/* * Copyright (C) 2011 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef ART_RUNTIME_MIRROR_ARRAY_INL_H_ #define ART_RUNTIME_MIRROR_ARRAY_INL_H_ #include "array.h" #include <android-base/logging.h> #include <android-base/stringprintf.h> #include "base/bit_utils.h" #include "base/casts.h" #include "class.h" #include "gc/heap-inl.h" #include "obj_ptr-inl.h" #include "thread-current-inl.h" namespace art { namespace mirror { inline uint32_t Array::ClassSize(PointerSize pointer_size) { uint32_t vtable_entries = Object::kVTableLength; return Class::ComputeClassSize(true, vtable_entries, 0, 0, 0, 0, 0, pointer_size); } template<VerifyObjectFlags kVerifyFlags, ReadBarrierOption kReadBarrierOption> inline size_t Array::SizeOf() { // This is safe from overflow because the array was already allocated, so we know it's sane. size_t component_size_shift = GetClass<kVerifyFlags, kReadBarrierOption>()-> template GetComponentSizeShift<kReadBarrierOption>(); // Don't need to check this since we already check this in GetClass. int32_t component_count = GetLength<static_cast<VerifyObjectFlags>(kVerifyFlags & ~kVerifyThis)>(); size_t header_size = DataOffset(1U << component_size_shift).SizeValue(); size_t data_size = component_count << component_size_shift; return header_size + data_size; } inline MemberOffset Array::DataOffset(size_t component_size) { DCHECK(IsPowerOfTwo(component_size)) << component_size; size_t data_offset = RoundUp(OFFSETOF_MEMBER(Array, first_element_), component_size); DCHECK_EQ(RoundUp(data_offset, component_size), data_offset) << "Array data offset isn't aligned with component size"; return MemberOffset(data_offset); } template<VerifyObjectFlags kVerifyFlags> inline bool Array::CheckIsValidIndex(int32_t index) { if (UNLIKELY(static_cast<uint32_t>(index) >= static_cast<uint32_t>(GetLength<kVerifyFlags>()))) { ThrowArrayIndexOutOfBoundsException(index); return false; } return true; } static inline size_t ComputeArraySize(int32_t component_count, size_t component_size_shift) { DCHECK_GE(component_count, 0); size_t component_size = 1U << component_size_shift; size_t header_size = Array::DataOffset(component_size).SizeValue(); size_t data_size = static_cast<size_t>(component_count) << component_size_shift; size_t size = header_size + data_size; // Check for size_t overflow if this was an unreasonable request // but let the caller throw OutOfMemoryError. #ifdef __LP64__ // 64-bit. No overflow as component_count is 32-bit and the maximum // component size is 8. DCHECK_LE((1U << component_size_shift), 8U); #else // 32-bit. DCHECK_NE(header_size, 0U); DCHECK_EQ(RoundUp(header_size, component_size), header_size); // The array length limit (exclusive). const size_t length_limit = (0U - header_size) >> component_size_shift; if (UNLIKELY(length_limit <= static_cast<size_t>(component_count))) { return 0; // failure } #endif return size; } // Used for setting the array length in the allocation code path to ensure it is guarded by a // StoreStore fence. class SetLengthVisitor { public: explicit SetLengthVisitor(int32_t length) : length_(length) { } void operator()(ObjPtr<Object> obj, size_t usable_size ATTRIBUTE_UNUSED) const REQUIRES_SHARED(Locks::mutator_lock_) { // Avoid AsArray as object is not yet in live bitmap or allocation stack. ObjPtr<Array> array = ObjPtr<Array>::DownCast(obj); // DCHECK(array->IsArrayInstance()); array->SetLength(length_); } private: const int32_t length_; DISALLOW_COPY_AND_ASSIGN(SetLengthVisitor); }; // Similar to SetLengthVisitor, used for setting the array length to fill the usable size of an // array. class SetLengthToUsableSizeVisitor { public: SetLengthToUsableSizeVisitor(int32_t min_length, size_t header_size, size_t component_size_shift) : minimum_length_(min_length), header_size_(header_size), component_size_shift_(component_size_shift) { } void