects_; std::map<mirror::Class*, ClassData> class_data_; DISALLOW_COPY_AND_ASSIGN(RegionSpecializedBase); }; // Region analysis for ArtMethods. class ImgArtMethodVisitor : public ArtMethodVisitor { public: using ComputeDirtyFunc = std::function<void(ArtMethod*, const uint8_t*, const std::set<size_t>&)>; ImgArtMethodVisitor(ComputeDirtyFunc dirty_func, const uint8_t* begin_image_ptr, const std::set<size_t>& dirty_pages) : dirty_func_(dirty_func), begin_image_ptr_(begin_image_ptr), dirty_pages_(dirty_pages) { } virtual ~ImgArtMethodVisitor() OVERRIDE { } virtual void Visit(ArtMethod* method) OVERRIDE { dirty_func_(method, begin_image_ptr_, dirty_pages_); } private: ComputeDirtyFunc dirty_func_; const uint8_t* begin_image_ptr_; const std::set<size_t>& dirty_pages_; }; // Struct and functor for computing offsets of members of ArtMethods. // template <typename RegionType> struct MemberInfo { template <typename T> void operator() (const ArtMethod* method, const T* member_address, const std::string& name) { // Check that member_address is a pointer inside *method. DCHECK(reinterpret_cast<uintptr_t>(method) <= reinterpret_cast<uintptr_t>(member_address)); DCHECK(reinterpret_cast<uintptr_t>(member_address) + sizeof(T) <= reinterpret_cast<uintptr_t>(method) + sizeof(ArtMethod)); size_t offset = reinterpret_cast<uintptr_t>(member_address) - reinterpret_cast<uintptr_t>(method); offset_to_name_size_.insert({offset, NameAndSize(sizeof(T), name)}); } struct NameAndSize { size_t size_; std::string name_; NameAndSize(size_t size, const std::string& name) : size_(size), name_(name) { } NameAndSize() : size_(0), name_("INVALID") { } }; std::map<size_t, NameAndSize> offset_to_name_size_; }; template<> class RegionSpecializedBase<ArtMethod> : public RegionCommon<ArtMethod> { public: RegionSpecializedBase(std::ostream* os, std::vector<uint8_t>* remote_contents, std::vector<uint8_t>* zygote_contents, const backtrace_map_t& boot_map, const ImageHeader& image_header, bool dump_dirty_objects ATTRIBUTE_UNUSED) : RegionCommon<ArtMethod>(os, remote_contents, zygote_contents, boot_map, image_header), os_(*os) { // Prepare the table for offset to member lookups. ArtMethod* art_method = reinterpret_cast<ArtMethod*>(&(*remote_contents)[0]); art_method->VisitMembers(member_info_); // Prepare the table for address to symbolic entry point names. BuildEntryPointNames(); class_linker_ = Runtime::Current()->GetClassLinker(); } // Define a common public type name for use by RegionData. using VisitorClass = ImgArtMethodVisitor; void VisitEntries(VisitorClass* visitor, uint8_t* base, PointerSize pointer_size) REQUIRES_SHARED(Locks::mutator_lock_) { RegionCommon<ArtMethod>::image_header_.VisitPackedArtMethods(visitor, base, pointer_size); } void VisitEntry(ArtMethod* method ATTRIBUTE_UNUSED) REQUIRES_SHARED(Locks::mutator_lock_) { } void AddCleanEntry(ArtMethod* method ATTRIBUTE_UNUSED) { } void AddFalseDirtyEntry(ArtMethod* method) REQUIRES_SHARED(Locks::mutator_lock_) { RegionCommon<ArtMethod>::AddFalseDirtyEntry(method); } void AddDirtyEntry(ArtMethod* method, ArtMethod* method_remote) REQUIRES_SHARED(Locks::mutator_lock_) { size_t entry_size = EntrySize(method); ++different_entries_; dirty_entry_bytes_ += entry_size; // Increment counts for the fields that are dirty const uint8_t* current = reinterpret_cast<const uint8_t*>(method); const uint8_t* current_remote = reinterpret_cast<const uint8_t*>(method_remote); // ArtMethods always log their dirty count and entries. for (size_t i = 0; i < entry_size; ++i) { if (current[i] != current_remote[i]) { field_dirty_count_[i]++; } } dirty_entries_.push_back(method); } void DiffEntryContents(ArtMethod* method, uint8_t* remote_bytes, const uint8_t* base_ptr, bool log_dirty_objects ATTRIBUTE_UNUSED) REQUIRES_SHARED(Locks::mutator_lock_) { const char* tabs = " "; os_ << tabs << "ArtMethod " << ArtMethod::PrettyMethod(method) << "\n"; std::unordered_set<size_t> dirty_members; // Examine the members comprising the ArtMethod, computing which members are dirty. for (const std::pair<size_t, MemberInfo::NameAndSize>& p : member_info_.offset_to_name_size_) { const size_t offset = p.first; if (memcmp(base_ptr + offset, remote_bytes + offset, p.second.size_) != 0) { dirty_members.insert(p.first); } } // Dump different fields. if (!dirty_members.empty()) { os_ << tabs << "Dirty members " << dirty_members.size() << "\n"; for (size_t offset : dirty_members) { const MemberInfo::NameAndSize& member_info = member_info_.offset_to_name_size_[offset]; os_ << tabs << member_info.name_ << " original=" << StringFromBytes(base_ptr + offset, member_info.size_) << " remote=" << StringFromBytes(remote_bytes + offset, member_info.size_) << "\n"; } } os_ << "\n"; } void