/* * Copyright (C) 2014 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "reference_processor.h" #include "base/time_utils.h" #include "base/utils.h" #include "collector/garbage_collector.h" #include "java_vm_ext.h" #include "mirror/class-inl.h" #include "mirror/object-inl.h" #include "mirror/reference-inl.h" #include "nativehelper/scoped_local_ref.h" #include "object_callbacks.h" #include "reference_processor-inl.h" #include "reflection.h" #include "scoped_thread_state_change-inl.h" #include "task_processor.h" #include "well_known_classes.h" namespace art { namespace gc { static constexpr bool kAsyncReferenceQueueAdd = false; ReferenceProcessor::ReferenceProcessor() : collector_(nullptr), preserving_references_(false), condition_("reference processor condition", *Locks::reference_processor_lock_) , soft_reference_queue_(Locks::reference_queue_soft_references_lock_), weak_reference_queue_(Locks::reference_queue_weak_references_lock_), finalizer_reference_queue_(Locks::reference_queue_finalizer_references_lock_), phantom_reference_queue_(Locks::reference_queue_phantom_references_lock_), cleared_references_(Locks::reference_queue_cleared_references_lock_) { } void ReferenceProcessor::EnableSlowPath() { mirror::Reference::GetJavaLangRefReference()->SetSlowPath(true); } void ReferenceProcessor::DisableSlowPath(Thread* self) { mirror::Reference::GetJavaLangRefReference()->SetSlowPath(false); condition_.Broadcast(self); } void ReferenceProcessor::BroadcastForSlowPath(Thread* self) { MutexLock mu(self, *Locks::reference_processor_lock_); condition_.Broadcast(self); } ObjPtr<mirror::Object> ReferenceProcessor::GetReferent(Thread* self, ObjPtr<mirror::Reference> reference) { if (!kUseReadBarrier || self->GetWeakRefAccessEnabled()) { // Under read barrier / concurrent copying collector, it's not safe to call GetReferent() when // weak ref access is disabled as the call includes a read barrier which may push a ref onto the // mark stack and interfere with termination of marking. ObjPtr<mirror::Object> const referent = reference->GetReferent(); // If the referent is null then it is already cleared, we can just return null since there is no // scenario where it becomes non-null during the reference processing phase. if (UNLIKELY(!SlowPathEnabled()) || referent == nullptr) { return referent; } } MutexLock mu(self, *Locks::reference_processor_lock_); while ((!kUseReadBarrier && SlowPathEnabled()) || (kUseReadBarrier && !self->GetWeakRefAccessEnabled())) { ObjPtr<mirror::Object> referent = reference->GetReferent<kWithoutReadBarrier>(); // If the referent became cleared, return it. Don't need barrier since thread roots can't get // updated until after we leave the function due to holding the mutator lock. if (referent == nullptr) { return nullptr; } // Try to see if the referent is already marked by using the is_marked_callback. We can return // it to the mutator as long as the GC is not preserving references. if (LIKELY(collector_ != nullptr)) { // If it's null it means not marked, but it could become marked if the referent is reachable // by finalizer referents. So we cannot return in this case and must block. Otherwise, we // can return it to the mutator as long as the GC is not preserving references, in which // case only black nodes can be safely returned. If the GC is preserving references, the // mutator could take a white field from a grey or white node and move it somewhere else // in the heap causing corruption since this field would get swept. // Use the cached referent instead of calling GetReferent since other threads could call // Reference.clear() after we did the null check resulting in a null pointer being // incorrectly passed to IsMarked. b/33569625 ObjPtr<mirror::Object> forwarded_ref = collector_->IsMarked(referent.Ptr()); if (forwarded_ref != nullptr) { // Non null means that it is marked. if (!preserving_references_ || (LIKELY(!reference->IsFinalizerReferenceInstance()) && reference->IsUnprocessed())) { return forwarded_ref; } } } // Check and run the empty checkpoint before blocking so the empty checkpoint will work in the // presence of threads blocking for weak ref access. self->CheckEmptyCheckpointFromWeakRefAccess(Locks::reference_processor_lock_); condition_.WaitHoldingLocks(self); } return reference->GetReferent(); } void ReferenceProcessor::StartPreservingReferences(Thread* self) { MutexLock mu(self, *Locks::reference_processor_lock_); preserving_references_ = true; } void ReferenceProcessor::StopPreservingReferences(Thread* self) { MutexLock mu(self, *Locks::reference_processor_lock_); preserving_references_ = false; // We are done preserving references, some people who are blocked may see a marked referent. condition_.Broadcast(self); } // Process reference class instances and schedule finalizations. void ReferenceProcessor::ProcessReferences(bool concurrent, TimingLogger* timings, bool clear_soft_references, collector::GarbageCollector* collector) { TimingLogger::ScopedTiming t(concurrent ? __FUNCTION__ : "(Paused)ProcessReferences", timings); Thread* self = Thread::Current(); { MutexLock mu(self, *Locks::reference_processor_lock_); collector_ = collector; if (!kUseReadBarrier) { CHECK_EQ(SlowPathEnabled(), concurrent) << "Slow path must be enabled iff concurrent"; } else { // Weak ref access is enabled at Zygote compaction by SemiSpace (concurrent == false). CHECK_EQ(!self->GetWeakRefAccessEnabled(), concurrent); } } if (kIsDebugBuild && collector->IsTransactionActive()) { // In transaction mode, we shouldn't enqueue any Reference to the queues. // See DelayReferenceReferent(). DCHECK(soft_reference_queue_.IsEmpty()); DCHECK(weak_reference_queue_.IsEmpty()); DCHECK(finalizer_reference_queue_.IsEmpty()); DCHECK(phantom_reference_queue_.IsEmpty()); } // Unless required to clear soft references with white references, preserve some white referents. if (!clear_soft_references) { TimingLogger::ScopedTiming split(concurrent ? "ForwardSoftReferences" : "(Paused)ForwardSoftReferences", timings); if (concurrent) { StartPreservingReferences(self); } // TODO: Add smarter logic for preserving soft references. The behavior should be a conditional // mark if the SoftReference is supposed to be preserved. soft_reference_queue_.ForwardSoftReferences(collector); collector->ProcessMarkStack(); if (concurrent) { StopPreservingReferences(self); } } // Clear all remaining soft and weak references with white referents. soft_reference_queue_.ClearWhiteReferences(&cleared_references_, collector); weak_reference_queue_.ClearWhiteReferences(&cleared_references_, collector); { TimingLogger::ScopedTiming t2(concurrent ? "EnqueueFinalizerReferences" : "(Paused)EnqueueFinalizerReferences", timings); if (concurrent) { StartPreservingReferences(self); } // Preserve all white objects with finalize methods and schedule them for finalization. finalizer_reference_queue_.EnqueueFinalizerReferences(&cleared_references_, collector); collector->ProcessMarkStack(); if (concurrent) { StopPreservingReferences(self); } } // Clear all finalizer referent reachable soft and weak references with white referents. soft_reference_queue_.ClearWhiteReferences(&cleared_references_, collector); weak_reference_queue_.ClearWhiteReferences(&cleared_references_, collector); // Clear all phantom references with white referents. phantom_reference_queue_.ClearWhiteReferences(&cleared_references_, collector); // At this point all reference queues other than the cleared references should be empty. DCHECK(soft_reference_queue_.IsEmpty()); DCHECK(weak_reference_queue_.IsEmpty()); DCHECK(finalizer_reference_queue_.IsEmpty()); DCHECK(phantom_reference_queue_.IsEmpty()); { MutexLock mu(self, *Locks::reference_processor_lock_); // Need to always do this since the next GC may be concurrent. Doing this for only concurrent // could result in a stale is_marked_callback_ being called before the reference processing // starts since there is a small window of time where slow_path_enabled_ is enabled but the // callback isn't yet set. collector_ = nullptr; if (!kUseReadBarrier && concurrent) { // Done processing, disable the slow path and broadcast to the waiters. DisableSlowPath(self); } } } // Process the "referent" field in a java.lang.ref.Reference. If the referent has not yet been // marked, put it on the appropriate list in the heap for later processing. void ReferenceProcessor::DelayReferenceReferent(ObjPtr<mirror::Class> klass, ObjPtr<mirror::Reference> ref, collector::GarbageCollector* collector) { // klass can be the class of the old object if the visitor already updated the class of ref. DCHECK(klass != nullptr); DCHECK(klass->IsTypeOfReferenceClass()); mirror::HeapReference<mirror::Object>* referent = ref->GetReferentReferenceAddr(); // do_atomic_update needs to be true because this happens outside of the reference processing // phase. if (!collector->IsNullOrMarkedHeapReference(referent, /*do_atomic_update*/true)) { if (UNLIKELY(collector->IsTransactionActive())) { // In transaction mode, keep the referent alive and avoid any reference processing to avoid the // issue of rolling back reference processing. do_atomic_update needs to be