/* * Copyright (C) 2011 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef ART_RUNTIME_MIRROR_CLASS_H_ #define ART_RUNTIME_MIRROR_CLASS_H_ #include "base/bit_utils.h" #include "base/casts.h" #include "base/enums.h" #include "base/iteration_range.h" #include "base/stride_iterator.h" #include "base/utils.h" #include "class_flags.h" #include "class_status.h" #include "dex/dex_file.h" #include "dex/dex_file_types.h" #include "dex/modifiers.h" #include "dex/primitive.h" #include "gc/allocator_type.h" #include "gc_root.h" #include "imtable.h" #include "object.h" #include "object_array.h" #include "read_barrier_option.h" #include "thread.h" namespace art { class ArtField; class ArtMethod; struct ClassOffsets; template<class T> class Handle; enum InvokeType : uint32_t; template<typename T> class LengthPrefixedArray; template<typename T> class ArraySlice; class Signature; class StringPiece; template<size_t kNumReferences> class PACKED(4) StackHandleScope; namespace mirror { class ClassExt; class ClassLoader; class Constructor; class DexCache; class IfTable; class Method; template <typename T> struct PACKED(8) DexCachePair; using StringDexCachePair = DexCachePair<String>; using StringDexCacheType = std::atomic<StringDexCachePair>; // C++ mirror of java.lang.Class class MANAGED Class FINAL : public Object { public: // A magic value for reference_instance_offsets_. Ignore the bits and walk the super chain when // this is the value. // [This is an unlikely "natural" value, since it would be 30 non-ref instance fields followed by // 2 ref instance fields.] static constexpr uint32_t kClassWalkSuper = 0xC0000000; // Shift primitive type by kPrimitiveTypeSizeShiftShift to get the component type size shift // Used for computing array size as follows: // array_bytes = header_size + (elements << (primitive_type >> kPrimitiveTypeSizeShiftShift)) static constexpr uint32_t kPrimitiveTypeSizeShiftShift = 16; static constexpr uint32_t kPrimitiveTypeMask = (1u << kPrimitiveTypeSizeShiftShift) - 1; template<VerifyObjectFlags kVerifyFlags = kDefaultVerifyFlags> ClassStatus GetStatus() REQUIRES_SHARED(Locks::mutator_lock_) { // Avoid including "subtype_check_bits_and_status.h" to get the field. // The ClassStatus is always in the 4 most-significant bits of status_. return enum_cast<ClassStatus>( static_cast<uint32_t>(GetField32Volatile<kVerifyFlags>(StatusOffset())) >> (32 - 4)); } // This is static because 'this' may be moved by GC. static void SetStatus(Handle<Class> h_this, ClassStatus new_status, Thread* self) REQUIRES_SHARED(Locks::mutator_lock_) REQUIRES(!Roles::uninterruptible_); static MemberOffset StatusOffset() { return MemberOffset(OFFSET_OF_OBJECT_MEMBER(Class, status_)); } // Returns true if the class has been retired. template<VerifyObjectFlags kVerifyFlags = kDefaultVerifyFlags> bool IsRetired() REQUIRES_SHARED(Locks::mutator_lock_) { return GetStatus<kVerifyFlags>() == ClassStatus::kRetired; } // Returns true if the class has failed to link. template<VerifyObjectFlags kVerifyFlags = kDefaultVerifyFlags> bool IsErroneousUnresolved() REQUIRES_SHARED(Locks::mutator_lock_) { return GetStatus<kVerifyFlags>() == ClassStatus::kErrorUnresolved; } // Returns true if the class has failed to initialize. template<VerifyObjectFlags kVerifyFlags = kDefaultVerifyFlags> bool IsErroneousResolved() REQUIRES_SHARED(Locks::mutator_lock_) { return GetStatus<kVerifyFlags>() == ClassStatus::kErrorResolved; } // Returns true if the class status indicets that the class has failed to link or initialize. static bool IsErroneous(ClassStatus status) { return status == ClassStatus::kErrorUnresolved || status == ClassStatus::kErrorResolved; } // Returns true if the class has failed to