operator()(ObjPtr<Object> obj, size_t usable_size) const REQUIRES_SHARED(Locks::mutator_lock_) { // Avoid AsArray as object is not yet in live bitmap or allocation stack. ObjPtr<Array> array = ObjPtr<Array>::DownCast(obj); // DCHECK(array->IsArrayInstance()); int32_t length = (usable_size - header_size_) >> component_size_shift_; DCHECK_GE(length, minimum_length_); uint8_t* old_end = reinterpret_cast<uint8_t*>(array->GetRawData(1U << component_size_shift_, minimum_length_)); uint8_t* new_end = reinterpret_cast<uint8_t*>(array->GetRawData(1U << component_size_shift_, length)); // Ensure space beyond original allocation is zeroed. memset(old_end, 0, new_end - old_end); array->SetLength(length); } private: const int32_t minimum_length_; const size_t header_size_; const size_t component_size_shift_; DISALLOW_COPY_AND_ASSIGN(SetLengthToUsableSizeVisitor); }; template <bool kIsInstrumented, bool kFillUsable> inline Array* Array::Alloc(Thread* self, ObjPtr<Class> array_class, int32_t component_count, size_t component_size_shift, gc::AllocatorType allocator_type) { DCHECK(allocator_type != gc::kAllocatorTypeLOS); DCHECK(array_class != nullptr); DCHECK(array_class->IsArrayClass()); DCHECK_EQ(array_class->GetComponentSizeShift(), component_size_shift); DCHECK_EQ(array_class->GetComponentSize(), (1U << component_size_shift)); size_t size = ComputeArraySize(component_count, component_size_shift); #ifdef __LP64__ // 64-bit. No size_t overflow. DCHECK_NE(size, 0U); #else // 32-bit. if (UNLIKELY(size == 0)) { self->ThrowOutOfMemoryError(android::base::StringPrintf("%s of length %d would overflow", array_class->PrettyDescriptor().c_str(), component_count).c_str()); return nullptr; } #endif gc::Heap* heap = Runtime::Current()->GetHeap(); Array* result; if (!kFillUsable) { SetLengthVisitor visitor(component_count); result = down_cast<Array*>( heap->AllocObjectWithAllocator<kIsInstrumented, true>(self, array_class, size, allocator_type, visitor)); } else { SetLengthToUsableSizeVisitor visitor(component_count, DataOffset(1U << component_size_shift).SizeValue(), component_size_shift); result = down_cast<Array*>( heap->AllocObjectWithAllocator<kIsInstrumented, true>(self, array_class, size, allocator_type, visitor)); } if (kIsDebugBuild && result != nullptr && Runtime::Current()->IsStarted()) { array_class = result->GetClass(); // In case the array class moved. CHECK_EQ(array_class->GetComponentSize(), 1U << component_size_shift); if (!kFillUsable) { CHECK_EQ(result->SizeOf(), size); } else { CHECK_GE(result->SizeOf(), size); } } return result; } template<class T> inline void PrimitiveArray<T>::VisitRoots(RootVisitor* visitor) { array_class_.VisitRootIfNonNull(visitor, RootInfo(kRootStickyClass)); } template<typename T> inline PrimitiveArray<T>* PrimitiveArray<T>::AllocateAndFill(Thread* self, const T* data, size_t length) { StackHandleScope<1> hs(self); Handle<PrimitiveArray<T>> arr(hs.NewHandle(PrimitiveArray<T>::Alloc(self, length))); if (!arr.IsNull()) { // Copy it in. Just skip if it's null memcpy(arr->GetData(), data, sizeof(T) * length); } return arr.Get(); } template<typename T> inline PrimitiveArray<T>* PrimitiveArray<T>::Alloc(Thread* self, size_t length) { Array* raw_array = Array::Alloc<true>(self, GetArrayClass(), length, ComponentSizeShiftWidth(sizeof(T)), Runtime::Current()->GetHeap()->GetCurrentAllocator()); return down_cast<PrimitiveArray<T>*>(raw_array); } template<typename T> inline T PrimitiveArray<T>::Get(int32_t i) { if (!CheckIsValidIndex(i)) { DCHECK(Thread::Current()->IsExceptionPending()); return T(0); } return GetWithoutChecks(i); } template<typename T> inline void PrimitiveArray<T>::Set(int32_t i, T value) { if (Runtime::Current()->IsActiveTransaction()) { Set<true>(i, value); } else { Set<false>(i, value); } } template<typename T> template<bool