true because this // happens outside of the reference processing phase. if (!referent->IsNull()) { collector->MarkHeapReference(referent, /*do_atomic_update*/ true); } return; } Thread* self = Thread::Current(); // TODO: Remove these locks, and use atomic stacks for storing references? // We need to check that the references haven't already been enqueued since we can end up // scanning the same reference multiple times due to dirty cards. if (klass->IsSoftReferenceClass()) { soft_reference_queue_.AtomicEnqueueIfNotEnqueued(self, ref); } else if (klass->IsWeakReferenceClass()) { weak_reference_queue_.AtomicEnqueueIfNotEnqueued(self, ref); } else if (klass->IsFinalizerReferenceClass()) { finalizer_reference_queue_.AtomicEnqueueIfNotEnqueued(self, ref); } else if (klass->IsPhantomReferenceClass()) { phantom_reference_queue_.AtomicEnqueueIfNotEnqueued(self, ref); } else { LOG(FATAL) << "Invalid reference type " << klass->PrettyClass() << " " << std::hex << klass->GetAccessFlags(); } } } void ReferenceProcessor::UpdateRoots(IsMarkedVisitor* visitor) { cleared_references_.UpdateRoots(visitor); } class ClearedReferenceTask : public HeapTask { public: explicit ClearedReferenceTask(jobject cleared_references) : HeapTask(NanoTime()), cleared_references_(cleared_references) { } virtual void Run(Thread* thread) { ScopedObjectAccess soa(thread); jvalue args[1]; args[0].l = cleared_references_; InvokeWithJValues(soa, nullptr, WellKnownClasses::java_lang_ref_ReferenceQueue_add, args); soa.Env()->DeleteGlobalRef(cleared_references_); } private: const jobject cleared_references_; }; void ReferenceProcessor::EnqueueClearedReferences(Thread* self) { Locks::mutator_lock_->AssertNotHeld(self); // When a runtime isn't started there are no reference queues to care about so ignore. if (!cleared_references_.IsEmpty()) { if (LIKELY(Runtime::Current()->IsStarted())) { jobject cleared_references; { ReaderMutexLock mu(self, *Locks::mutator_lock_); cleared_references = self->GetJniEnv()->GetVm()->AddGlobalRef( self, cleared_references_.GetList()); } if (kAsyncReferenceQueueAdd) { // TODO: This can cause RunFinalization to terminate before newly freed objects are // finalized since they may not be enqueued by the time RunFinalization starts. Runtime::Current()->GetHeap()->GetTaskProcessor()->AddTask( self, new ClearedReferenceTask(cleared_references)); } else { ClearedReferenceTask task(cleared_references); task.Run(self); } } cleared_references_.Clear(); } } void ReferenceProcessor::ClearReferent(ObjPtr<mirror::Reference> ref) { Thread* self = Thread::Current(); MutexLock mu(self, *Locks::reference_processor_lock_); // Need to wait until reference processing is done since IsMarkedHeapReference does not have a // CAS. If we do not wait, it can result in the GC un-clearing references due to race conditions. // This also handles the race where the referent gets cleared after a null check but before // IsMarkedHeapReference is called. WaitUntilDoneProcessingReferences(self); if (Runtime::Current()->IsActiveTransaction()) { ref->ClearReferent<true>(); } else { ref->ClearReferent<false>(); } } void ReferenceProcessor::WaitUntilDoneProcessingReferences(Thread* self) { // Wait until we are done processing reference. while ((!kUseReadBarrier && SlowPathEnabled()) || (kUseReadBarrier && !self->GetWeakRefAccessEnabled())) { // Check and run the empty checkpoint before blocking so the empty checkpoint will work in the // presence of threads blocking for weak ref access. self->CheckEmptyCheckpointFromWeakRefAccess(Locks::reference_processor_lock_); condition_.WaitHoldingLocks(self); } } bool ReferenceProcessor::MakeCircularListIfUnenqueued( ObjPtr<mirror::FinalizerReference> reference) { Thread* self = Thread::Current(); MutexLock mu(self, *Locks::reference_processor_lock_); WaitUntilDoneProcessingReferences(self); // At this point, since the sentinel of the reference is live, it is guaranteed to not be // enqueued if we just finished processing references. Otherwise, we may be doing the main GC // phase. Since we are holding the reference processor lock, it guarantees that reference // processing can't begin. The GC could have just enqueued the reference one one of the internal // GC queues, but since we hold the lock finalizer_reference_queue_ lock it also prevents this // race. MutexLock mu2(self, *Locks::reference_queue_finalizer_references_lock_); if (reference->IsUnprocessed()) { CHECK(reference->IsFinalizerReferenceInstance()); reference->SetPendingNext(reference); return true; } return false; } } // namespace gc } // namespace art