/* * Copyright (C) 2011 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "image_space.h" #include <lz4.h> #include <sys/statvfs.h> #include <sys/types.h> #include <unistd.h> #include <random> #include "android-base/stringprintf.h" #include "android-base/strings.h" #include "art_field-inl.h" #include "art_method-inl.h" #include "base/callee_save_type.h" #include "base/enums.h" #include "base/file_utils.h" #include "base/macros.h" #include "base/os.h" #include "base/scoped_flock.h" #include "base/stl_util.h" #include "base/systrace.h" #include "base/time_utils.h" #include "base/utils.h" #include "dex/art_dex_file_loader.h" #include "dex/dex_file_loader.h" #include "exec_utils.h" #include "gc/accounting/space_bitmap-inl.h" #include "image-inl.h" #include "image_space_fs.h" #include "mirror/class-inl.h" #include "mirror/object-inl.h" #include "mirror/object-refvisitor-inl.h" #include "oat_file.h" #include "runtime.h" #include "space-inl.h" namespace art { namespace gc { namespace space { using android::base::StringAppendF; using android::base::StringPrintf; Atomic<uint32_t> ImageSpace::bitmap_index_(0); ImageSpace::ImageSpace(const std::string& image_filename, const char* image_location, MemMap* mem_map, accounting::ContinuousSpaceBitmap* live_bitmap, uint8_t* end) : MemMapSpace(image_filename, mem_map, mem_map->Begin(), end, end, kGcRetentionPolicyNeverCollect), oat_file_non_owned_(nullptr), image_location_(image_location) { DCHECK(live_bitmap != nullptr); live_bitmap_.reset(live_bitmap); } static int32_t ChooseRelocationOffsetDelta(int32_t min_delta, int32_t max_delta) { CHECK_ALIGNED(min_delta, kPageSize); CHECK_ALIGNED(max_delta, kPageSize); CHECK_LT(min_delta, max_delta); int32_t r = GetRandomNumber<int32_t>(min_delta, max_delta); if (r % 2 == 0) { r = RoundUp(r, kPageSize); } else { r = RoundDown(r, kPageSize); } CHECK_LE(min_delta, r); CHECK_GE(max_delta, r); CHECK_ALIGNED(r, kPageSize); return r; } static int32_t ChooseRelocationOffsetDelta() { return ChooseRelocationOffsetDelta(ART_BASE_ADDRESS_MIN_DELTA, ART_BASE_ADDRESS_MAX_DELTA); } static bool GenerateImage(const std::string& image_filename, InstructionSet image_isa, std::string* error_msg) { const std::string boot_class_path_string(Runtime::Current()->GetBootClassPathString()); std::vector<std::string> boot_class_path; Split(boot_class_path_string, ':', &boot_class_path); if (boot_class_path.empty()) { *error_msg = "Failed to generate image because no boot class path specified"; return false; } // We should clean up so we are more likely to have room for the image. if (Runtime::Current()->IsZygote()) { LOG(INFO) << "Pruning dalvik-cache since we are generating an image and will need to recompile"; PruneDalvikCache(image_isa); } std::vector<std::string> arg_vector; std::string dex2oat(Runtime::Current()->GetCompilerExecutable()); arg_vector.push_back(dex2oat); std::string image_option_string("--image="); image_option_string += image_filename; arg_vector.push_back(image_option_string); for (size_t i = 0; i < boot_class_path.size(); i++) { arg_vector.push_back(std::string("--dex-file=") + boot_class_path[i]); } std::string oat_file_option_string("--oat-file="); oat_file_option_string += ImageHeader::GetOatLocationFromImageLocation(image_filename); arg_vector.push_back(oat_file_option_string); // Note: we do not generate a fully debuggable boot image so we do not pass the // compiler flag --debuggable here. Runtime::Current()->AddCurrentRuntimeFeaturesAsDex2OatArguments(&arg_vector); CHECK_EQ(image_isa, kRuntimeISA) << "We should always be generating an image for the current isa."; int32_t base_offset = ChooseRelocationOffsetDelta(); LOG(INFO) << "Using an offset of 0x" << std::hex << base_offset << " from default " << "art base address of 0x" << std::hex << ART_BASE_ADDRESS; arg_vector.push_back(StringPrintf("--base=0x%x", ART_BASE_ADDRESS + base_offset)); if (!kIsTargetBuild) { arg_vector.push_back("--host"); } const std::vector<std::string>& compiler_options = Runtime::Current()->GetImageCompilerOptions(); for (size_t i = 0; i < compiler_options.size(); ++i) { arg_vector.push_back(compiler_options[i].c_str()); } std::string command_line(android::base::Join(arg_vector, ' ')); LOG(INFO) << "GenerateImage: " << command_line; return Exec(arg_vector, error_msg); } static bool FindImageFilenameImpl(const char* image_location, const InstructionSet image_isa, bool* has_system, std::string* system_filename, bool* dalvik_cache_exists, std::string* dalvik_cache, bool* is_global_cache, bool* has_cache, std::string* cache_filename) { DCHECK(dalvik_cache != nullptr); *has_system = false; *has_cache = false; // image_location = /system/framework/boot.art // system_image_location = /system/framework/<image_isa>/boot.art std::string system_image_filename(GetSystemImageFilename(image_location, image_isa)); if (OS::FileExists(system_image_filename.c_str())) { *system_filename = system_image_filename; *has_system = true; } bool have_android_data = false; *dalvik_cache_exists = false; GetDalvikCache(GetInstructionSetString(image_isa), true, dalvik_cache, &have_android_data, dalvik_cache_exists, is_global_cache); if (have_android_data && *dalvik_cache_exists) { // Always set output location even if it does not exist, // so that the caller knows where to create the image. // // image_location = /system/framework/boot.art // *image_filename = /data/dalvik-cache/<image_isa>/boot.art std::string error_msg; if (!GetDalvikCacheFilename(image_location, dalvik_cache->c_str(), cache_filename, &error_msg)) { LOG(WARNING) << error_msg; return *has_system; } *has_cache = OS::FileExists(cache_filename->c_str()); } return *has_system || *has_cache; } bool ImageSpace::FindImageFilename(const char* image_location, const InstructionSet image_isa, std::string* system_filename, bool* has_system, std::string* cache_filename, bool* dalvik_cache_exists, bool* has_cache, bool* is_global_cache) { std::string dalvik_cache_unused; return FindImageFilenameImpl(image_location, image_isa, has_system, system_filename, dalvik_cache_exists, &dalvik_cache_unused, is_global_cache, has_cache, cache_filename); } static bool ReadSpecificImageHeader(const char* filename, ImageHeader* image_header) { std::unique_ptr<File> image_file(OS::OpenFileForReading(filename)); if (image_file.get() == nullptr) { return false; } const bool success = image_file->ReadFully(image_header, sizeof(ImageHeader)); if (!success || !image_header->IsValid()) { return false; } return true; } // Relocate the image at image_location to dest_filename and relocate it by a random amount. static bool RelocateImage(const char* image_location, const char* dest_directory, InstructionSet isa, std::string* error_msg) { // We should clean up so we are more likely to have room for the image. if (Runtime::Current()->IsZygote()) { LOG(INFO) << "Pruning dalvik-cache since we are relocating an image and will need to recompile"; PruneDalvikCache(isa); } std::string patchoat(Runtime::Current()->GetPatchoatExecutable()); std::string input_image_location_arg("--input-image-location="); input_image_location_arg += image_location; std::string output_image_directory_arg("--output-image-directory="); output_image_directory_arg += dest_directory; std::string instruction_set_arg("--instruction-set="); instruction_set_arg += GetInstructionSetString(isa); std::string base_offset_arg("--base-offset-delta="); StringAppendF(&base_offset_arg, "%d", ChooseRelocationOffsetDelta()); std::vector<std::string> argv; argv.push_back(patchoat); argv.push_back(input_image_location_arg); argv.push_back(output_image_directory_arg); argv.push_back(instruction_set_arg); argv.push_back(base_offset_arg); std::string command_line(android::base::Join(argv, ' ')); LOG(INFO) << "RelocateImage: " << command_line; return Exec(argv, error_msg); } static bool VerifyImage(const char* image_location, const char* dest_directory, InstructionSet isa, std::string* error_msg) { std::string patchoat(Runtime::Current()->GetPatchoatExecutable()); std::string input_image_location_arg("--input-image-location="); input_image_location_arg += image_location; std::string output_image_directory_arg("--output-image-directory="); output_image_directory_arg += dest_directory; std::string instruction_set_arg("--instruction-set="); instruction_set_arg += GetInstructionSetString(isa); std::vector<std::string> argv; argv.push_back(patchoat); argv.push_back(input_image_location_arg); argv.push_back(output_image_directory_arg); argv.push_back(instruction_set_arg); argv.push_back("--verify"); std::string command_line(android::base::Join(argv, ' ')); LOG(INFO) << "VerifyImage: " << command_line; return Exec(argv, error_msg); } static ImageHeader* ReadSpecificImageHeader(const char* filename, std::string* error_msg) { std::unique_ptr<ImageHeader> hdr(new ImageHeader); if (!ReadSpecificImageHeader(filename, hdr.get())) { *error_msg = StringPrintf("Unable to read image header for %s", filename); return nullptr; } return hdr.release(); } ImageHeader* ImageSpace::ReadImageHeader(const char* image_location, const InstructionSet image_isa, std::string* error_msg) { std::string system_filename; bool has_system = false; std::string cache_filename; bool has_cache = false; bool dalvik_cache_exists = false; bool is_global_cache = false; if (FindImageFilename(image_location, image_isa, &system_filename, &has_system, &cache_filename, &dalvik_cache_exists, &has_cache, &is_global_cache)) { if (Runtime::Current()->ShouldRelocate()) { if (has_system && has_cache) { std::unique_ptr<ImageHeader> sys_hdr(new ImageHeader); std::unique_ptr<ImageHeader> cache_hdr(new ImageHeader); if (!ReadSpecificImageHeader(system_filename.c_str(), sys_hdr.get())) { *error_msg = StringPrintf("Unable to read image header for %s at %s", image_location, system_filename.c_str()); return nullptr; } if (!ReadSpecificImageHeader(cache_filename.c_str(), cache_hdr.get())) { *error_msg = StringPrintf("Unable to read image header for %s at %s", image_location, cache_filename.c_str()); return nullptr; } if (sys_hdr->GetOatChecksum() != cache_hdr->GetOatChecksum()) { *error_msg = StringPrintf("Unable to find a relocated version of image file %s", image_location); return nullptr; } return cache_hdr.release(); } else if (!has_cache) { *error_msg = StringPrintf("Unable to find a relocated version of image file %s", image_location); return nullptr; } else if (!has_system && has_cache) { // This can probably just use the cache one. return ReadSpecificImageHeader(cache_filename.c_str(), error_msg); } } else { // We don't want to relocate, Just pick the appropriate one if we have it and return. if (has_system && has_cache) { // We want the cache if the checksum matches, otherwise the system. std::unique_ptr<ImageHeader> system(ReadSpecificImageHeader(system_filename.c_str(), error_msg)); std::unique_ptr<ImageHeader> cache(ReadSpecificImageHeader(cache_filename.c_str(), error_msg)); if (system.get() == nullptr || (cache.get() != nullptr && cache->GetOatChecksum() == system->GetOatChecksum())) { return cache.release(); } else { return system.release(); } } else if (has_system) { return ReadSpecificImageHeader(system_filename.c_str(), error_msg); } else if (has_cache) { return ReadSpecificImageHeader(cache_filename.c_str(), error_msg); } } } *error_msg = StringPrintf("Unable to find image file for %s", image_location); return nullptr; } static bool ChecksumsMatch(const char* image_a, const char* image_b, std::string* error_msg) { DCHECK(error_msg != nullptr); ImageHeader hdr_a; ImageHeader hdr_b; if (!ReadSpecificImageHeader(image_a, &hdr_a)) { *error_msg = StringPrintf("Cannot read header of %s", image_a); return false; } if (!ReadSpecificImageHeader(image_b, &hdr_b)) { *error_msg = StringPrintf("Cannot read header of %s", image_b); return false; } if (hdr_a.GetOatChecksum() != hdr_b.GetOatChecksum()) { *error_msg = StringPrintf("Checksum mismatch: %u(%s) vs %u(%s)", hdr_a.GetOatChecksum(), image_a, hdr_b.GetOatChecksum(), image_b); return false; } return true; } static bool CanWriteToDalvikCache(const InstructionSet isa) { const std::string dalvik_cache = GetDalvikCache(GetInstructionSetString(isa)); if (access(dalvik_cache.c_str(), O_RDWR) == 0) { return true; } else if (errno != EACCES) { PLOG(WARNING) << "CanWriteToDalvikCache returned error other than EACCES"; } return false; } static bool ImageCreationAllowed(bool is_global_cache, const InstructionSet isa, std::string* error_msg) { // Anyone can write into a "local" cache. if (!is_global_cache) { return true; } // Only the zygote running as root is allowed to create the global boot image. // If the zygote is running as non-root (and cannot write to the dalvik-cache), // then image creation is not allowed.. if (Runtime::Current()->IsZygote()) { return CanWriteToDalvikCache(isa); } *error_msg = "Only the zygote can create the global boot image."; return false; } void ImageSpace::VerifyImageAllocations() { uint8_t* current = Begin() + RoundUp(sizeof(ImageHeader), kObjectAlignment); while (current < End()) { CHECK_ALIGNED(current, kObjectAlignment); auto* obj = reinterpret_cast<mirror::Object*>(current); CHECK(obj->GetClass() != nullptr) << "Image object at address " << obj << " has null class"; CHECK(live_bitmap_->Test(obj)) << obj->PrettyTypeOf(); if (kUseBakerReadBarrier) { obj->AssertReadBarrierState(); } current += RoundUp(obj->SizeOf(), kObjectAlignment); } } // Helper class for relocating from one range of memory to another. class RelocationRange { public: RelocationRange() = default; RelocationRange(const RelocationRange&) = default; RelocationRange(uintptr_t source, uintptr_t dest, uintptr_t length) : source_(source), dest_(dest), length_(length) {} bool InSource(uintptr_t address) const { return address - source_ < length_; } bool InDest(uintptr_t address) const { return address - dest_ < length_; } // Translate a source address to the destination space. uintptr_t ToDest(uintptr_t address) const { DCHECK(InSource(address)); return address + Delta(); } // Returns the delta between the dest from the source. uintptr_t Delta() const { return dest_ - source_; } uintptr_t Source() const { return source_; } uintptr_t Dest() const { return dest_; } uintptr_t Length() const { return length_; } private: const uintptr_t source_; const uintptr_t dest_; const uintptr_t length_; }; std::ostream& operator<<(std::ostream& os, const RelocationRange& reloc) { return os << "(" << reinterpret_cast<const void*>(reloc.Source()) << "-" << reinterpret_cast<const void*>(reloc.Source() + reloc.Length()) << ")->(" << reinterpret_cast<const void*>(reloc.Dest()) << "-" << reinterpret_cast<const void*>(reloc.Dest() + reloc.Length()) << ")"; } // Helper class encapsulating loading, so we can access private ImageSpace members (this is a // friend class), but not declare functions in the header. class ImageSpaceLoader { public: static std::unique_ptr<ImageSpace> Load(const char* image_location, const std::string& image_filename, bool is_zygote, bool is_global_cache, bool validate_oat_file, std::string* error_msg) REQUIRES_SHARED(Locks::mutator_lock_) { // Should this be a RDWR lock? This is only a defensive measure, as at // this point the image should exist. // However, only the zygote can write into the global dalvik-cache, so // restrict to zygote processes, or any process that isn't using // /data/dalvik-cache (which we assume to be allowed to write there). const bool rw_lock = is_zygote || !is_global_cache; // Note that we must not use the file descriptor associated with // ScopedFlock::GetFile to Init the image file. We want the file // descriptor (and the associated exclusive lock) to be released when // we leave Create. ScopedFlock image = LockedFile::Open(image_filename.c_str(), rw_lock ? (O_CREAT | O_RDWR) : O_RDONLY /* flags */, true /* block */, error_msg); VLOG(startup) << "Using image file " << image_filename.c_str() << " for image location " << image_location; // If we are in /system we can assume the image is good. We can also // assume this if we are using a relocated image (i.e. image checksum // matches) since this is only different by the offset. We need this to // make sure that host tests continue to work. // Since we are the boot image, pass null since we load the oat file from the boot image oat // file name. return Init(image_filename.c_str(), image_location, validate_oat_file, /* oat_file */nullptr, error_msg); } static std::unique_ptr<ImageSpace> Init(const char* image_filename, const char* image_location, bool validate_oat_file, const OatFile* oat_file, std::string* error_msg) REQUIRES_SHARED(Locks::mutator_lock_) { CHECK(image_filename != nullptr); CHECK(image_location != nullptr); TimingLogger logger(__PRETTY_FUNCTION__, true, VLOG_IS_ON(image)); VLOG(image) << "ImageSpace::Init entering image_filename=" << image_filename; std::unique_ptr<File> file; { TimingLogger::ScopedTiming timing("OpenImageFile", &logger); file.reset(OS::OpenFileForReading(image_filename)); if (file == nullptr) { *error_msg = StringPrintf("Failed to open '%s'", image_filename); return nullptr; } } ImageHeader temp_image_header; ImageHeader* image_header = &temp_image_header; { TimingLogger::ScopedTiming timing("ReadImageHeader", &logger); bool success = file->ReadFully(image_header, sizeof(*image_header)); if (!success || !image_header->IsValid()) { *error_msg = StringPrintf("Invalid image header in '%s'", image_filename); return nullptr; } } // Check that the file is larger or equal to the header size + data size. const uint64_t image_file_size = static_cast<uint64_t>(file->GetLength()); if (image_file_size < sizeof(ImageHeader) + image_header->GetDataSize()) { *error_msg = StringPrintf("Image file truncated: %" PRIu64 " vs. %" PRIu64 ".", image_file_size, sizeof(ImageHeader) + image_header->GetDataSize()); return nullptr; } if (oat_file != nullptr) { // If we have an oat file, check the oat file checksum. The oat file is only non-null for the // app image case. Otherwise, we open the oat file after the image and check the checksum there. const uint32_t oat_checksum = oat_file->GetOatHeader().GetChecksum(); const uint32_t image_oat_checksum = image_header->GetOatChecksum(); if (oat_checksum != image_oat_checksum) { *error_msg = StringPrintf("Oat checksum 0x%x does not match the image one 0x%x in image %s", oat_checksum, image_oat_checksum, image_filename); return nullptr; } } if (VLOG_IS_ON(startup)) { LOG(INFO) << "Dumping image sections"; for (size_t i = 0; i < ImageHeader::kSectionCount; ++i) { const auto section_idx = static_cast<ImageHeader::ImageSections>(i); auto& section = image_header->GetImageSection(section_idx); LOG(INFO) << section_idx << " start=" << reinterpret_cast<void*>(image_header->GetImageBegin() + section.Offset()) << " " << section; } } const auto& bitmap_section = image_header->GetImageBitmapSection(); // The location we want to map from is the first aligned page after the end of the stored // (possibly compressed) data. const size_t image_bitmap_offset = RoundUp(sizeof(ImageHeader) + image_header->GetDataSize(), kPageSize); const size_t end_of_bitmap = image_bitmap_offset + bitmap_section.Size(); if (end_of_bitmap != image_file_size) { *error_msg = StringPrintf( "Image file size does not equal end of bitmap: size=%" PRIu64 " vs. %zu.", image_file_size, end_of_bitmap); return nullptr; } std::unique_ptr<MemMap> map; // GetImageBegin is the preferred address to map the image. If we manage to map the // image at the image begin, the amount of fixup work required is minimized. // If it is pic we will retry with error_msg for the failure case. Pass a null error_msg to // avoid reading proc maps for a mapping failure and slowing everything down. map.reset(LoadImageFile(image_filename, image_location, *image_header, image_header->GetImageBegin(), file->Fd(), logger, image_header->IsPic() ? nullptr : error_msg)); // If the header specifies PIC mode, we can also map at a random low_4gb address since we can // relocate in-place. if (map == nullptr && image_header->IsPic()) { map.reset(LoadImageFile(image_filename, image_location, *image_header, /* address */ nullptr, file->Fd(), logger, error_msg)); } // Were we able to load something and continue? if (map == nullptr) { DCHECK(!error_msg->empty()); return nullptr; } DCHECK_EQ(0, memcmp(image_header, map->Begin(), sizeof(ImageHeader))); std::unique_ptr<MemMap> image_bitmap_map(MemMap::MapFileAtAddress(nullptr, bitmap_section.Size(), PROT_READ, MAP_PRIVATE, file->Fd(), image_bitmap_offset, /*low_4gb*/false, /*reuse*/false, image_filename, error_msg)); if (image_bitmap_map == nullptr) { *error_msg = StringPrintf("Failed to map image bitmap: %s", error_msg->c_str()); return nullptr; } // Loaded the map, use the image header from the file now in case we patch it with // RelocateInPlace. image_header = reinterpret_cast<ImageHeader*>(map->Begin()); const uint32_t bitmap_index = ImageSpace::bitmap_index_.FetchAndAddSequentiallyConsistent(1); std::string bitmap_name(StringPrintf("imagespace %s live-bitmap %u", image_filename, bitmap_index)); // Bitmap only needs to cover until the end of the mirror objects section. const ImageSection& image_objects = image_header->GetObjectsSection(); // We only want the mirror object, not the ArtFields and ArtMethods. uint8_t* const image_end = map->Begin() + image_objects.End(); std::unique_ptr<accounting::ContinuousSpaceBitmap> bitmap; { TimingLogger::ScopedTiming timing("CreateImageBitmap", &logger); bitmap.reset( accounting::ContinuousSpaceBitmap::CreateFromMemMap( bitmap_name, image_bitmap_map.release(), reinterpret_cast<uint8_t*>(map->Begin()), // Make sure the bitmap is aligned to card size instead of just bitmap word size. RoundUp(image_objects.End(), gc::accounting::CardTable::kCardSize))); if (bitmap == nullptr) { *error_msg = StringPrintf("Could not create bitmap '%s'", bitmap_name.c_str()); return nullptr; } } { TimingLogger::ScopedTiming timing("RelocateImage", &logger); if (!RelocateInPlace(*image_header, map->Begin(), bitmap.get(), oat_file, error_msg)) { return nullptr; } } // We only want the mirror object, not the ArtFields and ArtMethods. std::unique_ptr<ImageSpace> space(new ImageSpace(image_filename, image_location, map.release(), bitmap.release(), image_end)); // VerifyImageAllocations() will be called later in Runtime::Init() // as some class roots like ArtMethod::java_lang_reflect_ArtMethod_ // and ArtField::java_lang_reflect_ArtField_, which are used from // Object::SizeOf() which VerifyImageAllocations() calls, are not // set yet at this point. if (oat_file == nullptr) { TimingLogger::ScopedTiming timing("OpenOatFile", &logger); space->oat_file_ = OpenOatFile(*space, image_filename, error_msg); if (space->oat_file_ == nullptr) { DCHECK(!error_msg->empty()); return nullptr; } space->oat_file_non_owned_ = space->oat_file_.get(); } else { space->oat_file_non_owned_ = oat_file; } if (validate_oat_file) { TimingLogger::ScopedTiming timing("ValidateOatFile", &logger); CHECK(space->oat_file_ != nullptr); if (!ImageSpace::ValidateOatFile(*space->oat_file_, error_msg)) { DCHECK(!error_msg->empty()); return nullptr; } } Runtime* runtime = Runtime::Current(); // If oat_file is null, then it is the boot image space. Use oat_file_non_owned_ from the space // to set the runtime methods. CHECK_EQ(oat_file != nullptr, image_header->IsAppImage()); if (image_header->IsAppImage()) { CHECK_EQ(runtime->GetResolutionMethod(), image_header->GetImageMethod(ImageHeader::kResolutionMethod)); CHECK_EQ(runtime->GetImtConflictMethod(), image_header->GetImageMethod(ImageHeader::kImtConflictMethod)); CHECK_EQ(runtime->GetImtUnimplementedMethod(), image_header->GetImageMethod(ImageHeader::kImtUnimplementedMethod)); CHECK_EQ(runtime->GetCalleeSaveMethod(CalleeSaveType::kSaveAllCalleeSaves), image_header->GetImageMethod(ImageHeader::kSaveAllCalleeSavesMethod)); CHECK_EQ(runtime->GetCalleeSaveMethod(CalleeSaveType::kSaveRefsOnly), image_header->GetImageMethod(ImageHeader::kSaveRefsOnlyMethod)); CHECK_EQ(runtime->GetCalleeSaveMethod(CalleeSaveType::kSaveRefsAndArgs), image_header->GetImageMethod(ImageHeader::kSaveRefsAndArgsMethod)); CHECK_EQ(runtime->GetCalleeSaveMethod(CalleeSaveType::kSaveEverything), image_header->GetImageMethod(ImageHeader::kSaveEverythingMethod)); CHECK_EQ(runtime->GetCalleeSaveMethod(CalleeSaveType::kSaveEverythingForClinit), image_header->GetImageMethod(ImageHeader::kSaveEverythingMethodForClinit)); CHECK_EQ(runtime->GetCalleeSaveMethod(CalleeSaveType::kSaveEverythingForSuspendCheck), image_header->GetImageMethod(ImageHeader::kSaveEverythingMethodForSuspendCheck)); } else if (!runtime->HasResolutionMethod()) { runtime->SetInstructionSet(space->oat_file_non_owned_->GetOatHeader().GetInstructionSet()); runtime->SetResolutionMethod(image_header->GetImageMethod(ImageHeader::kResolutionMethod)); runtime->SetImtConflictMethod(image_header->GetImageMethod(ImageHeader::kImtConflictMethod)); runtime->SetImtUnimplementedMethod( image_header->GetImageMethod(ImageHeader::kImtUnimplementedMethod)); runtime->SetCalleeSaveMethod( image_header->GetImageMethod(ImageHeader::kSaveAllCalleeSavesMethod), CalleeSaveType::kSaveAllCalleeSaves); runtime->SetCalleeSaveMethod( image_header->GetImageMethod(ImageHeader::kSaveRefsOnlyMethod), CalleeSaveType::kSaveRefsOnly); runtime->SetCalleeSaveMethod( image_header->GetImageMethod(ImageHeader::kSaveRefsAndArgsMethod), CalleeSaveType::kSaveRefsAndArgs); runtime->SetCalleeSaveMethod( image_header->GetImageMethod(ImageHeader::kSaveEverythingMethod), CalleeSaveType::kSaveEverything); runtime->SetCalleeSaveMethod( image_header->GetImageMethod(ImageHeader::kSaveEverythingMethodForClinit), CalleeSaveType::kSaveEverythingForClinit); runtime->SetCalleeSaveMethod( image_header->GetImageMethod(ImageHeader::kSaveEverythingMethodForSuspendCheck), CalleeSaveType::kSaveEverythingForSuspendCheck); } VLOG(image) << "ImageSpace::Init exiting " << *space.get(); if (VLOG_IS_ON(image)) { logger.Dump(LOG_STREAM(INFO)); } return space; } private: static MemMap* LoadImageFile(const char* image_filename, const char* image_location, const ImageHeader& image_header, uint8_t* address, int fd, TimingLogger& logger, std::string* error_msg) { TimingLogger::ScopedTiming timing("MapImageFile", &logger); const ImageHeader::StorageMode storage_mode = image_header.GetStorageMode(); if (storage_mode == ImageHeader::kStorageModeUncompressed) { return MemMap::MapFileAtAddress(address, image_header.GetImageSize(), PROT_READ | PROT_WRITE, MAP_PRIVATE, fd, 0, /*low_4gb*/true, /*reuse*/false, image_filename, error_msg); } if (storage_mode != ImageHeader::kStorageModeLZ4 && storage_mode != ImageHeader::kStorageModeLZ4HC) { if (error_msg != nullptr) { *error_msg = StringPrintf("Invalid storage mode in image header %d", static_cast<int>(storage_mode)); } return nullptr; } // Reserve output and decompress into it. std::unique_ptr<MemMap> map(MemMap::MapAnonymous(image_location, address, image_header.GetImageSize(), PROT_READ | PROT_WRITE, /*low_4gb*/true, /*reuse*/false, error_msg)); if (map != nullptr) { const size_t stored_size = image_header.GetDataSize(); const size_t decompress_offset = sizeof(ImageHeader); // Skip the header. std::unique_ptr<MemMap> temp_map(MemMap::MapFile(sizeof(ImageHeader) + stored_size, PROT_READ, MAP_PRIVATE, fd, /*offset*/0, /*low_4gb*/false, image_filename, error_msg)); if (temp_map == nullptr) { DCHECK(error_msg == nullptr || !error_msg->empty()); return nullptr; } memcpy(map->Begin(), &image_header, sizeof(ImageHeader)); const uint64_t start = NanoTime(); // LZ4HC and LZ4 have same internal format, both use LZ4_decompress. TimingLogger::ScopedTiming timing2("LZ4 decompress image", &logger); const size_t decompressed_size = LZ4_decompress_safe( reinterpret_cast<char*>(temp_map->Begin()) + sizeof(ImageHeader), reinterpret_cast<char*>(map->Begin()) + decompress_offset, stored_size, map->Size() - decompress_offset); const uint64_t time = NanoTime() - start; // Add one 1 ns to prevent possible divide by 0. VLOG(image) << "Decompressing image took " << PrettyDuration(time) << " (" << PrettySize(static_cast<uint64_t>(map->Size()) * MsToNs(1000) / (time + 1)) << "/s)"; if (decompressed_size + sizeof(ImageHeader) != image_header.GetImageSize()) { if (error_msg != nullptr) { *error_msg = StringPrintf( "Decompressed size does not match expected image size %zu vs %zu", decompressed_size + sizeof(ImageHeader), image_header.GetImageSize()); } return nullptr; } } return map.release(); } class FixupVisitor : public ValueObject { public: FixupVisitor(const RelocationRange& boot_image, const RelocationRange& boot_oat, const RelocationRange& app_image, const RelocationRange& app_oat) : boot_image_(boot_image), boot_oat_(boot_oat), app_image_(app_image), app_oat_(app_oat) {} // Return the relocated address of a heap object. template <typename T> ALWAYS_INLINE T* ForwardObject(T* src) const { const uintptr_t uint_src = reinterpret_cast<uintptr_t>(src); if (boot_image_.InSource(uint_src)) { return reinterpret_cast<T*>(boot_image_.ToDest(uint_src)); } if (app_image_.InSource(uint_src)) { return reinterpret_cast<T*>(app_image_.ToDest(uint_src)); } // Since we are fixing up the app image, there should only be pointers to the app image and // boot image. DCHECK(src == nullptr) << reinterpret_cast<const void*>(src); return src; } // Return the relocated address of a code pointer (contained by an oat file). ALWAYS_INLINE const void* ForwardCode(const void* src) const { const uintptr_t uint_src = reinterpret_cast<uintptr_t>(src); if (boot_oat_.InSource(uint_src)) { return reinterpret_cast<const void*>(boot_oat_.ToDest(uint_src)); } if (app_oat_.InSource(uint_src)) { return reinterpret_cast<const void*>(app_oat_.ToDest(uint_src)); } DCHECK(src == nullptr) << src; return src; } // Must be called on pointers that already have been relocated to the destination relocation. ALWAYS_INLINE bool IsInAppImage(mirror::Object* object) const { return app_image_.InDest(reinterpret_cast<uintptr_t>(object)); } protected: // Source section. const RelocationRange boot_image_; const RelocationRange boot_oat_; const RelocationRange app_image_; const RelocationRange app_oat_; }; // Adapt for mirror::Class::FixupNativePointers. class FixupObjectAdapter : public FixupVisitor { public: template<typename... Args> explicit FixupObjectAdapter(Args... args) : FixupVisitor(args...) {} template <typename T> T* operator()(T* obj, void** dest_addr ATTRIBUTE_UNUSED = nullptr) const { return ForwardObject(obj); } }; class FixupRootVisitor : public FixupVisitor { public: template<typename... Args> explicit FixupRootVisitor(Args... args) : FixupVisitor(args...) {} ALWAYS_INLINE void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root) const REQUIRES_SHARED(Locks::mutator_lock_) { if (!root->IsNull()) { VisitRoot(root); } } ALWAYS_INLINE void VisitRoot(mirror::CompressedReference<mirror::Object>* root) const REQUIRES_SHARED(Locks::mutator_lock_) { mirror::Object* ref = root->AsMirrorPtr(); mirror::Object* new_ref = ForwardObject(ref); if (ref != new_ref) { root->Assign(new_ref); } } }; class FixupObjectVisitor : public FixupVisitor { public: template<typename... Args> explicit FixupObjectVisitor(gc::accounting::ContinuousSpaceBitmap* visited, const PointerSize pointer_size, Args... args) : FixupVisitor(args...), pointer_size_(pointer_size), visited_(visited) {} // Fix up separately since we also need to fix up method entrypoints. ALWAYS_INLINE void VisitRootIfNonNull( mirror::CompressedReference<mirror::Object>* root ATTRIBUTE_UNUSED) const {} ALWAYS_INLINE void VisitRoot(mirror::CompressedReference<mirror::Object>* root ATTRIBUTE_UNUSED) const {} ALWAYS_INLINE void operator()(ObjPtr<mirror::Object> obj, MemberOffset offset, bool is_static ATTRIBUTE_UNUSED) const NO_THREAD_SAFETY_ANALYSIS { // There could be overlap between ranges, we must avoid visiting the same reference twice. // Avoid the class field since we already fixed it up in FixupClassVisitor. if (offset.Uint32Value() != mirror::Object::ClassOffset().Uint32Value()) { // Space is not yet added to the heap, don't do a read barrier. mirror::Object* ref = obj->GetFieldObject<mirror::Object, kVerifyNone, kWithoutReadBarrier>( offset); // Use SetFieldObjectWithoutWriteBarrier to avoid card marking since we are writing to the // image. obj->SetFieldObjectWithoutWriteBarrier<false, true, kVerifyNone>(offset, ForwardObject(ref)); } } // Visit a pointer array and forward corresponding native data. Ignores pointer arrays in the // boot image. Uses the bitmap to ensure the same array is not visited multiple times. template <typename Visitor> void UpdatePointerArrayContents(mirror::PointerArray* array, const Visitor& visitor) const NO_THREAD_SAFETY_ANALYSIS { DCHECK(array != nullptr); DCHECK(visitor.IsInAppImage(array)); // The bit for the array contents is different than the bit for the array. Since we may have // already visited the array as a long / int array from walking the bitmap without knowing it // was a pointer array. static_assert(kObjectAlignment == 8u, "array bit may be in another object"); mirror::Object* const contents_bit = reinterpret_cast<mirror::Object*>( reinterpret_cast<uintptr_t>(array) + kObjectAlignment); // If the bit is not set then the contents have not yet been updated. if (!visited_->Test(contents_bit)) { array->Fixup<kVerifyNone, kWithoutReadBarrier>(array, pointer_size_, visitor); visited_->Set(contents_bit); } } // java.lang.ref.Reference visitor. void operator()(ObjPtr<mirror::Class> klass ATTRIBUTE_UNUSED, ObjPtr<mirror::Reference> ref) const REQUIRES_SHARED(Locks::mutator_lock_) REQUIRES(Locks::heap_bitmap_lock_) { mirror::Object* obj = ref->GetReferent<kWithoutReadBarrier>(); ref->SetFieldObjectWithoutWriteBarrier<false, true, kVerifyNone>( mirror::Reference::ReferentOffset(), ForwardObject(obj)); } void operator()(mirror::Object* obj) const NO_THREAD_SAFETY_ANALYSIS { if (visited_->Test(obj)) { // Already visited. return; } visited_->Set(obj); // Handle class specially first since we need it to be updated to properly visit the rest of // the instance fields. { mirror::Class* klass = obj->GetClass<kVerifyNone, kWithoutReadBarrier>(); DCHECK(klass != nullptr) << "Null class in image"; // No AsClass since our fields aren't quite fixed up yet. mirror::Class* new_klass = down_cast<mirror::Class*>(ForwardObject(klass)); if (klass != new_klass) { obj->SetClass<kVerifyNone>(new_klass); } if (new_klass != klass && IsInAppImage(new_klass)) { // Make sure the klass contents are fixed up since we depend on it to walk the fields. operator()(new_klass); } } if (obj->IsClass()) { mirror::Class* klass = obj->AsClass<kVerifyNone, kWithoutReadBarrier>(); // Fixup super class before visiting instance fields which require // information from their super class to calculate offsets. mirror::Class* super_class = klass->GetSuperClass<kVerifyNone, kWithoutReadBarrier>(); if (super_class != nullptr) { mirror::Class* new_super_class = down_cast<mirror::Class*>(ForwardObject(super_class)); if (new_super_class != super_class && IsInAppImage(new_super_class)) { // Recursively fix all dependencies. operator()(new_super_class); } } } obj->VisitReferences</*visit native roots*/false, kVerifyNone, kWithoutReadBarrier>( *this, *this); // Note that this code relies on no circular dependencies. // We want to use our own class loader and not the one in the image. if (obj->IsClass<kVerifyNone, kWithoutReadBarrier>()) { mirror::Class* as_klass = obj->AsClass<kVerifyNone, kWithoutReadBarrier>(); FixupObjectAdapter visitor(boot_image_, boot_oat_, app_image_, app_oat_); as_klass->FixupNativePointers<kVerifyNone, kWithoutReadBarrier>(as_klass, pointer_size_, visitor); // Deal with the pointer arrays. Use the helper function since multiple classes can reference // the same arrays. mirror::PointerArray* const vtable = as_klass->GetVTable<kVerifyNone, kWithoutReadBarrier>(); if (vtable != nullptr && IsInAppImage(vtable)) { operator()(vtable); UpdatePointerArrayContents(vtable, visitor); } mirror::IfTable* iftable = as_klass->GetIfTable<kVerifyNone, kWithoutReadBarrier>(); // Ensure iftable arrays are fixed up since we need GetMethodArray to return the valid // contents. if (IsInAppImage(iftable)) { operator()(iftable); for (int32_t i = 0, count = iftable->Count(); i < count; ++i) { if (iftable->GetMethodArrayCount<kVerifyNone, kWithoutReadBarrier>(i) > 0) { mirror::PointerArray* methods = iftable->GetMethodArray<kVerifyNone, kWithoutReadBarrier>(i); if (visitor.IsInAppImage(methods)) { operator()(methods); DCHECK(methods != nullptr); UpdatePointerArrayContents(methods, visitor); } } } } } } private: const PointerSize pointer_size_; gc::accounting::ContinuousSpaceBitmap* const visited_; }; class ForwardObjectAdapter { public: ALWAYS_INLINE explicit ForwardObjectAdapter(const FixupVisitor* visitor) : visitor_(visitor) {} template <typename T> ALWAYS_INLINE T* operator()(T* src) const { return visitor_->ForwardObject(src); } private: const FixupVisitor* const visitor_; }; class ForwardCodeAdapter { public: ALWAYS_INLINE explicit ForwardCodeAdapter(const FixupVisitor* visitor) : visitor_(visitor) {} template <typename T> ALWAYS_INLINE T* operator()(T* src) const { return visitor_->ForwardCode(src); } private: const FixupVisitor* const visitor_; }; class FixupArtMethodVisitor : public FixupVisitor, public ArtMethodVisitor { public: template<typename... Args> explicit FixupArtMethodVisitor(bool fixup_heap_objects, PointerSize pointer_size, Args... args) : FixupVisitor(args...), fixup_heap_objects_(fixup_heap_objects), pointer_size_(pointer_size) {} virtual void Visit(ArtMethod* method) NO_THREAD_SAFETY_ANALYSIS { // TODO: Separate visitor for runtime vs normal methods. if (UNLIKELY(method->IsRuntimeMethod())) { ImtConflictTable* table = method->GetImtConflictTable(pointer_size_); if (table != nullptr) { ImtConflictTable* new_table = ForwardObject(table); if (table != new_table) { method->SetImtConflictTable(new_table, pointer_size_); } } const void* old_code = method->GetEntryPointFromQuickCompiledCodePtrSize(pointer_size_); const void* new_code = ForwardCode(old_code); if (old_code != new_code) { method->SetEntryPointFromQuickCompiledCodePtrSize(new_code, pointer_size_); } } else { if (fixup_heap_objects_) { method->UpdateObjectsForImageRelocation(ForwardObjectAdapter(this)); } method->UpdateEntrypoints<kWithoutReadBarrier>(ForwardCodeAdapter(this), pointer_size_); } } private: const bool fixup_heap_objects_; const PointerSize pointer_size_; }; class FixupArtFieldVisitor : public FixupVisitor, public ArtFieldVisitor { public: template<typename... Args> explicit FixupArtFieldVisitor(Args... args) : FixupVisitor(args...) {} virtual void Visit(ArtField* field) NO_THREAD_SAFETY_ANALYSIS { field->UpdateObjects(ForwardObjectAdapter(this)); } }; // Relocate an image space mapped at target_base which possibly used to be at a different base // address. Only needs a single image space, not one for both source and destination. // In place means modifying a single ImageSpace in place rather than relocating from one ImageSpace // to another. static bool RelocateInPlace(ImageHeader& image_header, uint8_t* target_base, accounting::ContinuousSpaceBitmap* bitmap, const OatFile* app_oat_file, std::string* error_msg) { DCHECK(error_msg != nullptr); if (!image_header.IsPic()) { if (image_header.GetImageBegin() == target_base) { return true; } *error_msg = StringPrintf("Cannot relocate non-pic image for oat file %s", (app_oat_file != nullptr) ? app_oat_file->GetLocation().c_str() : ""); return false; } // Set up sections. uint32_t boot_image_begin = 0; uint32_t boot_image_end = 0; uint32_t boot_oat_begin = 0; uint32_t boot_oat_end = 0; const PointerSize pointer_size = image_header.GetPointerSize(); gc::Heap* const heap = Runtime::Current()->GetHeap(); heap->GetBootImagesSize(&boot_image_begin, &boot_image_end, &boot_oat_begin, &boot_oat_end); if (boot_image_begin == boot_image_end) { *error_msg = "Can not relocate app image without boot image space"; return false; } if (boot_oat_begin == boot_oat_end) { *error_msg = "Can not relocate app image without boot oat file"; return false; } const uint32_t boot_image_size = boot_image_end - boot_image_begin; const uint32_t boot_oat_size = boot_oat_end - boot_oat_begin; const uint32_t image_header_boot_image_size = image_header.GetBootImageSize(); const uint32_t image_header_boot_oat_size = image_header.GetBootOatSize(); if (boot_image_size != image_header_boot_image_size) { *error_msg = StringPrintf("Boot image size %" PRIu64 " does not match expected size %" PRIu64, static_cast<uint64_t>(boot_image_size), static_cast<uint64_t>(image_header_boot_image_size)); return false; } if (boot_oat_size != image_header_boot_oat_size) { *error_msg = StringPrintf("Boot oat size %" PRIu64 " does not match expected size %" PRIu64, static_cast<uint64_t>(boot_oat_size), static_cast<uint64_t>(image_header_boot_oat_size)); return false; } TimingLogger logger(__FUNCTION__, true, false); RelocationRange boot_image(image_header.GetBootImageBegin(), boot_image_begin, boot_image_size); RelocationRange boot_oat(image_header.GetBootOatBegin(), boot_oat_begin, boot_oat_size); RelocationRange app_image(reinterpret_cast<uintptr_t>(image_header.GetImageBegin()), reinterpret_cast<uintptr_t>(target_base), image_header.GetImageSize()); // Use the oat data section since this is where the OatFile::Begin is. RelocationRange app_oat(reinterpret_cast<uintptr_t>(image_header.GetOatDataBegin()), // Not necessarily in low 4GB. reinterpret_cast<uintptr_t>(app_oat_file->Begin()), image_header.GetOatDataEnd() - image_header.GetOatDataBegin()); VLOG(image) << "App image " << app_image; VLOG(image) << "App