kTransactionActive, bool kCheckTransaction> inline void PrimitiveArray<T>::Set(int32_t i, T value) { if (CheckIsValidIndex(i)) { SetWithoutChecks<kTransactionActive, kCheckTransaction>(i, value); } else { DCHECK(Thread::Current()->IsExceptionPending()); } } template<typename T> template<bool kTransactionActive, bool kCheckTransaction, VerifyObjectFlags kVerifyFlags> inline void PrimitiveArray<T>::SetWithoutChecks(int32_t i, T value) { if (kCheckTransaction) { DCHECK_EQ(kTransactionActive, Runtime::Current()->IsActiveTransaction()); } if (kTransactionActive) { Runtime::Current()->RecordWriteArray(this, i, GetWithoutChecks(i)); } DCHECK(CheckIsValidIndex<kVerifyFlags>(i)); GetData()[i] = value; } // Backward copy where elements are of aligned appropriately for T. Count is in T sized units. // Copies are guaranteed not to tear when the sizeof T is less-than 64bit. template<typename T> static inline void ArrayBackwardCopy(T* d, const T* s, int32_t count) { d += count; s += count; for (int32_t i = 0; i < count; ++i) { d--; s--; *d = *s; } } // Forward copy where elements are of aligned appropriately for T. Count is in T sized units. // Copies are guaranteed not to tear when the sizeof T is less-than 64bit. template<typename T> static inline void ArrayForwardCopy(T* d, const T* s, int32_t count) { for (int32_t i = 0; i < count; ++i) { *d = *s; d++; s++; } } template<class T> inline void PrimitiveArray<T>::Memmove(int32_t dst_pos, ObjPtr<PrimitiveArray<T>> src, int32_t src_pos, int32_t count) { if (UNLIKELY(count == 0)) { return; } DCHECK_GE(dst_pos, 0); DCHECK_GE(src_pos, 0); DCHECK_GT(count, 0); DCHECK(src != nullptr); DCHECK_LT(dst_pos, GetLength()); DCHECK_LE(dst_pos, GetLength() - count); DCHECK_LT(src_pos, src->GetLength()); DCHECK_LE(src_pos, src->GetLength() - count); // Note for non-byte copies we can't rely on standard libc functions like memcpy(3) and memmove(3) // in our implementation, because they may copy byte-by-byte. if (LIKELY(src != this)) { // Memcpy ok for guaranteed non-overlapping distinct arrays. Memcpy(dst_pos, src, src_pos, count); } else { // Handle copies within the same array using the appropriate direction copy. void* dst_raw = GetRawData(sizeof(T), dst_pos); const void* src_raw = src->GetRawData(sizeof(T), src_pos); if (sizeof(T) == sizeof(uint8_t)) { uint8_t* d = reinterpret_cast<uint8_t*>(dst_raw); const uint8_t* s = reinterpret_cast<const uint8_t*>(src_raw); memmove(d, s, count); } else { const bool copy_forward = (dst_pos < src_pos) || (dst_pos - src_pos >= count); if (sizeof(T) == sizeof(uint16_t)) { uint16_t* d = reinterpret_cast<uint16_t*>(dst_raw); const uint16_t* s = reinterpret_cast<const uint16_t*>(src_raw); if (copy_forward) { ArrayForwardCopy<uint16_t>(d, s, count); } else { ArrayBackwardCopy<uint16_t>(d, s, count); } } else if (sizeof(T) == sizeof(uint32_t)) { uint32_t* d = reinterpret_cast<uint32_t*>(dst_raw); const uint32_t* s = reinterpret_cast<const uint32_t*>(src_raw); if (copy_forward) { ArrayForwardCopy<uint32_t>(d, s, count); } else { ArrayBackwardCopy<uint32_t>(d, s, count); } } else { DCHECK_EQ(sizeof(T), sizeof(uint64_t)); uint64_t* d = reinterpret_cast<uint64_t*>(dst_raw); const uint64_t* s = reinterpret_cast<const uint64_t*>(src_raw); if (copy_forward) { ArrayForwardCopy<uint64_t>(d, s, count); } else { ArrayBackwardCopy<uint64_t>(d, s, count); } } } } } template<class T> inline void PrimitiveArray<T>::Memcpy(int32_t dst_pos, ObjPtr<PrimitiveArray<T>> src, int32_t src_pos, int32_t count) { if (UNLIKELY(count == 0)) { return; } DCHECK_GE(dst_pos, 0); DCHECK_GE(src_pos, 0); DCHECK_GT(count, 0); DCHECK(src != nullptr); DCHECK_LT(dst_pos, GetLength()); DCHECK_LE(dst_pos, GetLength() - count); DCHECK_LT(src_pos, src->GetLength()); DCHECK_LE(src_pos, src->GetLength() - count); // Note for non-byte copies we can't