DumpDirtyObjects() REQUIRES_SHARED(Locks::mutator_lock_) { } void DumpDirtyEntries() REQUIRES_SHARED(Locks::mutator_lock_) { DumpSamplesAndOffsetCount(); os_ << " offset to field map:\n"; for (const std::pair<size_t, MemberInfo::NameAndSize>& p : member_info_.offset_to_name_size_) { const size_t offset = p.first; const size_t size = p.second.size_; os_ << StringPrintf(" %zu-%zu: ", offset, offset + size - 1) << p.second.name_ << std::endl; } os_ << " field contents:\n"; for (ArtMethod* method : dirty_entries_) { // remote method auto art_method = reinterpret_cast<ArtMethod*>(method); // remote class mirror::Class* remote_declaring_class = FixUpRemotePointer(art_method->GetDeclaringClass(), *RegionCommon<ArtMethod>::remote_contents_, RegionCommon<ArtMethod>::boot_map_); // local class mirror::Class* declaring_class = RemoteContentsPointerToLocal(remote_declaring_class, *RegionCommon<ArtMethod>::remote_contents_, RegionCommon<ArtMethod>::image_header_); DumpOneArtMethod(art_method, declaring_class, remote_declaring_class); } } void DumpFalseDirtyEntries() REQUIRES_SHARED(Locks::mutator_lock_) { os_ << "\n" << " False-dirty ArtMethods\n"; os_ << " field contents:\n"; for (ArtMethod* method : false_dirty_entries_) { // local class mirror::Class* declaring_class = method->GetDeclaringClass(); DumpOneArtMethod(method, declaring_class, nullptr); } } void DumpCleanEntries() REQUIRES_SHARED(Locks::mutator_lock_) { } private: std::ostream& os_; MemberInfo member_info_; std::map<const void*, std::string> entry_point_names_; ClassLinker* class_linker_; // Compute a map of addresses to names in the boot OAT file(s). void BuildEntryPointNames() { OatFileManager& oat_file_manager = Runtime::Current()->GetOatFileManager(); std::vector<const OatFile*> boot_oat_files = oat_file_manager.GetBootOatFiles(); for (const OatFile* oat_file : boot_oat_files) { const OatHeader& oat_header = oat_file->GetOatHeader(); const void* i2ib = oat_header.GetInterpreterToInterpreterBridge(); if (i2ib != nullptr) { entry_point_names_[i2ib] = "InterpreterToInterpreterBridge (from boot oat file)"; } const void* i2ccb = oat_header.GetInterpreterToCompiledCodeBridge(); if (i2ccb != nullptr) { entry_point_names_[i2ccb] = "InterpreterToCompiledCodeBridge (from boot oat file)"; } const void* jdl = oat_header.GetJniDlsymLookup(); if (jdl != nullptr) { entry_point_names_[jdl] = "JniDlsymLookup (from boot oat file)"; } const void* qgjt = oat_header.GetQuickGenericJniTrampoline(); if (qgjt != nullptr) { entry_point_names_[qgjt] = "QuickGenericJniTrampoline (from boot oat file)"; } const void* qrt = oat_header.GetQuickResolutionTrampoline(); if (qrt != nullptr) { entry_point_names_[qrt] = "QuickResolutionTrampoline (from boot oat file)"; } const void* qict = oat_header.GetQuickImtConflictTrampoline(); if (qict != nullptr) { entry_point_names_[qict] = "QuickImtConflictTrampoline (from boot oat file)"; } const void* q2ib = oat_header.GetQuickToInterpreterBridge(); if (q2ib != nullptr) { entry_point_names_[q2ib] = "QuickToInterpreterBridge (from boot oat file)"; } } } std::string StringFromBytes(const uint8_t* bytes, size_t size) { switch (size) { case 1: return StringPrintf("%" PRIx8, *bytes); case 2: return StringPrintf("%" PRIx16, *reinterpret_cast<const uint16_t*>(bytes)); case 4: case 8: { // Compute an address if the bytes might contain one. uint64_t intval; if (size == 4) { intval = *reinterpret_cast<const uint32_t*>(bytes); } else { intval = *reinterpret_cast<const uint64_t*>(bytes); } const void* addr = reinterpret_cast<const void*>(intval); // Match the address against those that have Is* methods in the ClassLinker. if (class_linker_->IsQuickToInterpreterBridge(addr)) { return "QuickToInterpreterBridge"; } else if (class_linker_->IsQuickGenericJniStub(addr)) { return "QuickGenericJniStub"; } else if (class_linker_->IsQuickResolutionStub(addr)) { return "QuickResolutionStub"; } else if (class_linker_->IsJniDlsymLookupStub(addr)) { return "JniDlsymLookupStub"; } // Match the address against those that we saved from the boot OAT files. if (entry_point_names_.find(addr) != entry_point_names_.end()) { return entry_point_names_[addr]; } return StringPrintf("%" PRIx64, intval); } default: LOG(WARNING) << "Don't know how to convert " << size << " bytes to integer"; return "<UNKNOWN>"; } } void DumpOneArtMethod(ArtMethod* art_method, mirror::Class* declaring_class, mirror::Class* remote_declaring_class) REQUIRES_SHARED(Locks::mutator_lock_) { PointerSize pointer_size = InstructionSetPointerSize(Runtime::Current()->GetInstructionSet()); os_ << " " << reinterpret_cast<const void*>(art_method) << " "; os_ << " entryPointFromJni: " << reinterpret_cast<const void*>(art_method->GetDataPtrSize(pointer_size)) << ", "; os_ << " entryPointFromQuickCompiledCode: " << reinterpret_cast<const void*>( art_method->GetEntryPointFromQuickCompiledCodePtrSize(pointer_size)) << ", "; os_ << " isNative? " << (art_method->IsNative() ? "yes" : "no") << ", "; // Null for runtime metionds. if (declaring_class != nullptr) { os_ << " class_status (local): " << declaring_class->GetStatus(); } if (remote_declaring_class != nullptr) { os_ << ", class_status (remote): " << remote_declaring_class->GetStatus(); } os_ << "\n"; } DISALLOW_COPY_AND_ASSIGN(RegionSpecializedBase); }; template <typename T> class RegionData : public RegionSpecializedBase<T> { public: RegionData(std::ostream* os, std::vector<uint8_t>* remote_contents, std::vector<uint8_t>* zygote_contents, const backtrace_map_t& boot_map, const ImageHeader& image_header, bool dump_dirty_objects) : RegionSpecializedBase<T>(os, remote_contents, zygote_contents, boot_map, image_header, dump_dirty_objects), os_(*os) { CHECK(remote_contents != nullptr); CHECK(zygote_contents != nullptr); } // Walk over the type T entries in theregion between begin_image_ptr and end_image_ptr, // collecting and reporting data regarding dirty, difference, etc. void ProcessRegion(const MappingData& mapping_data, RemoteProcesses remotes, const uint8_t* begin_image_ptr) REQUIRES_SHARED(Locks::mutator_lock_) { typename RegionSpecializedBase<T>::VisitorClass visitor( [this](T* entry, const uint8_t* begin_image_ptr, const std::set<size_t>& dirty_page_set) REQUIRES_SHARED(Locks::mutator_lock_) { this->ComputeEntryDirty(entry, begin_image_ptr, dirty_page_set); }, begin_image_ptr, mapping_data.dirty_page_set); PointerSize pointer_size = InstructionSetPointerSize(Runtime::Current()->GetInstructionSet()); RegionSpecializedBase<T>::VisitEntries(&visitor, const_cast<uint8_t*>(begin_image_ptr), pointer_size); // Looking at only dirty pages, figure out how many of those bytes belong to dirty entries. // TODO: fix this now that there are multiple regions in a mapping. float true_dirtied_percent = RegionCommon<T>::GetDirtyEntryBytes() * 1.0f / (mapping_data.dirty_pages * kPageSize); // Entry specific statistics. os_ << RegionCommon<T>::GetDifferentEntryCount() << " different entries, \n " << RegionCommon<T>::GetDirtyEntryBytes() << " different entry [bytes], \n " << RegionCommon<T>::GetFalseDirtyEntryCount() << " false dirty entries,\n " << RegionCommon<T>::GetFalseDirtyEntryBytes() << " false dirty entry [bytes], \n " << true_dirtied_percent << " different entries-vs-total in a dirty page;\n " << "\n"; const uint8_t* base_ptr = begin_image_ptr; switch (remotes) { case RemoteProcesses::kZygoteOnly: os_ << " Zygote shared dirty entries: "; break; case RemoteProcesses::kImageAndZygote: os_ << " Application dirty entries (private dirty): "; // If we are dumping private dirty, diff against the zygote map to make it clearer what // fields caused the page to be private dirty. base_ptr = &RegionCommon<T>::zygote_contents_->operator[](0); break; case RemoteProcesses::kImageOnly: os_ << " Application dirty entries (unknown whether private or shared dirty): "; break; } DiffDirtyEntries(ProcessType::kRemote, begin_image_ptr, RegionCommon<T>::remote_contents_, base_ptr, /*log_dirty_objects*/true); // Print shared dirty after since it's less important. if (RegionCommon<T>::GetZygoteDirtyEntryCount() != 0) { // We only reach this point if both pids were specified. Furthermore, // entries are only displayed here if they differed in both the image // and the zygote, so they are probably private dirty. CHECK(remotes == RemoteProcesses::kImageAndZygote); os_ << "\n" << " Zygote dirty entries (probably shared dirty): "; DiffDirtyEntries(ProcessType::kZygote, begin_image_ptr, RegionCommon<T>::zygote_contents_, begin_image_ptr, /*log_dirty_objects*/false); } RegionSpecializedBase<T>::DumpDirtyObjects(); RegionSpecializedBase<T>::DumpDirtyEntries(); RegionSpecializedBase<T>::DumpFalseDirtyEntries(); RegionSpecializedBase<T>::DumpCleanEntries(); } private: std::ostream& os_; void DiffDirtyEntries(ProcessType process_type, const uint8_t* begin_image_ptr, std::vector<uint8_t>* contents, const uint8_t* base_ptr, bool log_dirty_objects) REQUIRES_SHARED(Locks::mutator_lock_) { os_ << RegionCommon<T>::dirty_entries_.size() << "\n"; const std::set<T*>& entries = (process_type == ProcessType::kZygote) ? RegionCommon<T>::zygote_dirty_entries_: RegionCommon<T>::image_dirty_entries_; for (T* entry : entries) { uint8_t* entry_bytes = reinterpret_cast<uint8_t*>(entry); ptrdiff_t offset = entry_bytes - begin_image_ptr; uint8_t* remote_bytes = &(*contents)[offset]; RegionSpecializedBase<T>::DiffEntryContents(entry, remote_bytes, &base_ptr[offset], log_dirty_objects); } } void ComputeEntryDirty(T* entry, const uint8_t* begin_image_ptr, const