link or initialize. template<VerifyObjectFlags kVerifyFlags = kDefaultVerifyFlags> bool IsErroneous() REQUIRES_SHARED(Locks::mutator_lock_) { return IsErroneous(GetStatus<kVerifyFlags>()); } // Returns true if the class has been loaded. template<VerifyObjectFlags kVerifyFlags = kDefaultVerifyFlags> bool IsIdxLoaded() REQUIRES_SHARED(Locks::mutator_lock_) { return GetStatus<kVerifyFlags>() >= ClassStatus::kIdx; } // Returns true if the class has been loaded. template<VerifyObjectFlags kVerifyFlags = kDefaultVerifyFlags> bool IsLoaded() REQUIRES_SHARED(Locks::mutator_lock_) { return GetStatus<kVerifyFlags>() >= ClassStatus::kLoaded; } // Returns true if the class has been linked. template<VerifyObjectFlags kVerifyFlags = kDefaultVerifyFlags> bool IsResolved() REQUIRES_SHARED(Locks::mutator_lock_) { ClassStatus status = GetStatus<kVerifyFlags>(); return status >= ClassStatus::kResolved || status == ClassStatus::kErrorResolved; } // Returns true if the class should be verified at runtime. template<VerifyObjectFlags kVerifyFlags = kDefaultVerifyFlags> bool ShouldVerifyAtRuntime() REQUIRES_SHARED(Locks::mutator_lock_) { return GetStatus<kVerifyFlags>() == ClassStatus::kRetryVerificationAtRuntime; } // Returns true if the class has been verified. template<VerifyObjectFlags kVerifyFlags = kDefaultVerifyFlags> bool IsVerified() REQUIRES_SHARED(Locks::mutator_lock_) { return GetStatus<kVerifyFlags>() >= ClassStatus::kVerified; } // Returns true if the class is initializing. template<VerifyObjectFlags kVerifyFlags = kDefaultVerifyFlags> bool IsInitializing() REQUIRES_SHARED(Locks::mutator_lock_) { return GetStatus<kVerifyFlags>() >= ClassStatus::kInitializing; } // Returns true if the class is initialized. template<VerifyObjectFlags kVerifyFlags = kDefaultVerifyFlags> bool IsInitialized() REQUIRES_SHARED(Locks::mutator_lock_) { return GetStatus<kVerifyFlags>() == ClassStatus::kInitialized; } template<VerifyObjectFlags kVerifyFlags = kDefaultVerifyFlags> ALWAYS_INLINE uint32_t GetAccessFlags() REQUIRES_SHARED(Locks::mutator_lock_) { if (kIsDebugBuild) { GetAccessFlagsDCheck<kVerifyFlags>(); } return GetField32<kVerifyFlags>(AccessFlagsOffset()); } static MemberOffset AccessFlagsOffset() { return OFFSET_OF_OBJECT_MEMBER(Class, access_flags_); } template<VerifyObjectFlags kVerifyFlags = kDefaultVerifyFlags> ALWAYS_INLINE uint32_t GetClassFlags() REQUIRES_SHARED(Locks::mutator_lock_) { return GetField32<kVerifyFlags>(OFFSET_OF_OBJECT_MEMBER(Class, class_flags_)); } void SetClassFlags(uint32_t new_flags) REQUIRES_SHARED(Locks::mutator_lock_); void SetAccessFlags(uint32_t new_access_flags) REQUIRES_SHARED(Locks::mutator_lock_); // Returns true if the class is an enum. ALWAYS_INLINE bool IsEnum() REQUIRES_SHARED(Locks::mutator_lock_) { return (GetAccessFlags() & kAccEnum) != 0; } // Returns true if the class is an interface. ALWAYS_INLINE bool IsInterface() REQUIRES_SHARED(Locks::mutator_lock_) { return (GetAccessFlags() & kAccInterface) != 0; } // Returns true if the class is declared public. ALWAYS_INLINE bool IsPublic() REQUIRES_SHARED(Locks::mutator_lock_) { return (GetAccessFlags() & kAccPublic) != 0; } // Returns true if the class is declared final. ALWAYS_INLINE bool IsFinal() REQUIRES_SHARED(Locks::mutator_lock_) { return (GetAccessFlags() & kAccFinal) != 0; } ALWAYS_INLINE bool IsFinalizable() REQUIRES_SHARED(Locks::mutator_lock_) { return (GetAccessFlags() & kAccClassIsFinalizable) != 0; } ALWAYS_INLINE bool ShouldSkipHiddenApiChecks() REQUIRES_SHARED(Locks::mutator_lock_) { return (GetAccessFlags() & kAccSkipHiddenApiChecks) != 0; } ALWAYS_INLINE void SetSkipHiddenApiChecks() REQUIRES_SHARED(Locks::mutator_lock_) { uint32_t flags = GetAccessFlags(); SetAccessFlags(flags | kAccSkipHiddenApiChecks); } ALWAYS_INLINE void SetRecursivelyInitialized() REQUIRES_SHARED(Locks::mutator_lock_) { DCHECK_EQ(GetLockOwnerThreadId(), Thread::Current()->GetThreadId()); uint32_t flags = GetField32(OFFSET_OF_OBJECT_MEMBER(Class, access_flags_)); SetAccessFlags(flags | kAccRecursivelyInitialized); } ALWAYS_INLINE void SetHasDefaultMethods() REQUIRES_SHARED(Locks::mutator_lock_) { DCHECK_EQ(GetLockOwnerThreadId(), Thread::Current()->GetThreadId()); uint32_t flags = GetField32(OFFSET_OF_OBJECT_MEMBER(Class, access_flags_)); SetAccessFlags(flags | kAccHasDefaultMethod); } ALWAYS_INLINE void SetFinalizable() REQUIRES_SHARED(Locks::mutator_lock_) { uint32_t flags = GetField32(OFFSET_OF_OBJECT_MEMBER(Class, access_flags_)); SetAccessFlags(flags | kAccClassIsFinalizable); } ALWAYS_INLINE bool IsStringClass() REQUIRES_SHARED(Locks::mutator_lock_) { return (GetClassFlags() & kClassFlagString) != 0; } ALWAYS_INLINE void SetStringClass() REQUIRES_SHARED(Locks::mutator_lock_) { SetClassFlags(kClassFlagString | kClassFlagNoReferenceFields); } ALWAYS_INLINE bool IsClassLoaderClass() REQUIRES_SHARED(Locks::mutator_lock_) { return GetClassFlags() == kClassFlagClassLoader; } ALWAYS_INLINE void SetClassLoaderClass() REQUIRES_SHARED(Locks::mutator_lock_) { SetClassFlags(kClassFlagClassLoader); } ALWAYS_INLINE bool IsDexCacheClass() REQUIRES_SHARED(Locks::mutator_lock_) { return (GetClassFlags() & kClassFlagDexCache) != 0; } ALWAYS_INLINE void SetDexCacheClass() REQUIRES_SHARED(Locks::mutator_lock_) { SetClassFlags(GetClassFlags() | kClassFlagDexCache); } // Returns true if the class is abstract. ALWAYS_INLINE bool IsAbstract() REQUIRES_SHARED(Locks::mutator_lock_) { return (GetAccessFlags() & kAccAbstract) != 0; } // Returns true if the class is an annotation. ALWAYS_INLINE bool IsAnnotation() REQUIRES_SHARED(Locks::mutator_lock_) { return (GetAccessFlags() & kAccAnnotation) != 0; } // Returns true if the class is synthetic. ALWAYS_INLINE bool IsSynthetic() REQUIRES_SHARED(Locks::mutator_lock_) { return (GetAccessFlags() & kAccSynthetic) != 0; } // Return whether the class had run the verifier at least once. // This does not necessarily mean that access checks are avoidable, // since the class methods might still need to be run with access checks. bool WasVerificationAttempted() REQUIRES_SHARED(Locks::mutator_lock_) { return (GetAccessFlags() & kAccVerificationAttempted) != 0; } // Mark the class as having gone through a verification attempt. // Mutually exclusive from whether or not each method is allowed to skip access checks. void SetVerificationAttempted() REQUIRES_SHARED(Locks::mutator_lock_) { uint32_t flags = GetField32(OFFSET_OF_OBJECT_MEMBER(Class, access_flags_)); if ((flags & kAccVerificationAttempted) == 0) { SetAccessFlags(flags | kAccVerificationAttempted); } } template<VerifyObjectFlags kVerifyFlags = kDefaultVerifyFlags> bool IsTypeOfReferenceClass() REQUIRES_SHARED(Locks::mutator_lock_) { return (GetClassFlags<kVerifyFlags>() & kClassFlagReference) != 0; } template<VerifyObjectFlags kVerifyFlags = kDefaultVerifyFlags> bool IsWeakReferenceClass() REQUIRES_SHARED(Locks::mutator_lock_) { return GetClassFlags<kVerifyFlags>() == kClassFlagWeakReference; } template<VerifyObjectFlags kVerifyFlags = kDefaultVerifyFlags> bool IsSoftReferenceClass() REQUIRES_SHARED(Locks::mutator_lock_) { return GetClassFlags<kVerifyFlags>() == kClassFlagSoftReference; } template<VerifyObjectFlags kVerifyFlags = kDefaultVerifyFlags> bool IsFinalizerReferenceClass() REQUIRES_SHARED(Locks::mutator_lock_) { return GetClassFlags<kVerifyFlags>() == kClassFlagFinalizerReference; } template<VerifyObjectFlags kVerifyFlags = kDefaultVerifyFlags> bool