/* * Copyright (C) 2008 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "space_bitmap-inl.h" #include "android-base/stringprintf.h" #include "art_field-inl.h" #include "dex/dex_file-inl.h" #include "mem_map.h" #include "mirror/class-inl.h" #include "mirror/object-inl.h" #include "mirror/object_array.h" namespace art { namespace gc { namespace accounting { using android::base::StringPrintf; template<size_t kAlignment> size_t SpaceBitmap<kAlignment>::ComputeBitmapSize(uint64_t capacity) { // Number of space (heap) bytes covered by one bitmap word. // (Word size in bytes = `sizeof(intptr_t)`, which is expected to be // 4 on a 32-bit architecture and 8 on a 64-bit one.) const uint64_t kBytesCoveredPerWord = kAlignment * kBitsPerIntPtrT; // Calculate the number of words required to cover a space (heap) // having a size of `capacity` bytes. return (RoundUp(capacity, kBytesCoveredPerWord) / kBytesCoveredPerWord) * sizeof(intptr_t); } template<size_t kAlignment> size_t SpaceBitmap<kAlignment>::ComputeHeapSize(uint64_t bitmap_bytes) { return bitmap_bytes * kBitsPerByte * kAlignment; } template<size_t kAlignment> SpaceBitmap<kAlignment>* SpaceBitmap<kAlignment>::CreateFromMemMap( const std::string& name, MemMap* mem_map, uint8_t* heap_begin, size_t heap_capacity) { CHECK(mem_map != nullptr); uintptr_t* bitmap_begin = reinterpret_cast<uintptr_t*>(mem_map->Begin()); const size_t bitmap_size = ComputeBitmapSize(heap_capacity); return new SpaceBitmap(name, mem_map, bitmap_begin, bitmap_size, heap_begin, heap_capacity); } template<size_t kAlignment> SpaceBitmap<kAlignment>::SpaceBitmap(const std::string& name, MemMap* mem_map, uintptr_t* bitmap_begin, size_t bitmap_size, const void* heap_begin, size_t heap_capacity) : mem_map_(mem_map), bitmap_begin_(reinterpret_cast<Atomic<uintptr_t>*>(bitmap_begin)), bitmap_size_(bitmap_size), heap_begin_(reinterpret_cast<uintptr_t>(heap_begin)), heap_limit_(reinterpret_cast<uintptr_t>(heap_begin) + heap_capacity), name_(name) { CHECK(bitmap_begin_ != nullptr); CHECK_NE(bitmap_size, 0U); } template<size_t kAlignment> SpaceBitmap<kAlignment>::~SpaceBitmap() {} template<size_t kAlignment> SpaceBitmap<kAlignment>* SpaceBitmap<kAlignment>::Create( const std::string& name, uint8_t* heap_begin, size_t heap_capacity) { // Round up since `heap_capacity` is not necessarily a multiple of `kAlignment * kBitsPerIntPtrT` // (we represent one word as an `intptr_t`). const size_t bitmap_size = ComputeBitmapSize(heap_capacity); std::string error_msg; std::unique_ptr<MemMap> mem_map(MemMap::MapAnonymous(name.c_str(), nullptr, bitmap_size, PROT_READ | PROT_WRITE, false, false, &error_msg)); if (UNLIKELY(mem_map.get() == nullptr)) { LOG(ERROR) << "Failed to allocate bitmap " << name << ": " << error_msg; return nullptr; } return CreateFromMemMap(name, mem_map.release(), heap_begin, heap_capacity); } template<size_t kAlignment> void SpaceBitmap<kAlignment>::SetHeapLimit(uintptr_t new_end) { DCHECK_ALIGNED(new_end, kBitsPerIntPtrT * kAlignment); size_t new_size = OffsetToIndex(new_end - heap_begin_) * sizeof(intptr_t); if (new_size < bitmap_size_) { bitmap_size_ = new_size; } heap_limit_ = new_end; // Not sure if doing this trim is necessary, since nothing past the end of the heap capacity // should be marked. } template<size_t kAlignment> std::string SpaceBitmap<kAlignment>::Dump() const { return StringPrintf("%s: %p-%p", name_.c_str(), reinterpret_cast<void*>(HeapBegin()), reinterpret_cast<void*>(HeapLimit())); } template<size_t kAlignment> void SpaceBitmap<kAlignment>::Clear() { if (bitmap_begin_ != nullptr) { mem_map_->MadviseDontNeedAndZero(); } } template<size_t