std::set<size_t>& dirty_pages) REQUIRES_SHARED(Locks::mutator_lock_) { // Set up pointers in the remote and the zygote for comparison. uint8_t* current = reinterpret_cast<uint8_t*>(entry); ptrdiff_t offset = current - begin_image_ptr; T* entry_remote = reinterpret_cast<T*>(const_cast<uint8_t*>(&(*RegionCommon<T>::remote_contents_)[offset])); const bool have_zygote = !RegionCommon<T>::zygote_contents_->empty(); const uint8_t* current_zygote = have_zygote ? &(*RegionCommon<T>::zygote_contents_)[offset] : nullptr; T* entry_zygote = reinterpret_cast<T*>(const_cast<uint8_t*>(current_zygote)); // Visit and classify entries at the current location. RegionSpecializedBase<T>::VisitEntry(entry); // Test private dirty first. bool is_dirty = false; if (have_zygote) { bool private_dirty = EntriesDiffer(entry_zygote, entry_remote); if (private_dirty) { // Private dirty, app vs zygote. is_dirty = true; RegionCommon<T>::AddImageDirtyEntry(entry); } if (EntriesDiffer(entry_zygote, entry)) { // Shared dirty, zygote vs image. is_dirty = true; RegionCommon<T>::AddZygoteDirtyEntry(entry); } } else if (EntriesDiffer(entry_remote, entry)) { // Shared or private dirty, app vs image. is_dirty = true; RegionCommon<T>::AddImageDirtyEntry(entry); } if (is_dirty) { // TODO: Add support dirty entries in zygote and image. RegionSpecializedBase<T>::AddDirtyEntry(entry, entry_remote); } else { RegionSpecializedBase<T>::AddCleanEntry(entry); if (RegionCommon<T>::IsEntryOnDirtyPage(entry, dirty_pages)) { // This entry was either never mutated or got mutated back to the same value. // TODO: Do I want to distinguish a "different" vs a "dirty" page here? RegionSpecializedBase<T>::AddFalseDirtyEntry(entry); } } } DISALLOW_COPY_AND_ASSIGN(RegionData); }; } // namespace class ImgDiagDumper { public: explicit ImgDiagDumper(std::ostream* os, const ImageHeader& image_header, const std::string& image_location, pid_t image_diff_pid, pid_t zygote_diff_pid, bool dump_dirty_objects) : os_(os), image_header_(image_header), image_location_(image_location), image_diff_pid_(image_diff_pid), zygote_diff_pid_(zygote_diff_pid), dump_dirty_objects_(dump_dirty_objects), zygote_pid_only_(false) {} bool Init() { std::ostream& os = *os_; if (image_diff_pid_ < 0 && zygote_diff_pid_ < 0) { os << "Either --image-diff-pid or --zygote-diff-pid (or both) must be specified.\n"; return false; } // To avoid the combinations of command-line argument use cases: // If the user invoked with only --zygote-diff-pid, shuffle that to // image_diff_pid_, invalidate zygote_diff_pid_, and remember that // image_diff_pid_ is now special. if (image_diff_pid_ < 0) { image_diff_pid_ = zygote_diff_pid_; zygote_diff_pid_ = -1; zygote_pid_only_ = true; } { struct stat sts; std::string proc_pid_str = StringPrintf("/proc/%ld", static_cast<long>(image_diff_pid_)); // NOLINT [runtime/int] if (stat(proc_pid_str.c_str(), &sts) == -1) { os << "Process does not exist"; return false; } } // Open /proc/$pid/maps to view memory maps auto tmp_proc_maps = std::unique_ptr<BacktraceMap>(BacktraceMap::Create(image_diff_pid_)); if (tmp_proc_maps == nullptr) { os << "Could not read backtrace maps"; return false; } bool found_boot_map = false; // Find the memory map only for boot.art for (const backtrace_map_t* map : *tmp_proc_maps) { if (EndsWith(map->name, GetImageLocationBaseName())) { if ((map->flags & PROT_WRITE) != 0) { boot_map_ = *map; found_boot_map = true; break; } // In actuality there's more than 1 map, but the second one is read-only. // The one we care about is the write-able map. // The readonly maps are guaranteed to be identical, so its not interesting to compare // them. } } if (!found_boot_map) { os << "Could not find map for " << GetImageLocationBaseName(); return false; } // Sanity check boot_map_. CHECK(boot_map_.end >= boot_map_.start); boot_map_size_ = boot_map_.end - boot_map_.start; // Open /proc/<image_diff_pid_>/mem and read as remote_contents_. std::string image_file_name = StringPrintf("/proc/%ld/mem", static_cast<long>(image_diff_pid_)); // NOLINT [runtime/int] auto image_map_file = std::unique_ptr<File>(OS::OpenFileForReading(image_file_name.c_str())); if (image_map_file == nullptr) { os << "Failed to open " << image_file_name << " for reading"; return false; } std::vector<uint8_t> tmp_remote_contents(boot_map_size_); if (!image_map_file->PreadFully(&tmp_remote_contents[0], boot_map_size_, boot_map_.start)) { os << "Could not fully read file " << image_file_name; return false; } // If zygote_diff_pid_ != -1, open /proc/<zygote_diff_pid_>/mem and read as zygote_contents_. std::vector<uint8_t> tmp_zygote_contents; if (zygote_diff_pid_ != -1) { std::string zygote_file_name = StringPrintf("/proc/%ld/mem", static_cast<long>(zygote_diff_pid_)); // NOLINT [runtime/int] std::unique_ptr<File> zygote_map_file(OS::OpenFileForReading(zygote_file_name.c_str())); if (zygote_map_file == nullptr) { os << "Failed to open " << zygote_file_name << " for reading"; return false; } // The boot map should be at the same address. tmp_zygote_contents.resize(boot_map_size_); if (!zygote_map_file->PreadFully(&tmp_zygote_contents[0], boot_map_size_, boot_map_.start)) { LOG(WARNING) << "Could not fully read zygote file " << zygote_file_name; return false; } } // Open /proc/<image_diff_pid_>/pagemap. std::string pagemap_file_name = StringPrintf( "/proc/%ld/pagemap", static_cast<long>(image_diff_pid_)); // NOLINT [runtime/int] auto tmp_pagemap_file = std::unique_ptr<File>(OS::OpenFileForReading(pagemap_file_name.c_str())); if (tmp_pagemap_file == nullptr) { os << "Failed to open " << pagemap_file_name << " for reading: " << strerror(errno); return false; } // Not truly clean, mmap-ing boot.art again would be more pristine, but close enough const char* clean_pagemap_file_name = "/proc/self/pagemap"; auto tmp_clean_pagemap_file = std::unique_ptr<File>( OS::OpenFileForReading(clean_pagemap_file_name)); if (tmp_clean_pagemap_file == nullptr) { os << "Failed to open " << clean_pagemap_file_name << " for reading: " << strerror(errno); return false; } auto tmp_kpageflags_file = std::unique_ptr<File>(OS::OpenFileForReading("/proc/kpageflags")); if (tmp_kpageflags_file == nullptr) { os << "Failed to open /proc/kpageflags for reading: " << strerror(errno); return false; } auto tmp_kpagecount_file = std::unique_ptr<File>(OS::OpenFileForReading("/proc/kpagecount")); if (tmp_kpagecount_file == nullptr) { os << "Failed to open /proc/kpagecount for reading:" << strerror(errno); return false; } // Commit the mappings, etc. proc_maps_ = std::move(tmp_proc_maps); remote_contents_ = std::move(tmp_remote_contents); zygote_contents_ = std::move(tmp_zygote_contents); pagemap_file_ = std::move(*tmp_pagemap_file.release()); clean_pagemap_file_ = std::move(*tmp_clean_pagemap_file.release()); kpageflags_file_ = std::move(*tmp_kpageflags_file.release()); kpagecount_file_ = std::move(*tmp_kpagecount_file.release()); return true; } bool Dump() REQUIRES_SHARED(Locks::mutator_lock_) { std::ostream& os = *os_; os << "IMAGE LOCATION: " << image_location_ << "\n\n"; os << "MAGIC: " << image_header_.GetMagic() << "\n\n"; os << "IMAGE BEGIN: " << reinterpret_cast<void*>(image_header_.GetImageBegin()) << "\n\n"; PrintPidLine("IMAGE", image_diff_pid_); os << "\n\n"; PrintPidLine("ZYGOTE", zygote_diff_pid_); bool ret = true; if (image_diff_pid_ >= 0 || zygote_diff_pid_ >= 0) { ret = DumpImageDiff(); os << "\n\n"; } os << std::flush; return ret; } private: bool DumpImageDiff() REQUIRES_SHARED(Locks::mutator_lock_) { return DumpImageDiffMap(); } bool ComputeDirtyBytes(const uint8_t* image_begin, MappingData* mapping_data /*out*/) { std::ostream& os = *os_; size_t virtual_page_idx = 0; // Virtual page number (for an absolute memory address) size_t page_idx = 0; // Page index relative to 0 size_t previous_page_idx = 0; // Previous page index relative to 0 // Iterate through one page at a time. Boot map begin/end already implicitly aligned. for (uintptr_t begin = boot_map_.start; begin != boot_map_.end; begin += kPageSize) { ptrdiff_t offset = begin - boot_map_.start; // We treat the image header as part of the memory map for now // If we wanted to change this, we could pass base=start+sizeof(ImageHeader) // But it might still be interesting to see if any of the ImageHeader data mutated const uint8_t* local_ptr = reinterpret_cast<const uint8_t*>(&image_header_) + offset; uint8_t* remote_ptr = &remote_contents_[offset]; if (memcmp(local_ptr, remote_ptr, kPageSize) != 0) { mapping_data->different_pages++; // Count the number of 32-bit integers that are different. for (size_t i = 0; i < kPageSize / sizeof(uint32_t); ++i) { uint32_t* remote_ptr_int32 = reinterpret_cast<uint32_t*>(remote_ptr); const uint32_t* local_ptr_int32 = reinterpret_cast<const uint32_t*>(local_ptr); if (remote_ptr_int32[i] != local_ptr_int32[i]) { mapping_data->different_int32s++; } } } } std::vector<size_t> private_dirty_pages_for_section(ImageHeader::kSectionCount, 0u); // Iterate through one byte at a time. ptrdiff_t page_off_begin = image_header_.GetImageBegin() - image_begin; for (uintptr_t begin = boot_map_.start; begin != boot_map_.end; ++begin) { previous_page_idx = page_idx; ptrdiff_t offset = begin - boot_map_.start; // We treat the image header as part of the memory map for now // If we wanted to change this, we could pass base=start+sizeof(ImageHeader) // But it might still be interesting to see if any of the ImageHeader data mutated const uint8_t* local_ptr = reinterpret_cast<const