IsPhantomReferenceClass() REQUIRES_SHARED(Locks::mutator_lock_) { return GetClassFlags<kVerifyFlags>() == kClassFlagPhantomReference; } // Can references of this type be assigned to by things of another type? For non-array types // this is a matter of whether sub-classes may exist - which they can't if the type is final. // For array classes, where all the classes are final due to there being no sub-classes, an // Object[] may be assigned to by a String[] but a String[] may not be assigned to by other // types as the component is final. bool CannotBeAssignedFromOtherTypes() REQUIRES_SHARED(Locks::mutator_lock_); // Returns true if this class is the placeholder and should retire and // be replaced with a class with the right size for embedded imt/vtable. bool IsTemp() REQUIRES_SHARED(Locks::mutator_lock_) { ClassStatus s = GetStatus(); return s < ClassStatus::kResolving && s != ClassStatus::kErrorResolved && ShouldHaveEmbeddedVTable(); } String* GetName() REQUIRES_SHARED(Locks::mutator_lock_); // Returns the cached name. void SetName(ObjPtr<String> name) REQUIRES_SHARED(Locks::mutator_lock_); // Sets the cached name. // Computes the name, then sets the cached value. static String* ComputeName(Handle<Class> h_this) REQUIRES_SHARED(Locks::mutator_lock_) REQUIRES(!Roles::uninterruptible_); template<VerifyObjectFlags kVerifyFlags = kDefaultVerifyFlags> bool IsProxyClass() REQUIRES_SHARED(Locks::mutator_lock_) { // Read access flags without using getter as whether something is a proxy can be check in // any loaded state // TODO: switch to a check if the super class is java.lang.reflect.Proxy? uint32_t access_flags = GetField32<kVerifyFlags>(OFFSET_OF_OBJECT_MEMBER(Class, access_flags_)); return (access_flags & kAccClassIsProxy) != 0; } static MemberOffset PrimitiveTypeOffset() { return OFFSET_OF_OBJECT_MEMBER(Class, primitive_type_); } template<VerifyObjectFlags kVerifyFlags = kDefaultVerifyFlags> Primitive::Type GetPrimitiveType() ALWAYS_INLINE REQUIRES_SHARED(Locks::mutator_lock_); void SetPrimitiveType(Primitive::Type new_type) REQUIRES_SHARED(Locks::mutator_lock_) { DCHECK_EQ(sizeof(Primitive::Type), sizeof(int32_t)); uint32_t v32 = static_cast<uint32_t>(new_type); DCHECK_EQ(v32 & kPrimitiveTypeMask, v32) << "upper 16 bits aren't zero"; // Store the component size shift in the upper 16 bits. v32 |= Primitive::ComponentSizeShift(new_type) << kPrimitiveTypeSizeShiftShift; SetField32Transaction(OFFSET_OF_OBJECT_MEMBER(Class, primitive_type_), v32); } template<VerifyObjectFlags kVerifyFlags = kDefaultVerifyFlags> size_t GetPrimitiveTypeSizeShift() ALWAYS_INLINE REQUIRES_SHARED(Locks::mutator_lock_); // Returns true if the class is a primitive type. template<VerifyObjectFlags kVerifyFlags = kDefaultVerifyFlags> bool IsPrimitive() REQUIRES_SHARED(Locks::mutator_lock_) { return GetPrimitiveType<kVerifyFlags>() != Primitive::kPrimNot; } template<VerifyObjectFlags kVerifyFlags = kDefaultVerifyFlags> bool IsPrimitiveBoolean() REQUIRES_SHARED(Locks::mutator_lock_) { return GetPrimitiveType<kVerifyFlags>() == Primitive::kPrimBoolean; } template<VerifyObjectFlags kVerifyFlags = kDefaultVerifyFlags> bool IsPrimitiveByte() REQUIRES_SHARED(Locks::mutator_lock_) { return GetPrimitiveType<kVerifyFlags>() == Primitive::kPrimByte; } template<VerifyObjectFlags kVerifyFlags = kDefaultVerifyFlags> bool IsPrimitiveChar() REQUIRES_SHARED(Locks::mutator_lock_) { return GetPrimitiveType<kVerifyFlags>() == Primitive::kPrimChar; } template<VerifyObjectFlags kVerifyFlags = kDefaultVerifyFlags> bool IsPrimitiveShort() REQUIRES_SHARED(Locks::mutator_lock_) { return GetPrimitiveType<kVerifyFlags>() == Primitive::kPrimShort; } template<VerifyObjectFlags kVerifyFlags = kDefaultVerifyFlags> bool IsPrimitiveInt() REQUIRES_SHARED(Locks::mutator_lock_) { return GetPrimitiveType() == Primitive::kPrimInt; } template<VerifyObjectFlags kVerifyFlags = kDefaultVerifyFlags> bool IsPrimitiveLong() REQUIRES_SHARED(Locks::mutator_lock_) { return GetPrimitiveType<kVerifyFlags>() == Primitive::kPrimLong; } template<VerifyObjectFlags kVerifyFlags = kDefaultVerifyFlags> bool IsPrimitiveFloat() REQUIRES_SHARED(Locks::mutator_lock_) { return GetPrimitiveType<kVerifyFlags>() == Primitive::kPrimFloat; } template<VerifyObjectFlags kVerifyFlags = kDefaultVerifyFlags> bool IsPrimitiveDouble() REQUIRES_SHARED(Locks::mutator_lock_) { return GetPrimitiveType<kVerifyFlags>() == Primitive::kPrimDouble; } template<VerifyObjectFlags kVerifyFlags = kDefaultVerifyFlags> bool IsPrimitiveVoid() REQUIRES_SHARED(Locks::mutator_lock_) { return GetPrimitiveType<kVerifyFlags>() == Primitive::kPrimVoid; } template<VerifyObjectFlags kVerifyFlags = kDefaultVerifyFlags> bool IsPrimitiveArray() REQUIRES_SHARED(Locks::mutator_lock_) { return IsArrayClass<kVerifyFlags>() && GetComponentType<static_cast<VerifyObjectFlags>(kVerifyFlags & ~kVerifyThis)>()-> IsPrimitive(); } // Depth of class from java.lang.Object uint32_t Depth() REQUIRES_SHARED(Locks::mutator_lock_); template<VerifyObjectFlags kVerifyFlags = kDefaultVerifyFlags, ReadBarrierOption kReadBarrierOption = kWithReadBarrier> bool IsArrayClass() REQUIRES_SHARED(Locks::mutator_lock_); template<VerifyObjectFlags kVerifyFlags = kDefaultVerifyFlags, ReadBarrierOption kReadBarrierOption = kWithReadBarrier> bool IsClassClass() REQUIRES_SHARED(Locks::mutator_lock_); bool IsThrowableClass() REQUIRES_SHARED(Locks::mutator_lock_); template<ReadBarrierOption kReadBarrierOption = kWithReadBarrier> bool IsReferenceClass() const REQUIRES_SHARED(Locks::mutator_lock_); static MemberOffset ComponentTypeOffset() { return OFFSET_OF_OBJECT_MEMBER(Class, component_type_); } template<VerifyObjectFlags kVerifyFlags = kDefaultVerifyFlags, ReadBarrierOption kReadBarrierOption = kWithReadBarrier> Class* GetComponentType() REQUIRES_SHARED(Locks::mutator_lock_); void SetComponentType(ObjPtr<Class> new_component_type) REQUIRES_SHARED(Locks::mutator_lock_) { DCHECK(GetComponentType() == nullptr); DCHECK(new_component_type != nullptr); // Component type is invariant: use non-transactional mode without check. SetFieldObject<false, false>(ComponentTypeOffset(), new_component_type); } template<ReadBarrierOption kReadBarrierOption = kWithReadBarrier> size_t GetComponentSize() REQUIRES_SHARED(Locks::mutator_lock_) { return 1U << GetComponentSizeShift<kReadBarrierOption>(); } template<ReadBarrierOption kReadBarrierOption = kWithReadBarrier> size_t GetComponentSizeShift() REQUIRES_SHARED(Locks::mutator_lock_) { return GetComponentType<kDefaultVerifyFlags, kReadBarrierOption>()->GetPrimitiveTypeSizeShift(); } bool IsObjectClass() REQUIRES_SHARED(Locks::mutator_lock_) { return !IsPrimitive() && GetSuperClass() == nullptr; } bool IsInstantiableNonArray() REQUIRES_SHARED(Locks::mutator_lock_) { return !IsPrimitive() && !IsInterface() && !IsAbstract() && !IsArrayClass(); } template<VerifyObjectFlags kVerifyFlags = kDefaultVerifyFlags, ReadBarrierOption kReadBarrierOption = kWithReadBarrier> bool IsInstantiable() REQUIRES_SHARED(Locks::mutator_lock_) { return (!IsPrimitive() && !IsInterface() && !IsAbstract()) || (IsAbstract() && IsArrayClass<kVerifyFlags, kReadBarrierOption>()); } template<VerifyObjectFlags kVerifyFlags = kDefaultVerifyFlags, ReadBarrierOption kReadBarrierOption = kWithReadBarrier> ALWAYS_INLINE bool IsObjectArrayClass() REQUIRES_SHARED(Locks::mutator_lock_); template<VerifyObjectFlags kVerifyFlags = kDefaultVerifyFlags> bool