/* * Copyright (C) 2014 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef ART_RUNTIME_GC_SPACE_REGION_SPACE_H_ #define ART_RUNTIME_GC_SPACE_REGION_SPACE_H_ #include "base/macros.h" #include "base/mutex.h" #include "space.h" #include "thread.h" namespace art { namespace gc { namespace accounting { class ReadBarrierTable; } // namespace accounting namespace space { // A space that consists of equal-sized regions. class RegionSpace FINAL : public ContinuousMemMapAllocSpace { public: typedef void(*WalkCallback)(void *start, void *end, size_t num_bytes, void* callback_arg); SpaceType GetType() const OVERRIDE { return kSpaceTypeRegionSpace; } // Create a region space mem map with the requested sizes. The requested base address is not // guaranteed to be granted, if it is required, the caller should call Begin on the returned // space to confirm the request was granted. static MemMap* CreateMemMap(const std::string& name, size_t capacity, uint8_t* requested_begin); static RegionSpace* Create(const std::string& name, MemMap* mem_map); // Allocate `num_bytes`, returns null if the space is full. mirror::Object* Alloc(Thread* self, size_t num_bytes, /* out */ size_t* bytes_allocated, /* out */ size_t* usable_size, /* out */ size_t* bytes_tl_bulk_allocated) OVERRIDE REQUIRES(!region_lock_); // Thread-unsafe allocation for when mutators are suspended, used by the semispace collector. mirror::Object* AllocThreadUnsafe(Thread* self, size_t num_bytes, /* out */ size_t* bytes_allocated, /* out */ size_t* usable_size, /* out */ size_t* bytes_tl_bulk_allocated) OVERRIDE REQUIRES(Locks::mutator_lock_) REQUIRES(!region_lock_); // The main allocation routine. template<bool kForEvac> ALWAYS_INLINE mirror::Object* AllocNonvirtual(size_t num_bytes, /* out */ size_t* bytes_allocated, /* out */ size_t* usable_size, /* out */ size_t* bytes_tl_bulk_allocated) REQUIRES(!region_lock_); // Allocate/free large objects (objects that are larger than the region size). template<bool kForEvac> mirror::Object* AllocLarge(size_t num_bytes, /* out */ size_t* bytes_allocated, /* out */ size_t* usable_size, /* out */ size_t* bytes_tl_bulk_allocated) REQUIRES(!region_lock_); template<bool kForEvac> void FreeLarge(mirror::Object* large_obj, size_t bytes_allocated) REQUIRES(!region_lock_); // Return the storage space required by obj. size_t AllocationSize(mirror::Object* obj, size_t* usable_size) OVERRIDE REQUIRES_SHARED(Locks::mutator_lock_) REQUIRES(!region_lock_) { return AllocationSizeNonvirtual(obj, usable_size); } size_t AllocationSizeNonvirtual(mirror::Object* obj, size_t* usable_size) REQUIRES_SHARED(Locks::mutator_lock_) REQUIRES(!region_lock_); size_t Free(Thread*, mirror::Object*) OVERRIDE { UNIMPLEMENTED(FATAL); return 0; } size_t FreeList(Thread*, size_t, mirror::Object**) OVERRIDE { UNIMPLEMENTED(FATAL); return 0; } accounting::ContinuousSpaceBitmap* GetLiveBitmap() const OVERRIDE { return mark_bitmap_.get(); } accounting::ContinuousSpaceBitmap* GetMarkBitmap() const OVERRIDE { return mark_bitmap_.get(); } void Clear() OVERRIDE REQUIRES(!region_lock_); // Change the non growth limit capacity to new capacity by shrinking or expanding the map. // Currently, only shrinking is supported. // Unlike implementations of this function in other spaces, we need to pass // new capacity as argument here as region space doesn't have any notion of // growth limit. void ClampGrowthLimit(size_t new_capacity) REQUIRES(!region_lock_); void Dump(std::ostream& os) const; void DumpRegions(std::ostream& os) REQUIRES(!region_lock_); // Dump region containing object `obj`. Precondition: `obj` is in the region space. void DumpRegionForObject(std::ostream& os, mirror::Object* obj) REQUIRES(!region_lock_); void DumpNonFreeRegions(std::ostream& os) REQUIRES(!region_lock_); size_t RevokeThreadLocalBuffers(Thread* thread) REQUIRES(!region_lock_); void RevokeThreadLocalBuffersLocked(Thread* thread) REQUIRES(region_lock_); size_t