uint8_t*>(&image_header_) + offset; uint8_t* remote_ptr = &remote_contents_[offset]; virtual_page_idx = reinterpret_cast<uintptr_t>(local_ptr) / kPageSize; // Calculate the page index, relative to the 0th page where the image begins page_idx = (offset + page_off_begin) / kPageSize; if (*local_ptr != *remote_ptr) { // Track number of bytes that are different mapping_data->different_bytes++; } // Independently count the # of dirty pages on the remote side size_t remote_virtual_page_idx = begin / kPageSize; if (previous_page_idx != page_idx) { uint64_t page_count = 0xC0FFEE; // TODO: virtual_page_idx needs to be from the same process std::string error_msg; int dirtiness = (IsPageDirty(&pagemap_file_, // Image-diff-pid procmap &clean_pagemap_file_, // Self procmap &kpageflags_file_, &kpagecount_file_, remote_virtual_page_idx, // potentially "dirty" page virtual_page_idx, // true "clean" page &page_count, &error_msg)); if (dirtiness < 0) { os << error_msg; return false; } else if (dirtiness > 0) { mapping_data->dirty_pages++; mapping_data->dirty_page_set.insert(mapping_data->dirty_page_set.end(), virtual_page_idx); } bool is_dirty = dirtiness > 0; bool is_private = page_count == 1; if (page_count == 1) { mapping_data->private_pages++; } if (is_dirty && is_private) { mapping_data->private_dirty_pages++; for (size_t i = 0; i < ImageHeader::kSectionCount; ++i) { const ImageHeader::ImageSections section = static_cast<ImageHeader::ImageSections>(i); if (image_header_.GetImageSection(section).Contains(offset)) { ++private_dirty_pages_for_section[i]; } } } } } mapping_data->false_dirty_pages = mapping_data->dirty_pages - mapping_data->different_pages; // Print low-level (bytes, int32s, pages) statistics. os << mapping_data->different_bytes << " differing bytes,\n " << mapping_data->different_int32s << " differing int32s,\n " << mapping_data->different_pages << " differing pages,\n " << mapping_data->dirty_pages << " pages are dirty;\n " << mapping_data->false_dirty_pages << " pages are false dirty;\n " << mapping_data->private_pages << " pages are private;\n " << mapping_data->private_dirty_pages << " pages are Private_Dirty\n " << "\n"; size_t total_private_dirty_pages = std::accumulate(private_dirty_pages_for_section.begin(), private_dirty_pages_for_section.end(), 0u); os << "Image sections (total private dirty pages " << total_private_dirty_pages << ")\n"; for (size_t i = 0; i < ImageHeader::kSectionCount; ++i) { const ImageHeader::ImageSections section = static_cast<ImageHeader::ImageSections>(i); os << section << " " << image_header_.GetImageSection(section) << " private dirty pages=" << private_dirty_pages_for_section[i] << "\n"; } os << "\n"; return true; } // Look at /proc/$pid/mem and only diff the things from there bool DumpImageDiffMap() REQUIRES_SHARED(Locks::mutator_lock_) { std::ostream& os = *os_; std::string error_msg; // Walk the bytes and diff against our boot image os << "\nObserving boot image header at address " << reinterpret_cast<const void*>(&image_header_) << "\n\n"; const uint8_t* image_begin_unaligned = image_header_.GetImageBegin(); const uint8_t* image_end_unaligned = image_begin_unaligned + image_header_.GetImageSize(); // Adjust range to nearest page const uint8_t* image_begin = AlignDown(image_begin_unaligned, kPageSize); const uint8_t* image_end = AlignUp(image_end_unaligned, kPageSize); if (reinterpret_cast<uintptr_t>(image_begin) > boot_map_.start || reinterpret_cast<uintptr_t>(image_end) < boot_map_.end) { // Sanity check that we aren't trying to read a completely different boot image os << "Remote boot map is out of range of local boot map: " << "local begin " << reinterpret_cast<const void*>(image_begin) << ", local end " << reinterpret_cast<const void*>(image_end) << ", remote begin " << reinterpret_cast<const void*>(boot_map_.start) << ", remote end " << reinterpret_cast<const void*>(boot_map_.end); return false; // If we wanted even more validation we could map the ImageHeader from the file } MappingData mapping_data; os << "Mapping at [" << reinterpret_cast<void*>(boot_map_.start) << ", " << reinterpret_cast<void*>(boot_map_.end) << ") had:\n "; if (!ComputeDirtyBytes(image_begin, &mapping_data)) { return false; } RemoteProcesses remotes; if (zygote_pid_only_) { remotes = RemoteProcesses::kZygoteOnly; } else if (zygote_diff_pid_ > 0) { remotes = RemoteProcesses::kImageAndZygote; } else { remotes = RemoteProcesses::kImageOnly; } // Check all the mirror::Object entries in the image. RegionData<mirror::Object> object_region_data(os_, &remote_contents_, &zygote_contents_, boot_map_, image_header_, dump_dirty_objects_); object_region_data.ProcessRegion(mapping_data, remotes, image_begin_unaligned); // Check all the ArtMethod entries in the