kAlignment> void SpaceBitmap<kAlignment>::ClearRange(const mirror::Object* begin, const mirror::Object* end) { uintptr_t begin_offset = reinterpret_cast<uintptr_t>(begin) - heap_begin_; uintptr_t end_offset = reinterpret_cast<uintptr_t>(end) - heap_begin_; // Align begin and end to bitmap word boundaries. while (begin_offset < end_offset && OffsetBitIndex(begin_offset) != 0) { Clear(reinterpret_cast<mirror::Object*>(heap_begin_ + begin_offset)); begin_offset += kAlignment; } while (begin_offset < end_offset && OffsetBitIndex(end_offset) != 0) { end_offset -= kAlignment; Clear(reinterpret_cast<mirror::Object*>(heap_begin_ + end_offset)); } // Bitmap word boundaries. const uintptr_t start_index = OffsetToIndex(begin_offset); const uintptr_t end_index = OffsetToIndex(end_offset); ZeroAndReleasePages(reinterpret_cast<uint8_t*>(&bitmap_begin_[start_index]), (end_index - start_index) * sizeof(*bitmap_begin_)); } template<size_t kAlignment> void SpaceBitmap<kAlignment>::CopyFrom(SpaceBitmap* source_bitmap) { DCHECK_EQ(Size(), source_bitmap->Size()); const size_t count = source_bitmap->Size() / sizeof(intptr_t); Atomic<uintptr_t>* const src = source_bitmap->Begin(); Atomic<uintptr_t>* const dest = Begin(); for (size_t i = 0; i < count; ++i) { dest[i].StoreRelaxed(src[i].LoadRelaxed()); } } template<size_t kAlignment> void SpaceBitmap<kAlignment>::SweepWalk(const SpaceBitmap<kAlignment>& live_bitmap, const SpaceBitmap<kAlignment>& mark_bitmap, uintptr_t sweep_begin, uintptr_t sweep_end, SpaceBitmap::SweepCallback* callback, void* arg) { CHECK(live_bitmap.bitmap_begin_ != nullptr); CHECK(mark_bitmap.bitmap_begin_ != nullptr); CHECK_EQ(live_bitmap.heap_begin_, mark_bitmap.heap_begin_); CHECK_EQ(live_bitmap.bitmap_size_, mark_bitmap.bitmap_size_); CHECK(callback != nullptr); CHECK_LE(sweep_begin, sweep_end); CHECK_GE(sweep_begin, live_bitmap.heap_begin_); if (sweep_end <= sweep_begin) { return; } // TODO: rewrite the callbacks to accept a std::vector<mirror::Object*> rather than a mirror::Object**? constexpr size_t buffer_size = sizeof(intptr_t) * kBitsPerIntPtrT; #ifdef __LP64__ // Heap-allocate for smaller stack frame. std::unique_ptr<mirror::Object*[]> pointer_buf_ptr(new mirror::Object*[buffer_size]); mirror::Object** pointer_buf = pointer_buf_ptr.get(); #else // Stack-allocate buffer as it's small enough. mirror::Object* pointer_buf[buffer_size]; #endif mirror::Object** pb = &pointer_buf[0]; size_t start = OffsetToIndex(sweep_begin - live_bitmap.heap_begin_); size_t end = OffsetToIndex(sweep_end - live_bitmap.heap_begin_ - 1); CHECK_LT(end, live_bitmap.Size() / sizeof(intptr_t)); Atomic<uintptr_t>* live = live_bitmap.bitmap_begin_; Atomic<uintptr_t>* mark = mark_bitmap.bitmap_begin_; for (size_t i = start; i <= end; i++) { uintptr_t garbage = live[i].LoadRelaxed() & ~mark[i].LoadRelaxed(); if (UNLIKELY(garbage != 0)) { uintptr_t ptr_base = IndexToOffset(i) + live_bitmap.heap_begin_; do { const size_t shift = CTZ(garbage); garbage ^= (static_cast<uintptr_t>(1)) << shift; *pb++ = reinterpret_cast<mirror::Object*>(ptr_base + shift * kAlignment); } while (garbage != 0); // Make sure that there are always enough slots available for an // entire word of one bits. if (pb >= &pointer_buf[buffer_size - kBitsPerIntPtrT]) { (*callback)(pb - &pointer_buf[0], &pointer_buf[0], arg); pb = &pointer_buf[0]; } } } if (pb > &pointer_buf[0]) { (*callback)(pb - &pointer_buf[0], &pointer_buf[0], arg); } } template class SpaceBitmap<kObjectAlignment>; template class SpaceBitmap<kPageSize>; } // namespace accounting } // namespace gc } // namespace art