RevokeAllThreadLocalBuffers() REQUIRES(!Locks::runtime_shutdown_lock_, !Locks::thread_list_lock_, !region_lock_); void AssertThreadLocalBuffersAreRevoked(Thread* thread) REQUIRES(!region_lock_); void AssertAllThreadLocalBuffersAreRevoked() REQUIRES(!Locks::runtime_shutdown_lock_, !Locks::thread_list_lock_, !region_lock_); enum class RegionType : uint8_t { kRegionTypeAll, // All types. kRegionTypeFromSpace, // From-space. To be evacuated. kRegionTypeUnevacFromSpace, // Unevacuated from-space. Not to be evacuated. kRegionTypeToSpace, // To-space. kRegionTypeNone, // None. }; enum class RegionState : uint8_t { kRegionStateFree, // Free region. kRegionStateAllocated, // Allocated region. kRegionStateLarge, // Large allocated (allocation larger than the region size). kRegionStateLargeTail, // Large tail (non-first regions of a large allocation). }; template<RegionType kRegionType> uint64_t GetBytesAllocatedInternal() REQUIRES(!region_lock_); template<RegionType kRegionType> uint64_t GetObjectsAllocatedInternal() REQUIRES(!region_lock_); uint64_t GetBytesAllocated() REQUIRES(!region_lock_) { return GetBytesAllocatedInternal<RegionType::kRegionTypeAll>(); } uint64_t GetObjectsAllocated() REQUIRES(!region_lock_) { return GetObjectsAllocatedInternal<RegionType::kRegionTypeAll>(); } uint64_t GetBytesAllocatedInFromSpace() REQUIRES(!region_lock_) { return GetBytesAllocatedInternal<RegionType::kRegionTypeFromSpace>(); } uint64_t GetObjectsAllocatedInFromSpace() REQUIRES(!region_lock_) { return GetObjectsAllocatedInternal<RegionType::kRegionTypeFromSpace>(); } uint64_t GetBytesAllocatedInUnevacFromSpace() REQUIRES(!region_lock_) { return GetBytesAllocatedInternal<RegionType::kRegionTypeUnevacFromSpace>(); } uint64_t GetObjectsAllocatedInUnevacFromSpace() REQUIRES(!region_lock_) { return GetObjectsAllocatedInternal<RegionType::kRegionTypeUnevacFromSpace>(); } size_t GetMaxPeakNumNonFreeRegions() const { return max_peak_num_non_free_regions_; } size_t GetNumRegions() const { return num_regions_; } bool CanMoveObjects() const OVERRIDE { return true; } bool Contains(const mirror::Object* obj) const { const uint8_t* byte_obj = reinterpret_cast<const uint8_t*>(obj); return byte_obj >= Begin() && byte_obj < Limit(); } RegionSpace* AsRegionSpace() OVERRIDE { return this; } // Go through all of the blocks and visit the continuous objects. template <typename Visitor> ALWAYS_INLINE void Walk(Visitor&& visitor) REQUIRES(Locks::mutator_lock_) { WalkInternal<false /* kToSpaceOnly */>(visitor); } template <typename Visitor> ALWAYS_INLINE void WalkToSpace(Visitor&& visitor) REQUIRES(Locks::mutator_lock_) { WalkInternal<true /* kToSpaceOnly */>(visitor); } accounting::ContinuousSpaceBitmap::SweepCallback* GetSweepCallback() OVERRIDE { return nullptr; } void LogFragmentationAllocFailure(std::ostream& os, size_t failed_alloc_bytes) OVERRIDE REQUIRES_SHARED(Locks::mutator_lock_) REQUIRES(!region_lock_); // Object alignment within the space. static constexpr size_t kAlignment = kObjectAlignment; // The region size. static constexpr size_t kRegionSize = 256 * KB; bool IsInFromSpace(mirror::Object* ref) { if (HasAddress(ref)) { Region* r = RefToRegionUnlocked(ref); return r->IsInFromSpace(); } return false; } bool IsInNewlyAllocatedRegion(mirror::Object* ref) { if (HasAddress(ref)) { Region* r = RefToRegionUnlocked(ref); return r->IsNewlyAllocated(); } return false; } bool IsInUnevacFromSpace(mirror::Object* ref) { if (HasAddress(ref)) { Region* r = RefToRegionUnlocked(ref); return r->IsInUnevacFromSpace(); } return false; } bool IsInToSpace(mirror::Object* ref) { if (HasAddress(ref)) { Region* r = RefToRegionUnlocked(ref); return r->IsInToSpace(); } return false; } // If `ref` is in the region space, return the type of its region; // otherwise, return `RegionType::kRegionTypeNone`. RegionType GetRegionType(mirror::Object* ref) { if (HasAddress(ref)) { return GetRegionTypeUnsafe(ref); } return