oat " << app_oat; VLOG(image) << "Boot image " << boot_image; VLOG(image) << "Boot oat " << boot_oat; // True if we need to fixup any heap pointers, otherwise only code pointers. const bool fixup_image = boot_image.Delta() != 0 || app_image.Delta() != 0; const bool fixup_code = boot_oat.Delta() != 0 || app_oat.Delta() != 0; if (!fixup_image && !fixup_code) { // Nothing to fix up. return true; } ScopedDebugDisallowReadBarriers sddrb(Thread::Current()); // Need to update the image to be at the target base. const ImageSection& objects_section = image_header.GetObjectsSection(); uintptr_t objects_begin = reinterpret_cast<uintptr_t>(target_base + objects_section.Offset()); uintptr_t objects_end = reinterpret_cast<uintptr_t>(target_base + objects_section.End()); FixupObjectAdapter fixup_adapter(boot_image, boot_oat, app_image, app_oat); if (fixup_image) { // Two pass approach, fix up all classes first, then fix up non class-objects. // The visited bitmap is used to ensure that pointer arrays are not forwarded twice. std::unique_ptr<gc::accounting::ContinuousSpaceBitmap> visited_bitmap( gc::accounting::ContinuousSpaceBitmap::Create("Relocate bitmap", target_base, image_header.GetImageSize())); FixupObjectVisitor fixup_object_visitor(visited_bitmap.get(), pointer_size, boot_image, boot_oat, app_image, app_oat); TimingLogger::ScopedTiming timing("Fixup classes", &logger); // Fixup objects may read fields in the boot image, use the mutator lock here for sanity. Though // its probably not required. ScopedObjectAccess soa(Thread::Current()); timing.NewTiming("Fixup objects"); bitmap->VisitMarkedRange(objects_begin, objects_end, fixup_object_visitor); // Fixup image roots. CHECK(app_image.InSource(reinterpret_cast<uintptr_t>( image_header.GetImageRoots<kWithoutReadBarrier>()))); image_header.RelocateImageObjects(app_image.Delta()); CHECK_EQ(image_header.GetImageBegin(), target_base); // Fix up dex cache DexFile pointers. auto* dex_caches = image_header.GetImageRoot<kWithoutReadBarrier>(ImageHeader::kDexCaches)-> AsObjectArray<mirror::DexCache, kVerifyNone, kWithoutReadBarrier>(); for (int32_t i = 0, count = dex_caches->GetLength(); i < count; ++i) { mirror::DexCache* dex_cache = dex_caches->Get<kVerifyNone, kWithoutReadBarrier>(i); // Fix up dex cache pointers. mirror::StringDexCacheType* strings = dex_cache->GetStrings(); if (strings != nullptr) { mirror::StringDexCacheType* new_strings = fixup_adapter.ForwardObject(strings); if (strings != new_strings) { dex_cache->SetStrings(new_strings); } dex_cache->FixupStrings<kWithoutReadBarrier>(new_strings, fixup_adapter); } mirror::TypeDexCacheType* types = dex_cache->GetResolvedTypes(); if (types != nullptr) { mirror::TypeDexCacheType* new_types = fixup_adapter.ForwardObject(types); if (types != new_types) { dex_cache->SetResolvedTypes(new_types); } dex_cache->FixupResolvedTypes<kWithoutReadBarrier>(new_types, fixup_adapter); } mirror::MethodDexCacheType* methods = dex_cache->GetResolvedMethods(); if (methods != nullptr) { mirror::MethodDexCacheType* new_methods = fixup_adapter.ForwardObject(methods); if (methods != new_methods) { dex_cache->SetResolvedMethods(new_methods); } for (size_t j = 0, num = dex_cache->NumResolvedMethods(); j != num; ++j) { auto pair = mirror::DexCache::GetNativePairPtrSize(new_methods, j, pointer_size); ArtMethod* orig = pair.object; ArtMethod* copy = fixup_adapter.ForwardObject(orig); if (orig != copy) { pair.object = copy; mirror::DexCache::SetNativePairPtrSize(new_methods, j, pair, pointer_size); } } } mirror::FieldDexCacheType* fields = dex_cache->GetResolvedFields(); if (fields != nullptr) { mirror::FieldDexCacheType* new_fields = fixup_adapter.ForwardObject(fields); if (fields != new_fields) { dex_cache->SetResolvedFields(new_fields); } for (size_t j = 0, num = dex_cache->NumResolvedFields(); j != num; ++j) { mirror::FieldDexCachePair orig = mirror::DexCache::GetNativePairPtrSize(new_fields, j, pointer_size); mirror::FieldDexCachePair copy(fixup_adapter.ForwardObject(orig.object), orig.index); if (orig.object != copy.object) { mirror::DexCache::SetNativePairPtrSize(new_fields, j, copy, pointer_size); } } } mirror::MethodTypeDexCacheType* method_types = dex_cache->GetResolvedMethodTypes(); if (method_types != nullptr) { mirror::MethodTypeDexCacheType* new_method_types = fixup_adapter.ForwardObject(method_types); if (method_types != new_method_types) { dex_cache->SetResolvedMethodTypes(new_method_types); } dex_cache->FixupResolvedMethodTypes<kWithoutReadBarrier>(new_method_types, fixup_adapter); } GcRoot<mirror::CallSite>* call_sites = dex_cache->GetResolvedCallSites(); if (call_sites != nullptr) { GcRoot<mirror::CallSite>* new_call_sites = fixup_adapter.ForwardObject(call_sites); if (call_sites != new_call_sites) { dex_cache->SetResolvedCallSites(new_call_sites); } dex_cache->FixupResolvedCallSites<kWithoutReadBarrier>(new_call_sites, fixup_adapter); } } } { // Only touches objects in the app image, no need for mutator lock. TimingLogger::ScopedTiming timing("Fixup methods", &logger); FixupArtMethodVisitor method_visitor(fixup_image, pointer_size, boot_image, boot_oat, app_image, app_oat); image_header.VisitPackedArtMethods(&method_visitor, target_base, pointer_size); } if (fixup_image) { { // Only touches objects in the app image, no need for mutator lock. TimingLogger::ScopedTiming timing("Fixup fields", &logger); FixupArtFieldVisitor field_visitor(boot_image, boot_oat, app_image, app_oat); image_header.VisitPackedArtFields(&field_visitor, target_base); } { TimingLogger::ScopedTiming timing("Fixup imt", &logger); image_header.VisitPackedImTables(fixup_adapter, target_base, pointer_size); } { TimingLogger::ScopedTiming timing("Fixup conflict tables", &logger); image_header.VisitPackedImtConflictTables(fixup_adapter, target_base, pointer_size); } // In the app image case, the image methods are actually in the boot image. image_header.RelocateImageMethods(boot_image.Delta()); const auto& class_table_section = image_header.GetClassTableSection(); if (class_table_section.Size() > 0u) { // Note that we require that ReadFromMemory does not make an internal copy of the elements. // This also relies on visit roots not doing any verification which could fail after we update // the roots to be the image addresses. ScopedObjectAccess soa(Thread::Current()); WriterMutexLock mu(Thread::Current(), *Locks::classlinker_classes_lock_); ClassTable temp_table; temp_table.ReadFromMemory(target_base + class_table_section.Offset()); FixupRootVisitor root_visitor(boot_image, boot_oat, app_image, app_oat); temp_table.VisitRoots(root_visitor); } } if (VLOG_IS_ON(image)) { logger.Dump(LOG_STREAM(INFO)); } return true; } static std::unique_ptr<OatFile> OpenOatFile(const ImageSpace& image, const char* image_path, std::string* error_msg) { const ImageHeader& image_header = image.GetImageHeader(); std::string oat_filename = ImageHeader::GetOatLocationFromImageLocation(image_path); CHECK(image_header.GetOatDataBegin() != nullptr); std::unique_ptr<OatFile> oat_file(OatFile::Open(/* zip_fd */ -1, oat_filename, oat_filename, image_header.GetOatDataBegin(), image_header.GetOatFileBegin(), !Runtime::Current()->IsAotCompiler(), /*low_4gb*/false, nullptr, error_msg)); if (oat_file == nullptr) { *error_msg = StringPrintf("Failed to open oat file '%s' referenced from image %s: %s", oat_filename.c_str(), image.GetName(), error_msg->c_str()); return nullptr; } uint32_t oat_checksum = oat_file->GetOatHeader().GetChecksum(); uint32_t image_oat_checksum = image_header.GetOatChecksum(); if (oat_checksum != image_oat_checksum) { *error_msg = StringPrintf("Failed to match oat file checksum 0x%x to expected oat checksum 0x%x" " in image %s", oat_checksum, image_oat_checksum, image.GetName()); return nullptr; } int32_t image_patch_delta = image_header.GetPatchDelta(); int32_t oat_patch_delta = oat_file->GetOatHeader().GetImagePatchDelta(); if (oat_patch_delta != image_patch_delta && !image_header.CompilePic()) { // We should have already relocated by this point. Bail out. *error_msg = StringPrintf("Failed to match oat file patch delta %d to expected patch delta %d " "in image %s", oat_patch_delta, image_patch_delta, image.GetName()); return nullptr; } return oat_file; } }; static constexpr uint64_t kLowSpaceValue = 50 * MB; static constexpr uint64_t kTmpFsSentinelValue = 