rely on standard libc functions like memcpy(3) and memmove(3) // in our implementation, because they may copy byte-by-byte. void* dst_raw = GetRawData(sizeof(T), dst_pos); const void* src_raw = src->GetRawData(sizeof(T), src_pos); if (sizeof(T) == sizeof(uint8_t)) { memcpy(dst_raw, src_raw, count); } else if (sizeof(T) == sizeof(uint16_t)) { uint16_t* d = reinterpret_cast<uint16_t*>(dst_raw); const uint16_t* s = reinterpret_cast<const uint16_t*>(src_raw); ArrayForwardCopy<uint16_t>(d, s, count); } else if (sizeof(T) == sizeof(uint32_t)) { uint32_t* d = reinterpret_cast<uint32_t*>(dst_raw); const uint32_t* s = reinterpret_cast<const uint32_t*>(src_raw); ArrayForwardCopy<uint32_t>(d, s, count); } else { DCHECK_EQ(sizeof(T), sizeof(uint64_t)); uint64_t* d = reinterpret_cast<uint64_t*>(dst_raw); const uint64_t* s = reinterpret_cast<const uint64_t*>(src_raw); ArrayForwardCopy<uint64_t>(d, s, count); } } template<typename T, VerifyObjectFlags kVerifyFlags, ReadBarrierOption kReadBarrierOption> inline T PointerArray::GetElementPtrSize(uint32_t idx, PointerSize ptr_size) { // C style casts here since we sometimes have T be a pointer, or sometimes an integer // (for stack traces). if (ptr_size == PointerSize::k64) { return (T)static_cast<uintptr_t>( AsLongArray<kVerifyFlags, kReadBarrierOption>()->GetWithoutChecks(idx)); } return (T)static_cast<uintptr_t>(static_cast<uint32_t>( AsIntArray<kVerifyFlags, kReadBarrierOption>()->GetWithoutChecks(idx))); } template<bool kTransactionActive, bool kUnchecked> inline void PointerArray::SetElementPtrSize(uint32_t idx, uint64_t element, PointerSize ptr_size) { if (ptr_size == PointerSize::k64) { (kUnchecked ? down_cast<LongArray*>(static_cast<Object*>(this)) : AsLongArray())-> SetWithoutChecks<kTransactionActive>(idx, element); } else { DCHECK_LE(element, static_cast<uint64_t>(0xFFFFFFFFu)); (kUnchecked ? down_cast<IntArray*>(static_cast<Object*>(this)) : AsIntArray()) ->SetWithoutChecks<kTransactionActive>(idx, static_cast<uint32_t>(element)); } } template<bool kTransactionActive, bool kUnchecked, typename T> inline void PointerArray::SetElementPtrSize(uint32_t idx, T* element, PointerSize ptr_size) { SetElementPtrSize<kTransactionActive, kUnchecked>(idx, reinterpret_cast<uintptr_t>(element), ptr_size); } template <VerifyObjectFlags kVerifyFlags, ReadBarrierOption kReadBarrierOption, typename Visitor> inline void PointerArray::Fixup(mirror::PointerArray* dest, PointerSize pointer_size, const Visitor& visitor) { for (size_t i = 0, count = GetLength(); i < count; ++i) { void* ptr = GetElementPtrSize<void*, kVerifyFlags, kReadBarrierOption>(i, pointer_size); void* new_ptr = visitor(ptr); if (ptr != new_ptr) { dest->SetElementPtrSize<false, true>(i, new_ptr, pointer_size); } } } template<bool kUnchecked> void PointerArray::Memcpy(int32_t dst_pos, ObjPtr<PointerArray> src, int32_t src_pos, int32_t count, PointerSize ptr_size) { DCHECK(!Runtime::Current()->IsActiveTransaction()); DCHECK(!src.IsNull()); if (ptr_size == PointerSize::k64) { LongArray* l_this = (kUnchecked ? down_cast<LongArray*>(static_cast<Object*>(this)) : AsLongArray()); LongArray* l_src = (kUnchecked ? down_cast<LongArray*>(static_cast<Object*>(src.Ptr())) : src->AsLongArray()); l_this->Memcpy(dst_pos, l_src, src_pos, count); } else { IntArray* i_this = (kUnchecked ? down_cast<IntArray*>(static_cast<Object*>(this)) : AsIntArray()); IntArray* i_src = (kUnchecked ? down_cast<IntArray*>(static_cast<Object*>(src.Ptr())) : src->AsIntArray()); i_this->Memcpy(dst_pos, i_src, src_pos, count); } } template<typename T> inline void PrimitiveArray<T>::SetArrayClass(ObjPtr<Class> array_class) { CHECK(array_class_.IsNull()); CHECK(array_class != nullptr); array_class_ = GcRoot<Class>(array_class); } } // namespace mirror } // namespace art #endif // ART_RUNTIME_MIRROR_ARRAY_INL_H_