RegionType::kRegionTypeNone; } // Unsafe version of RegionSpace::GetRegionType. // Precondition: `ref` is in the region space. RegionType GetRegionTypeUnsafe(mirror::Object* ref) { DCHECK(HasAddress(ref)) << ref; Region* r = RefToRegionUnlocked(ref); return r->Type(); } // Determine which regions to evacuate and tag them as // from-space. Tag the rest as unevacuated from-space. void SetFromSpace(accounting::ReadBarrierTable* rb_table, bool force_evacuate_all) REQUIRES(!region_lock_); size_t FromSpaceSize() REQUIRES(!region_lock_); size_t UnevacFromSpaceSize() REQUIRES(!region_lock_); size_t ToSpaceSize() REQUIRES(!region_lock_); void ClearFromSpace(/* out */ uint64_t* cleared_bytes, /* out */ uint64_t* cleared_objects) REQUIRES(!region_lock_); void AddLiveBytes(mirror::Object* ref, size_t alloc_size) { Region* reg = RefToRegionUnlocked(ref); reg->AddLiveBytes(alloc_size); } void AssertAllRegionLiveBytesZeroOrCleared() REQUIRES(!region_lock_) { if (kIsDebugBuild) { MutexLock mu(Thread::Current(), region_lock_); for (size_t i = 0; i < num_regions_; ++i) { Region* r = ®ions_[i]; size_t live_bytes = r->LiveBytes(); CHECK(live_bytes == 0U || live_bytes == static_cast<size_t>(-1)) << live_bytes; } } } void RecordAlloc(mirror::Object* ref) REQUIRES(!region_lock_); bool AllocNewTlab(Thread* self, size_t min_bytes) REQUIRES(!region_lock_); uint32_t Time() { return time_; } private: RegionSpace(const std::string& name, MemMap* mem_map); template<bool kToSpaceOnly, typename Visitor> ALWAYS_INLINE void WalkInternal(Visitor&& visitor) NO_THREAD_SAFETY_ANALYSIS; class Region { public: Region() : idx_(static_cast<size_t>(-1)), begin_(nullptr), top_(nullptr), end_(nullptr), state_(RegionState::kRegionStateAllocated), type_(RegionType::kRegionTypeToSpace), objects_allocated_(0), alloc_time_(0), live_bytes_(static_cast<size_t>(-1)), is_newly_allocated_(false), is_a_tlab_(false), thread_(nullptr) {} void Init(size_t idx, uint8_t* begin, uint8_t* end) { idx_ = idx; begin_ = begin; top_.StoreRelaxed(begin); end_ = end; state_ = RegionState::kRegionStateFree; type_ = RegionType::kRegionTypeNone; objects_allocated_.StoreRelaxed(0); alloc_time_ = 0; live_bytes_ = static_cast<size_t>(-1); is_newly_allocated_ = false; is_a_tlab_ = false; thread_ = nullptr; DCHECK_LT(begin, end); DCHECK_EQ(static_cast<size_t>(end - begin), kRegionSize); } RegionState State() const { return state_; } RegionType Type() const { return type_; } void Clear(bool zero_and_release_pages); ALWAYS_INLINE mirror::Object* Alloc(size_t num_bytes, /* out */ size_t* bytes_allocated, /* out */ size_t* usable_size, /* out */ size_t* bytes_tl_bulk_allocated); bool IsFree() const { bool is_free = (state_ == RegionState::kRegionStateFree); if (is_free) { DCHECK(IsInNoSpace()); DCHECK_EQ(begin_, Top()); DCHECK_EQ(objects_allocated_.LoadRelaxed(), 0U); } return is_free; } // Given a free region, declare it non-free (allocated). void Unfree(RegionSpace* region_space, uint32_t alloc_time) REQUIRES(region_space->region_lock_); // Given a free region, declare it non-free (allocated) and large. void UnfreeLarge(RegionSpace* region_space, uint32_t alloc_time) REQUIRES(region_space->region_lock_); // Given a free region, declare it non-free (allocated) and large tail. void UnfreeLargeTail(RegionSpace* region_space, uint32_t alloc_time) REQUIRES(region_space->region_lock_); void MarkAsAllocated(RegionSpace* region_space, uint32_t alloc_time) REQUIRES(region_space->region_lock_); void SetNewlyAllocated() { is_newly_allocated_ = true; } // Non-large, non-large-tail allocated. bool IsAllocated() const { return state_ == RegionState::kRegionStateAllocated; } // Large allocated. bool IsLarge() const { bool is_large = (state_ == RegionState::kRegionStateLarge); if (is_large) { DCHECK_LT(begin_ + kRegionSize, Top()); } return is_large; } // Large-tail allocated. bool IsLargeTail() const { bool is_large_tail = (state_ == RegionState::kRegionStateLargeTail); if (is_large_tail) { DCHECK_EQ(begin_, Top()); } return is_large_tail; } size_t Idx() const { return idx_; } bool IsNewlyAllocated() const { return is_newly_allocated_; } bool IsInFromSpace() const { return type_ == RegionType::kRegionTypeFromSpace; } bool IsInToSpace() const { return type_ == RegionType::kRegionTypeToSpace; } bool IsInUnevacFromSpace() const { return type_ == RegionType::kRegionTypeUnevacFromSpace; } bool IsInNoSpace() const { return type_ == RegionType::kRegionTypeNone; } // Set this region as evacuated from-space. At the end of the // collection, RegionSpace::ClearFromSpace will clear and reclaim // the space used by this region, and tag it as unallocated/free. void SetAsFromSpace() { DCHECK(!IsFree() && IsInToSpace()); type_ = RegionType::kRegionTypeFromSpace; live_bytes_ = static_cast<size_t>(-1); } // Set this region as unevacuated from-space. At the end of the // collection, RegionSpace::ClearFromSpace will preserve the space // used by this region, and tag it as to-space (see // Region::SetUnevacFromSpaceAsToSpace below). void SetAsUnevacFromSpace() { DCHECK(!IsFree() && IsInToSpace()); type_ = RegionType::kRegionTypeUnevacFromSpace; live_bytes_ = 0U; } // Set this region as to-space. Used by RegionSpace::ClearFromSpace. // This is only valid if it is currently an unevac from-space region. void SetUnevacFromSpaceAsToSpace() { DCHECK(!IsFree() && IsInUnevacFromSpace()); type_ = RegionType::kRegionTypeToSpace; } // Return whether this region should be evacuated. Used by RegionSpace::SetFromSpace. ALWAYS_INLINE bool ShouldBeEvacuated(); void AddLiveBytes(size_t live_bytes) { DCHECK(IsInUnevacFromSpace()); DCHECK(!IsLargeTail()); DCHECK_NE(live_bytes_, static_cast<size_t>(-1)); // For large allocations, we always consider all bytes in the // regions live. live_bytes_ += IsLarge() ? Top() - begin_ : live_bytes; DCHECK_LE(live_bytes_, BytesAllocated()); } bool AllAllocatedBytesAreLive() const { return LiveBytes() == static_cast<size_t>(Top() - Begin()); } size_t LiveBytes() const { return live_bytes_; } size_t BytesAllocated() const; size_t ObjectsAllocated() const; uint8_t* Begin() const { return begin_; } ALWAYS_INLINE uint8_t* Top() const { return top_.LoadRelaxed(); } void SetTop(uint8_t* new_top) { top_.StoreRelaxed(new_top); } uint8_t* End() const { return end_; } bool Contains(mirror::Object* ref) const { return begin_ <= reinterpret_cast<uint8_t*>(ref) && reinterpret_cast<uint8_t*>(ref) < end_; } void Dump(std::ostream& os) const; void RecordThreadLocalAllocations(size_t num_objects, size_t num_bytes) { DCHECK(IsAllocated()); DCHECK_EQ(objects_allocated_.LoadRelaxed(), 0U); DCHECK_EQ(Top(), end_); objects_allocated_.StoreRelaxed(num_objects); top_.StoreRelaxed(begin_ + num_bytes); DCHECK_LE(Top(), end_); } private: size_t idx_; // The region's index in the region space. uint8_t* begin_; // The begin address of the region. // Note that `top_` can be higher than `end_` in the case of a // large region, where an allocated object spans multiple regions // (large region + one or more large tail regions). Atomic<uint8_t*> top_; // The current position of the allocation. uint8_t* end_; // The end address of the region. RegionState state_; // The region state (see RegionState). RegionType type_; // The region type (see RegionType). Atomic<size_t> objects_allocated_; // The number of objects allocated. uint32_t alloc_time_; // The allocation time of the region. // Note that newly allocated and evacuated regions use -1 as // special value for `live_bytes_`. size_t live_bytes_; // The live bytes. Used to compute the live percent. bool is_newly_allocated_; // True if it's allocated after the last collection. bool is_a_tlab_; // True if it's a tlab. Thread* thread_; // The owning thread if it's a tlab. friend class RegionSpace; }; Region* RefToRegion(mirror::Object* ref) REQUIRES(!region_lock_) { MutexLock mu(Thread::Current(), region_lock_); return