image. RegionData<ArtMethod> artmethod_region_data(os_, &remote_contents_, &zygote_contents_, boot_map_, image_header_, dump_dirty_objects_); artmethod_region_data.ProcessRegion(mapping_data, remotes, image_begin_unaligned); return true; } static bool GetPageFrameNumber(File* page_map_file, size_t virtual_page_index, uint64_t* page_frame_number, std::string* error_msg) { CHECK(page_map_file != nullptr); CHECK(page_frame_number != nullptr); CHECK(error_msg != nullptr); constexpr size_t kPageMapEntrySize = sizeof(uint64_t); constexpr uint64_t kPageFrameNumberMask = (1ULL << 55) - 1; // bits 0-54 [in /proc/$pid/pagemap] constexpr uint64_t kPageSoftDirtyMask = (1ULL << 55); // bit 55 [in /proc/$pid/pagemap] uint64_t page_map_entry = 0; // Read 64-bit entry from /proc/$pid/pagemap to get the physical page frame number if (!page_map_file->PreadFully(&page_map_entry, kPageMapEntrySize, virtual_page_index * kPageMapEntrySize)) { *error_msg = StringPrintf("Failed to read the virtual page index entry from %s", page_map_file->GetPath().c_str()); return false; } // TODO: seems useless, remove this. bool soft_dirty = (page_map_entry & kPageSoftDirtyMask) != 0; if ((false)) { LOG(VERBOSE) << soft_dirty; // Suppress unused warning UNREACHABLE(); } *page_frame_number = page_map_entry & kPageFrameNumberMask; return true; } static int IsPageDirty(File* page_map_file, File* clean_pagemap_file, File* kpageflags_file, File* kpagecount_file, size_t virtual_page_idx, size_t clean_virtual_page_idx, // Out parameters: uint64_t* page_count, std::string* error_msg) { CHECK(page_map_file != nullptr); CHECK(clean_pagemap_file != nullptr); CHECK_NE(page_map_file, clean_pagemap_file); CHECK(kpageflags_file != nullptr); CHECK(kpagecount_file != nullptr); CHECK(page_count != nullptr); CHECK(error_msg != nullptr); // Constants are from https://www.kernel.org/doc/Documentation/vm/pagemap.txt constexpr size_t kPageFlagsEntrySize = sizeof(uint64_t); constexpr size_t kPageCountEntrySize = sizeof(uint64_t); constexpr uint64_t kPageFlagsDirtyMask = (1ULL << 4); // in /proc/kpageflags constexpr uint64_t kPageFlagsNoPageMask = (1ULL << 20); // in /proc/kpageflags constexpr uint64_t kPageFlagsMmapMask = (1ULL << 11); // in /proc/kpageflags uint64_t page_frame_number = 0; if (!GetPageFrameNumber(page_map_file, virtual_page_idx, &page_frame_number, error_msg)) { return -1; } uint64_t page_frame_number_clean = 0; if (!GetPageFrameNumber(clean_pagemap_file, clean_virtual_page_idx, &page_frame_number_clean, error_msg)) { return -1; } // Read 64-bit entry from /proc/kpageflags to get the dirty bit for a page uint64_t kpage_flags_entry = 0; if (!kpageflags_file->PreadFully(&kpage_flags_entry, kPageFlagsEntrySize, page_frame_number * kPageFlagsEntrySize)) { *error_msg = StringPrintf("Failed to read the page flags from %s", kpageflags_file->GetPath().c_str()); return -1; } // Read 64-bit entyry from /proc/kpagecount to get mapping counts for a page if (!kpagecount_file->PreadFully(page_count /*out*/, kPageCountEntrySize, page_frame_number * kPageCountEntrySize)) { *error_msg = StringPrintf("Failed to read the page count from %s", kpagecount_file->GetPath().c_str()); return -1; } // There must be a page frame at the requested address. CHECK_EQ(kpage_flags_entry & kPageFlagsNoPageMask, 0u); // The page frame must be memory mapped CHECK_NE(kpage_flags_entry & kPageFlagsMmapMask, 0u); // Page is dirty, i.e. has diverged from file, if the 4th bit is set to 1 bool flags_dirty = (kpage_flags_entry & kPageFlagsDirtyMask) != 0; // page_frame_number_clean must come from the *same* process // but a *different* mmap than page_frame_number if (flags_dirty) { CHECK_NE(page_frame_number, page_frame_number_clean); } return page_frame_number != page_frame_number_clean; } void PrintPidLine(const std::string& kind, pid_t pid) { if (pid < 0) { *os_ << kind << " DIFF PID: disabled\n\n"; } else { *os_ << kind << " DIFF PID (" << pid << "): "; } } static bool EndsWith(const std::string& str, const std::string& suffix) { return str.size() >= suffix.size() && str.compare(str.size() - suffix.size(), suffix.size(), suffix) == 0; } // Return suffix of the file path after the last /. (e.g. /foo/bar -> bar, bar -> bar) static std::string BaseName(const std::string& str) { size_t idx = str.rfind('/'); if (idx == std::string::npos) { return str; } return str.substr(idx + 1); } // Return the image location, stripped of any directories, e.g. "boot.art" or "core.art" std::string GetImageLocationBaseName() const { return BaseName(std::string(image_location_)); } std::ostream* os_; const ImageHeader& image_header_; const std::string image_location_; pid_t image_diff_pid_; // Dump image diff against boot.art if pid is non-negative pid_t zygote_diff_pid_; // Dump image diff