384 * MB; // Read the free space of the cache partition and make a decision whether to keep the generated // image. This is to try to mitigate situations where the system might run out of space later. static bool CheckSpace(const std::string& cache_filename, std::string* error_msg) { // Using statvfs vs statvfs64 because of b/18207376, and it is enough for all practical purposes. struct statvfs buf; int res = TEMP_FAILURE_RETRY(statvfs(cache_filename.c_str(), &buf)); if (res != 0) { // Could not stat. Conservatively tell the system to delete the image. *error_msg = "Could not stat the filesystem, assuming low-memory situation."; return false; } uint64_t fs_overall_size = buf.f_bsize * static_cast<uint64_t>(buf.f_blocks); // Zygote is privileged, but other things are not. Use bavail. uint64_t fs_free_size = buf.f_bsize * static_cast<uint64_t>(buf.f_bavail); // Take the overall size as an indicator for a tmpfs, which is being used for the decryption // environment. We do not want to fail quickening the boot image there, as it is beneficial // for time-to-UI. if (fs_overall_size > kTmpFsSentinelValue) { if (fs_free_size < kLowSpaceValue) { *error_msg = StringPrintf("Low-memory situation: only %4.2f megabytes available, need at " "least %" PRIu64 ".", static_cast<double>(fs_free_size) / MB, kLowSpaceValue / MB); return false; } } return true; } std::unique_ptr<ImageSpace> ImageSpace::CreateBootImage(const char* image_location, const InstructionSet image_isa, bool secondary_image, std::string* error_msg) { ScopedTrace trace(__FUNCTION__); // Step 0: Extra zygote work. // Step 0.a: If we're the zygote, mark boot. const bool is_zygote = Runtime::Current()->IsZygote(); if (is_zygote && !secondary_image && CanWriteToDalvikCache(image_isa)) { MarkZygoteStart(image_isa, Runtime::Current()->GetZygoteMaxFailedBoots()); } // Step 0.b: If we're the zygote, check for free space, and prune the cache preemptively, // if necessary. While the runtime may be fine (it is pretty tolerant to // out-of-disk-space situations), other parts of the platform are not. // // The advantage of doing this proactively is that the later steps are simplified, // i.e., we do not need to code retries. std::string system_filename; bool has_system = false; std::string cache_filename; bool has_cache = false; bool dalvik_cache_exists = false; bool is_global_cache = true; std::string dalvik_cache; bool found_image = FindImageFilenameImpl(image_location, image_isa, &has_system, &system_filename, &dalvik_cache_exists, &dalvik_cache, &is_global_cache, &has_cache, &cache_filename); bool dex2oat_enabled = Runtime::Current()->IsImageDex2OatEnabled(); if (is_zygote && dalvik_cache_exists && !secondary_image) { // Extra checks for the zygote. These only apply when loading the first image, explained below. DCHECK(!dalvik_cache.empty()); std::string local_error_msg; // All secondary images are verified when the primary image is verified. bool verified = VerifyImage(image_location, dalvik_cache.c_str(), image_isa, &local_error_msg); // If we prune for space at a secondary image, we may end up in a crash loop with the _exit // path. bool check_space = CheckSpace(dalvik_cache, &local_error_msg); if (!verified || !check_space) { // Note: it is important to only prune for space on the primary image, or we will hit the // restart path. LOG(WARNING) << local_error_msg << " Preemptively pruning the dalvik cache."; PruneDalvikCache(image_isa); // Re-evaluate the image. found_image = FindImageFilenameImpl(image_location, image_isa, &has_system, &system_filename, &dalvik_cache_exists, &dalvik_cache, &is_global_cache, &has_cache, &cache_filename); } if (!check_space) { // Disable compilation/patching - we do not want to fill up the space again. dex2oat_enabled = false; } } // Collect all the errors. std::vector<std::string> error_msgs; // Step 1: Check if we have an existing and relocated image. // Step 1.a: Have files in system and cache. Then they need to match. if (found_image && has_system && has_cache) { std::string local_error_msg; // Check that the files are matching. if (ChecksumsMatch(system_filename.c_str(), cache_filename.c_str(), &local_error_msg)) { std::unique_ptr<ImageSpace> relocated_space = ImageSpaceLoader::Load(image_location, cache_filename, is_zygote, is_global_cache, /* validate_oat_file */ false, &local_error_msg); if (relocated_space != nullptr) { return relocated_space; } } error_msgs.push_back(local_error_msg); } // Step 1.b: Only have a cache file. if (found_image && !has_system && has_cache) { std::string local_error_msg; std::unique_ptr<ImageSpace> cache_space = ImageSpaceLoader::Load(image_location, cache_filename, is_zygote, is_global_cache, /* validate_oat_file */ true, &local_error_msg); if (cache_space != nullptr) { return cache_space; } error_msgs.push_back(local_error_msg); } // Step 2: We have an existing image in /system. // Step 2.a: We are not required to relocate it. Then we can use it directly. bool relocate = Runtime::Current()->ShouldRelocate(); if (found_image && has_system && !relocate) { std::string local_error_msg; std::unique_ptr<ImageSpace> system_space = ImageSpaceLoader::Load(image_location, system_filename, is_zygote, is_global_cache, /* validate_oat_file */ false, &local_error_msg); if (system_space != nullptr) { return system_space; } error_msgs.push_back(local_error_msg); } // Step 2.b: We require a relocated image. Then we must patch it. This step fails if this is a // secondary image. if (found_image && has_system && relocate) { std::string local_error_msg; if (!dex2oat_enabled) { local_error_msg = "Patching disabled."; } else if (secondary_image) { // We really want a working image. Prune and restart. PruneDalvikCache(image_isa); _exit(1); } else if (ImageCreationAllowed(is_global_cache, image_isa, &local_error_msg)) { bool patch_success = RelocateImage(image_location, dalvik_cache.c_str(), image_isa, &local_error_msg); if (patch_success) { std::unique_ptr<ImageSpace> patched_space = ImageSpaceLoader::Load(image_location, cache_filename, is_zygote, is_global_cache, /* validate_oat_file */ false, &local_error_msg); if (patched_space != nullptr) { return patched_space; } } } error_msgs.push_back(StringPrintf("Cannot relocate image %s to %s: %s", image_location, cache_filename.c_str(), local_error_msg.c_str())); } // Step 3: We do not have an existing image in /system, so generate an image into the dalvik // cache. This step fails if this is a secondary image. if (!has_system) { std::string local_error_msg; if (!dex2oat_enabled) { local_error_msg = "Image compilation disabled."; } else if (secondary_image) { local_error_msg = "Cannot compile a secondary image."; } else if (ImageCreationAllowed(is_global_cache, image_isa, &local_error_msg)) { bool compilation_success = GenerateImage(cache_filename, image_isa, &local_error_msg); if (compilation_success) { std::unique_ptr<ImageSpace> compiled_space = ImageSpaceLoader::Load(image_location, cache_filename, is_zygote, is_global_cache, /* validate_oat_file */ false, &local_error_msg); if (compiled_space != nullptr) { return compiled_space; } } } error_msgs.push_back(StringPrintf("Cannot compile image to %s: %s", cache_filename.c_str(), local_error_msg.c_str())); } // We failed. Prune the cache the free up space, create a compound error message and return no // image. PruneDalvikCache(image_isa); std::ostringstream oss; bool first = true; for (const auto& msg : error_msgs) { if (!first) { oss << "\n "; } oss << msg; } *error_msg = oss.str(); return nullptr; } bool ImageSpace::LoadBootImage(const std::string& image_file_name, const InstructionSet image_instruction_set, std::vector<space::ImageSpace*>* boot_image_spaces, uint8_t** oat_file_end) { DCHECK(boot_image_spaces != nullptr); DCHECK(boot_image_spaces->empty()); DCHECK(oat_file_end != nullptr); DCHECK_NE(image_instruction_set, InstructionSet::kNone); if (image_file_name.empty()) { return false; } // For code reuse, handle this like a work queue. std::vector<std::string> image_file_names; image_file_names.push_back(image_file_name); bool error = false; uint8_t* oat_file_end_tmp = *oat_file_end; for (size_t index = 0; index < image_file_names.size(); ++index) { std::string& image_name = image_file_names[index]; std::string error_msg; std::unique_ptr<space::ImageSpace> boot_image_space_uptr = CreateBootImage( image_name.c_str(), image_instruction_set, index > 0, &error_msg); if (boot_image_space_uptr != nullptr) { space::ImageSpace* boot_image_space = boot_image_space_uptr.release(); boot_image_spaces->push_back(boot_image_space); // Oat files referenced by image files immediately follow them in memory, ensure alloc space // isn't going to get in the middle uint8_t* oat_file_end_addr = boot_image_space->GetImageHeader().GetOatFileEnd(); CHECK_GT(oat_file_end_addr, boot_image_space->End()); oat_file_end_tmp = AlignUp(oat_file_end_addr, kPageSize); if (index == 0) { // If this was the first space, check whether there are more images to load. const OatFile* boot_oat_file = boot_image_space->GetOatFile(); if (boot_oat_file == nullptr) { continue; } const OatHeader& boot_oat_header = boot_oat_file->GetOatHeader(); const char* boot_classpath = boot_oat_header.GetStoreValueByKey(OatHeader::kBootClassPathKey); if (boot_classpath == nullptr) { continue; } ExtractMultiImageLocations(image_file_name, boot_classpath, &image_file_names); } } else { error = true; LOG(ERROR) << "Could not create image space with image file '" << image_file_name << "'. " << "Attempting to fall back to imageless running. Error was: " << error_msg << "\nAttempted image: " << image_name; break; } } if (error) { // Remove already loaded spaces. for (space::Space* loaded_space : *boot_image_spaces) { delete loaded_space; } boot_image_spaces->clear(); return false; } *oat_file_end = oat_file_end_tmp; return true; } ImageSpace::~ImageSpace() { Runtime* runtime = Runtime::Current(); if (runtime == nullptr) { return; } if (GetImageHeader().IsAppImage()) { // This image space did not modify resolution method then in Init. return; } if (!runtime->HasResolutionMethod()) { // Another image space has already unloaded the below methods. return; } runtime->ClearInstructionSet(); runtime->ClearResolutionMethod(); runtime->ClearImtConflictMethod(); runtime->ClearImtUnimplementedMethod(); runtime->ClearCalleeSaveMethods(); } std::unique_ptr<ImageSpace> ImageSpace::CreateFromAppImage(const char* image, const OatFile* oat_file, std::string* error_msg) { return ImageSpaceLoader::Init(image, image, /*validate_oat_file*/false, oat_file, /*out*/error_msg); } const OatFile* ImageSpace::GetOatFile() const { return oat_file_non_owned_; } std::unique_ptr<const OatFile> ImageSpace::ReleaseOatFile() { CHECK(oat_file_ != nullptr); return std::move(oat_file_); } void ImageSpace::Dump(std::ostream& os) const { os << GetType() << " begin=" << reinterpret_cast<void*>(Begin()) << ",end=" << reinterpret_cast<void*>(End()) << ",size=" << PrettySize(Size()) << ",name=\"" << GetName() << "\"]"; } std::string ImageSpace::GetMultiImageBootClassPath( const std::vector<const char*>& dex_locations, const std::vector<const char*>& oat_filenames, const std::vector<const char*>& image_filenames) { DCHECK_GT(oat_filenames.size(), 1u); // If the image filename was adapted (e.g., for our tests), we need to change this here, // too, but need to strip all path components (they will be re-established when loading). std::ostringstream bootcp_oss; bool first_bootcp = true; for (size_t i = 0; i < dex_locations.size(); ++i) { if (!first_bootcp) { bootcp_oss << ":"; } std::string dex_loc = dex_locations[i]; std::string image_filename = image_filenames[i]; // Use the dex_loc path, but the image_filename name (without path elements). size_t dex_last_slash = dex_loc.rfind('/'); // npos is max(size_t). That makes this a bit ugly. size_t image_last_slash = image_filename.rfind('/'); size_t image_last_at = image_filename.rfind('@'); size_t image_last_sep = (image_last_slash == std::string::npos) ? image_last_at : (image_last_at == std::string::npos) ? std::string::npos : std::max(image_last_slash, image_last_at); // Note: whenever image_last_sep == npos, +1 overflow means using the full string. if (dex_last_slash == std::string::npos) { dex_loc = image_filename.substr(image_last_sep + 1); } else { dex_loc = dex_loc.substr(0, dex_last_slash + 1) + image_filename.substr(image_last_sep + 1); } // Image filenames already end with .art, no need to replace. bootcp_oss << dex_loc; first_bootcp = false; } return bootcp_oss.str(); } bool ImageSpace::ValidateOatFile(const OatFile& oat_file, std::string* error_msg) { const ArtDexFileLoader dex_file_loader; for (const OatFile::OatDexFile* oat_dex_file : oat_file.GetOatDexFiles()) { const std::string& dex_file_location = oat_dex_file->GetDexFileLocation(); // Skip multidex locations - These will be checked when we visit their // corresponding primary non-multidex location. if (DexFileLoader::IsMultiDexLocation(dex_file_location.c_str())) { continue; } std::vector<uint32_t> checksums; if (!dex_file_loader.GetMultiDexChecksums(dex_file_location.c_str(), &checksums, error_msg)) { *error_msg = StringPrintf("ValidateOatFile failed to get checksums of dex file '%s' " "referenced by oat file %s: %s", dex_file_location.c_str(), oat_file.GetLocation().c_str(), error_msg->c_str()); return false; } CHECK(!checksums.empty()); if (checksums[0] != oat_dex_file->GetDexFileLocationChecksum()) { *error_msg = StringPrintf("ValidateOatFile found checksum mismatch between oat file " "'%s' and dex file '%s' (0x%x != 0x%x)", oat_file.GetLocation().c_str(), dex_file_location.c_str(), oat_dex_file->GetDexFileLocationChecksum(), checksums[0]); return false; } // Verify checksums for any related multidex entries. for (size_t i = 1; i < checksums.size(); i++) { std::string multi_dex_location = DexFileLoader::GetMultiDexLocation( i, dex_file_location.c_str()); const OatFile::OatDexFile* multi_dex = oat_file.GetOatDexFile(multi_dex_location.c_str(), nullptr, error_msg); if (multi_dex == nullptr) { *error_msg = StringPrintf("ValidateOatFile oat file '%s' is missing entry '%s'", oat_file.GetLocation().c_str(), multi_dex_location.c_str()); return false; } if (checksums[i] != multi_dex->GetDexFileLocationChecksum()) { *error_msg = StringPrintf("ValidateOatFile found checksum mismatch between oat file " "'%s' and dex file '%s' (0x%x != 0x%x)", oat_file.GetLocation().c_str(), multi_dex_location.c_str(), multi_dex->GetDexFileLocationChecksum(), checksums[i]); return false; } } } return true; } void ImageSpace::ExtractMultiImageLocations(const std::string& input_image_file_name, const std::string& boot_classpath, std::vector<std::string>* image_file_names) { DCHECK(image_file_names != nullptr); std::vector<std::string> images; Split(boot_classpath, ':', &images); // Add the rest into the list. We have to adjust locations, possibly: // // For example, image_file_name is /a/b/c/d/e.art // images[0] is f/c/d/e.art // ---------------------------------------------- // images[1] is g/h/i/j.art -> /a/b/h/i/j.art const std::string& first_image = images[0]; // Length of common suffix. size_t common = 0; while (common < input_image_file_name.size() && common < first_image.size() && *(input_image_file_name.end() - common - 1) == *(first_image.end() - common - 1)) { ++common; } // We want to replace the prefix of the input image with the prefix of the boot class path. // This handles the case where the image file contains @ separators. // Example image_file_name is oats/system@framework@boot.art // images[0] is .../arm/boot.art // means that the image name prefix will be oats/system@framework@ // so that the other images are openable. const size_t old_prefix_length = first_image.size() - common; const std::string new_prefix = input_image_file_name.substr( 0, input_image_file_name.size() - common); // Apply pattern to images[1] .. images[n]. for (size_t i = 1; i < images.size(); ++i) { const std::string& image = images[i]; CHECK_GT(image.length(), old_prefix_length); std::string suffix = image.substr(old_prefix_length); image_file_names->push_back(new_prefix + suffix); } } void ImageSpace::DumpSections(std::ostream& os) const { const uint8_t* base = Begin(); const ImageHeader& header = GetImageHeader(); for (size_t i = 0; i < ImageHeader::kSectionCount; ++i) { auto section_type = static_cast<ImageHeader::ImageSections>(i); const ImageSection& section = header.GetImageSection(section_type); os << section_type << " " << reinterpret_cast<const void*>(base + section.Offset()) << "-" << reinterpret_cast<const void*>(base + section.End()) << "\n"; } } } // namespace space } // namespace gc } // namespace art