RefToRegionLocked(ref); } Region* RefToRegionUnlocked(mirror::Object* ref) NO_THREAD_SAFETY_ANALYSIS { // For a performance reason (this is frequently called via // RegionSpace::IsInFromSpace, etc.) we avoid taking a lock here. // Note that since we only change a region from to-space to (evac) // from-space during a pause (in RegionSpace::SetFromSpace) and // from (evac) from-space to free (after GC is done), as long as // `ref` is a valid reference into an allocated region, it's safe // to access the region state without the lock. return RefToRegionLocked(ref); } Region* RefToRegionLocked(mirror::Object* ref) REQUIRES(region_lock_) { DCHECK(HasAddress(ref)); uintptr_t offset = reinterpret_cast<uintptr_t>(ref) - reinterpret_cast<uintptr_t>(Begin()); size_t reg_idx = offset / kRegionSize; DCHECK_LT(reg_idx, num_regions_); Region* reg = ®ions_[reg_idx]; DCHECK_EQ(reg->Idx(), reg_idx); DCHECK(reg->Contains(ref)); return reg; } // Return the object location following `obj` in the region space // (i.e., the object location at `obj + obj->SizeOf()`). // // Note that unless // - the region containing `obj` is fully used; and // - `obj` is not the last object of that region; // the returned location is not guaranteed to be a valid object. mirror::Object* GetNextObject(mirror::Object* obj) REQUIRES_SHARED(Locks::mutator_lock_); void AdjustNonFreeRegionLimit(size_t new_non_free_region_index) REQUIRES(region_lock_) { DCHECK_LT(new_non_free_region_index, num_regions_); non_free_region_index_limit_ = std::max(non_free_region_index_limit_, new_non_free_region_index + 1); VerifyNonFreeRegionLimit(); } void SetNonFreeRegionLimit(size_t new_non_free_region_index_limit) REQUIRES(region_lock_) { DCHECK_LE(new_non_free_region_index_limit, num_regions_); non_free_region_index_limit_ = new_non_free_region_index_limit; VerifyNonFreeRegionLimit(); } // Implementation of this invariant: // for all `i >= non_free_region_index_limit_`, `regions_[i].IsFree()` is true. void VerifyNonFreeRegionLimit() REQUIRES(region_lock_) { if (kIsDebugBuild && non_free_region_index_limit_ < num_regions_) { for (size_t i = non_free_region_index_limit_; i < num_regions_; ++i) { CHECK(regions_[i].IsFree()); } } } Region* AllocateRegion(bool for_evac) REQUIRES(region_lock_); Mutex region_lock_ DEFAULT_MUTEX_ACQUIRED_AFTER; uint32_t time_; // The time as the number of collections since the startup. size_t num_regions_; // The number of regions in this space. // The number of non-free regions in this space. size_t num_non_free_regions_ GUARDED_BY(region_lock_); // The number of evac regions allocated during collection. 0 when GC not running. size_t num_evac_regions_ GUARDED_BY(region_lock_); // Maintain the maximum of number of non-free regions collected just before // reclaim in each GC cycle. At this moment in cycle, highest number of // regions are in non-free. size_t max_peak_num_non_free_regions_; // The pointer to the region array. std::unique_ptr<Region[]> regions_ GUARDED_BY(region_lock_); // The upper-bound index of the non-free regions. Used to avoid scanning all regions in // RegionSpace::SetFromSpace and RegionSpace::ClearFromSpace. // // Invariant (verified by RegionSpace::VerifyNonFreeRegionLimit): // for all `i >= non_free_region_index_limit_`, `regions_[i].IsFree()` is true. size_t non_free_region_index_limit_ GUARDED_BY(region_lock_); Region* current_region_; // The region currently used for allocation. Region* evac_region_; // The region currently used for evacuation. Region full_region_; // The dummy/sentinel region that looks full. // Mark bitmap used by the GC. std::unique_ptr<accounting::ContinuousSpaceBitmap> mark_bitmap_; DISALLOW_COPY_AND_ASSIGN(RegionSpace); }; std::ostream& operator<<(std::ostream& os, const RegionSpace::RegionState& value); std::ostream& operator<<(std::ostream& os, const RegionSpace::RegionType& value); } // namespace space } // namespace gc } // namespace art #endif // ART_RUNTIME_GC_SPACE_REGION_SPACE_H_