IsIntArrayClass() REQUIRES_SHARED(Locks::mutator_lock_) { constexpr auto kNewFlags = static_cast<VerifyObjectFlags>(kVerifyFlags & ~kVerifyThis); auto* component_type = GetComponentType<kVerifyFlags>(); return component_type != nullptr && component_type->template IsPrimitiveInt<kNewFlags>(); } template<VerifyObjectFlags kVerifyFlags = kDefaultVerifyFlags> bool IsLongArrayClass() REQUIRES_SHARED(Locks::mutator_lock_) { constexpr auto kNewFlags = static_cast<VerifyObjectFlags>(kVerifyFlags & ~kVerifyThis); auto* component_type = GetComponentType<kVerifyFlags>(); return component_type != nullptr && component_type->template IsPrimitiveLong<kNewFlags>(); } // Creates a raw object instance but does not invoke the default constructor. template<bool kIsInstrumented, bool kCheckAddFinalizer = true> ALWAYS_INLINE ObjPtr<Object> Alloc(Thread* self, gc::AllocatorType allocator_type) REQUIRES_SHARED(Locks::mutator_lock_) REQUIRES(!Roles::uninterruptible_); ObjPtr<Object> AllocObject(Thread* self) REQUIRES_SHARED(Locks::mutator_lock_) REQUIRES(!Roles::uninterruptible_); ObjPtr<Object> AllocNonMovableObject(Thread* self) REQUIRES_SHARED(Locks::mutator_lock_) REQUIRES(!Roles::uninterruptible_); template<VerifyObjectFlags kVerifyFlags = kDefaultVerifyFlags, ReadBarrierOption kReadBarrierOption = kWithReadBarrier> ALWAYS_INLINE bool IsVariableSize() REQUIRES_SHARED(Locks::mutator_lock_); template<VerifyObjectFlags kVerifyFlags = kDefaultVerifyFlags, ReadBarrierOption kReadBarrierOption = kWithReadBarrier> uint32_t SizeOf() REQUIRES_SHARED(Locks::mutator_lock_) { return GetField32<kVerifyFlags>(OFFSET_OF_OBJECT_MEMBER(Class, class_size_)); } template<VerifyObjectFlags kVerifyFlags = kDefaultVerifyFlags> uint32_t GetClassSize() REQUIRES_SHARED(Locks::mutator_lock_) { return GetField32<kVerifyFlags>(OFFSET_OF_OBJECT_MEMBER(Class, class_size_)); } void SetClassSize(uint32_t new_class_size) REQUIRES_SHARED(Locks::mutator_lock_); // Compute how many bytes would be used a class with the given elements. static uint32_t ComputeClassSize(bool has_embedded_vtable, uint32_t num_vtable_entries, uint32_t num_8bit_static_fields, uint32_t num_16bit_static_fields, uint32_t num_32bit_static_fields, uint32_t num_64bit_static_fields, uint32_t num_ref_static_fields, PointerSize pointer_size); // The size of java.lang.Class.class. static uint32_t ClassClassSize(PointerSize pointer_size) { // The number of vtable entries in java.lang.Class. uint32_t vtable_entries = Object::kVTableLength + 67; return ComputeClassSize(true, vtable_entries, 0, 0, 4, 1, 0, pointer_size); } // The size of a java.lang.Class representing a primitive such as int.class. static uint32_t PrimitiveClassSize(PointerSize pointer_size) { return ComputeClassSize(false, 0, 0, 0, 0, 0, 0, pointer_size); } template<VerifyObjectFlags kVerifyFlags = kDefaultVerifyFlags, ReadBarrierOption kReadBarrierOption = kWithReadBarrier> uint32_t GetObjectSize() REQUIRES_SHARED(Locks::mutator_lock_); static MemberOffset ObjectSizeOffset() { return OFFSET_OF_OBJECT_MEMBER(Class, object_size_); } static MemberOffset ObjectSizeAllocFastPathOffset() { return OFFSET_OF_OBJECT_MEMBER(Class, object_size_alloc_fast_path_); } ALWAYS_INLINE void SetObjectSize(uint32_t new_object_size) REQUIRES_SHARED(Locks::mutator_lock_); void SetObjectSizeAllocFastPath(uint32_t new_object_size) REQUIRES_SHARED(Locks::mutator_lock_); template<VerifyObjectFlags kVerifyFlags = kDefaultVerifyFlags, ReadBarrierOption kReadBarrierOption = kWithReadBarrier> uint32_t GetObjectSizeAllocFastPath() REQUIRES_SHARED(Locks::mutator_lock_); void SetObjectSizeWithoutChecks(uint32_t new_object_size) REQUIRES_SHARED(Locks::mutator_lock_) { // Not called within a transaction. return