against zygote boot.art if pid is non-negative bool dump_dirty_objects_; // Adds dumping of objects that are dirty. bool zygote_pid_only_; // The user only specified a pid for the zygote. // BacktraceMap used for finding the memory mapping of the image file. std::unique_ptr<BacktraceMap> proc_maps_; // Boot image mapping. backtrace_map_t boot_map_{}; // The size of the boot image mapping. size_t boot_map_size_; // The contents of /proc/<image_diff_pid_>/maps. std::vector<uint8_t> remote_contents_; // The contents of /proc/<zygote_diff_pid_>/maps. std::vector<uint8_t> zygote_contents_; // A File for reading /proc/<zygote_diff_pid_>/maps. File pagemap_file_; // A File for reading /proc/self/pagemap. File clean_pagemap_file_; // A File for reading /proc/kpageflags. File kpageflags_file_; // A File for reading /proc/kpagecount. File kpagecount_file_; DISALLOW_COPY_AND_ASSIGN(ImgDiagDumper); }; static int DumpImage(Runtime* runtime, std::ostream* os, pid_t image_diff_pid, pid_t zygote_diff_pid, bool dump_dirty_objects) { ScopedObjectAccess soa(Thread::Current()); gc::Heap* heap = runtime->GetHeap(); std::vector<gc::space::ImageSpace*> image_spaces = heap->GetBootImageSpaces(); CHECK(!image_spaces.empty()); for (gc::space::ImageSpace* image_space : image_spaces) { const ImageHeader& image_header = image_space->GetImageHeader(); if (!image_header.IsValid()) { fprintf(stderr, "Invalid image header %s\n", image_space->GetImageLocation().c_str()); return EXIT_FAILURE; } ImgDiagDumper img_diag_dumper(os, image_header, image_space->GetImageLocation(), image_diff_pid, zygote_diff_pid, dump_dirty_objects); if (!img_diag_dumper.Init()) { return EXIT_FAILURE; } if (!img_diag_dumper.Dump()) { return EXIT_FAILURE; } } return EXIT_SUCCESS; } struct ImgDiagArgs : public CmdlineArgs { protected: using Base = CmdlineArgs; virtual ParseStatus ParseCustom(const StringPiece& option, std::string* error_msg) OVERRIDE { { ParseStatus base_parse = Base::ParseCustom(option, error_msg); if (base_parse != kParseUnknownArgument) { return base_parse; } } if (option.starts_with("--image-diff-pid=")) { const char* image_diff_pid = option.substr(strlen("--image-diff-pid=")).data(); if (!ParseInt(image_diff_pid, &image_diff_pid_)) { *error_msg = "Image diff pid out of range"; return kParseError; } } else if (option.starts_with("--zygote-diff-pid=")) { const char* zygote_diff_pid = option.substr(strlen("--zygote-diff-pid=")).data(); if (!ParseInt(zygote_diff_pid, &zygote_diff_pid_)) { *error_msg = "Zygote diff pid out of range"; return kParseError; } } else if (option == "--dump-dirty-objects") { dump_dirty_objects_ = true; } else { return kParseUnknownArgument; } return kParseOk; } virtual ParseStatus ParseChecks(std::string* error_msg) OVERRIDE { // Perform the parent checks. ParseStatus parent_checks = Base::ParseChecks(error_msg); if (parent_checks != kParseOk) { return parent_checks; } // Perform our own checks. if (kill(image_diff_pid_, /*sig*/0) != 0) { // No signal is sent, perform error-checking only. // Check if the pid exists before proceeding. if (errno == ESRCH) { *error_msg = "Process specified does not exist"; } else { *error_msg = StringPrintf("Failed to check process status: %s", strerror(errno)); } return kParseError; } else if (instruction_set_ != InstructionSet::kNone && instruction_set_ != kRuntimeISA) { // Don't allow different ISAs since the images are ISA-specific. // Right now the code assumes both the runtime ISA and the remote ISA are identical. *error_msg = "Must use the default runtime ISA; changing ISA is not supported."; return kParseError; } return kParseOk; } virtual std::string GetUsage() const { std::string usage; usage += "Usage: imgdiag [options] ...\n" " Example: imgdiag --image-diff-pid=$(pidof dex2oat)\n" " Example: adb shell imgdiag --image-diff-pid=$(pid zygote)\n" "\n"; usage += Base::GetUsage(); usage += // Optional. " --image-diff-pid=<pid>: provide the PID of a process whose boot.art you want to diff.\n" " Example: --image-diff-pid=$(pid zygote)\n" " --zygote-diff-pid=<pid>: provide the PID of the zygote whose boot.art you want to diff " "against.\n" " Example: --zygote-diff-pid=$(pid zygote)\n" " --dump-dirty-objects: additionally output dirty objects of interest.\n" "\n"; return usage; } public: pid_t image_diff_pid_ = -1; pid_t zygote_diff_pid_ = -1; bool dump_dirty_objects_ = false; }; struct ImgDiagMain : public CmdlineMain<ImgDiagArgs> { virtual bool ExecuteWithRuntime(Runtime* runtime) { CHECK(args_ != nullptr); return DumpImage(runtime, args_->os_, args_->image_diff_pid_, args_->zygote_diff_pid_, args_->dump_dirty_objects_) == EXIT_SUCCESS; } }; } // namespace art int main(int argc, char** argv) { art::ImgDiagMain main; return main.Main(argc, argv); }