SetField32<false, false, kVerifyNone>( OFFSET_OF_OBJECT_MEMBER(Class, object_size_), new_object_size); } // Returns true if this class is in the same packages as that class. bool IsInSamePackage(ObjPtr<Class> that) REQUIRES_SHARED(Locks::mutator_lock_); static bool IsInSamePackage(const StringPiece& descriptor1, const StringPiece& descriptor2); // Returns true if this class can access that class. bool CanAccess(ObjPtr<Class> that) REQUIRES_SHARED(Locks::mutator_lock_); // Can this class access a member in the provided class with the provided member access flags? // Note that access to the class isn't checked in case the declaring class is protected and the // method has been exposed by a public sub-class bool CanAccessMember(ObjPtr<Class> access_to, uint32_t member_flags) REQUIRES_SHARED(Locks::mutator_lock_); // Can this class access a resolved field? // Note that access to field's class is checked and this may require looking up the class // referenced by the FieldId in the DexFile in case the declaring class is inaccessible. bool CanAccessResolvedField(ObjPtr<Class> access_to, ArtField* field, ObjPtr<DexCache> dex_cache, uint32_t field_idx) REQUIRES_SHARED(Locks::mutator_lock_); bool CheckResolvedFieldAccess(ObjPtr<Class> access_to, ArtField* field, ObjPtr<DexCache> dex_cache, uint32_t field_idx) REQUIRES_SHARED(Locks::mutator_lock_); // Can this class access a resolved method? // Note that access to methods's class is checked and this may require looking up the class // referenced by the MethodId in the DexFile in case the declaring class is inaccessible. bool CanAccessResolvedMethod(ObjPtr<Class> access_to, ArtMethod* resolved_method, ObjPtr<DexCache> dex_cache, uint32_t method_idx) REQUIRES_SHARED(Locks::mutator_lock_); bool CheckResolvedMethodAccess(ObjPtr<Class> access_to, ArtMethod* resolved_method, ObjPtr<DexCache> dex_cache, uint32_t method_idx, InvokeType throw_invoke_type) REQUIRES_SHARED(Locks::mutator_lock_); bool IsSubClass(ObjPtr<Class> klass) REQUIRES_SHARED(Locks::mutator_lock_); // Can src be assigned to this class? For example, String can be assigned to Object (by an // upcast), however, an Object cannot be assigned to a String as a potentially exception throwing // downcast would be necessary. Similarly for interfaces, a class that implements (or an interface // that extends) another can be assigned to its parent, but not vice-versa. All Classes may assign // to themselves. Classes for primitive types may not assign to each other. ALWAYS_INLINE bool IsAssignableFrom(ObjPtr<Class> src) REQUIRES_SHARED(Locks::mutator_lock_); template<VerifyObjectFlags kVerifyFlags = kDefaultVerifyFlags, ReadBarrierOption kReadBarrierOption = kWithReadBarrier> ALWAYS_INLINE Class* GetSuperClass() REQUIRES_SHARED(Locks::mutator_lock_); // Get first common super class. It will never return null. // `This` and `klass` must be classes. ObjPtr<Class> GetCommonSuperClass(Handle<Class> klass) REQUIRES_SHARED(Locks::mutator_lock_); void SetSuperClass(ObjPtr<Class> new_super_class) REQUIRES_SHARED(Locks::mutator_lock_); bool HasSuperClass() REQUIRES_SHARED(Locks::mutator_lock_) { return GetSuperClass() != nullptr; } static MemberOffset SuperClassOffset() { return MemberOffset(OFFSETOF_MEMBER(Class, super_class_)); } template<VerifyObjectFlags kVerifyFlags = kDefaultVerifyFlags, ReadBarrierOption kReadBarrierOption = kWithReadBarrier> ClassLoader* GetClassLoader() ALWAYS_INLINE REQUIRES_SHARED(Locks::mutator_lock_); void SetClassLoader(ObjPtr<ClassLoader> new_cl) REQUIRES_SHARED(Locks::mutator_lock_); static MemberOffset DexCacheOffset() { return MemberOffset(OFFSETOF_MEMBER(Class, dex_cache_)); } static MemberOffset IfTableOffset() { return MemberOffset(OFFSETOF_MEMBER(Class, iftable_)); } enum { kDumpClassFullDetail = 1, kDumpClassClassLoader = (1 << 1), kDumpClassInitialized = (1 << 2), }; void DumpClass(std::ostream& os, int flags) REQUIRES_SHARED(Locks::mutator_lock_); template<VerifyObjectFlags kVerifyFlags = kDefaultVerifyFlags, ReadBarrierOption kReadBarrierOption = kWithReadBarrier> DexCache* GetDexCache() REQUIRES_SHARED(Locks::mutator_lock_); // Also updates the dex_cache_strings_ variable from new_dex_cache. void SetDexCache(ObjPtr<DexCache> new_dex_cache) REQUIRES_SHARED(Locks::mutator_lock_); ALWAYS_INLINE ArraySlice<ArtMethod> GetDirectMethods(PointerSize pointer_size) REQUIRES_SHARED(Locks::mutator_lock_); ALWAYS_INLINE LengthPrefixedArray<ArtMethod>* GetMethodsPtr() REQUIRES_SHARED(Locks::mutator_lock_); static MemberOffset MethodsOffset() { return MemberOffset(OFFSETOF_MEMBER(Class, methods_)); } ALWAYS_INLINE ArraySlice<ArtMethod> GetMethods(PointerSize pointer_size) REQUIRES_SHARED(Locks::mutator_lock_); void SetMethodsPtr(LengthPrefixedArray<ArtMethod>* new_methods, uint32_t num_direct, uint32_t num_virtual) REQUIRES_SHARED(Locks::mutator_lock_); // Used by image writer. void SetMethodsPtrUnchecked(LengthPrefixedArray<ArtMethod>* new_methods, uint32_t num_direct, uint32_t num_virtual) REQUIRES_SHARED(Locks::mutator_lock_); template<VerifyObjectFlags kVerifyFlags = kDefaultVerifyFlags> ALWAYS_INLINE ArraySlice<ArtMethod> GetDirectMethodsSlice(PointerSize pointer_size) REQUIRES_SHARED(Locks::mutator_lock_); ALWAYS_INLINE ArtMethod* GetDirectMethod(size_t i, PointerSize pointer_size) REQUIRES_SHARED(Locks::mutator_lock_); // Use only when we are allocating populating the method arrays. ALWAYS_INLINE ArtMethod* GetDirectMethodUnchecked(size_t i, PointerSize pointer_size) REQUIRES_SHARED(Locks::mutator_lock_); ALWAYS_INLINE ArtMethod* GetVirtualMethodUnchecked(size_t i, PointerSize pointer_size) REQUIRES_SHARED(Locks::mutator_lock_); // Returns the number of static, private, and constructor methods. ALWAYS_INLINE uint32_t NumDirectMethods() REQUIRES_SHARED(Locks::mutator_lock_); template<VerifyObjectFlags kVerifyFlags = kDefaultVerifyFlags> ALWAYS_INLINE ArraySlice<ArtMethod> GetMethodsSlice(PointerSize pointer_size) REQUIRES_SHARED(Locks::mutator_lock_); template<VerifyObjectFlags kVerifyFlags = kDefaultVerifyFlags> ALWAYS_INLINE ArraySlice<ArtMethod> GetDeclaredMethodsSlice(PointerSize pointer_size) REQUIRES_SHARED(Locks::mutator_lock_); ALWAYS_INLINE ArraySlice<ArtMethod> GetDeclaredMethods( PointerSize pointer_size) REQUIRES_SHARED(Locks::mutator_lock_); template <PointerSize kPointerSize, bool kTransactionActive> static ObjPtr<Method> GetDeclaredMethodInternal(Thread* self, ObjPtr<Class> klass, ObjPtr<String> name, ObjPtr<ObjectArray<Class>> args) REQUIRES_SHARED(Locks::mutator_lock_); template <PointerSize kPointerSize, bool kTransactionActive> static ObjPtr<Constructor> GetDeclaredConstructorInternal(Thread* self, ObjPtr<Class> klass, ObjPtr<ObjectArray<Class>> args) REQUIRES_SHARED(Locks::mutator_lock_); template<VerifyObjectFlags kVerifyFlags = kDefaultVerifyFlags> ALWAYS_INLINE ArraySlice<ArtMethod> GetDeclaredVirtualMethodsSlice(PointerSize pointer_size) REQUIRES_SHARED(Locks::mutator_lock_); ALWAYS_INLINE ArraySlice<ArtMethod> GetDeclaredVirtualMethods( PointerSize pointer_size) REQUIRES_SHARED(Locks::mutator_lock_); template<VerifyObjectFlags kVerifyFlags = kDefaultVerifyFlags> ALWAYS_INLINE ArraySlice<ArtMethod> GetCopiedMethodsSlice(PointerSize pointer_size) REQUIRES_SHARED(Locks::mutator_lock_); ALWAYS_INLINE ArraySlice<ArtMethod> GetCopiedMethods(PointerSize pointer_size) REQUIRES_SHARED(Locks::mutator_lock_); template<VerifyObjectFlags kVerifyFlags = kDefaultVerifyFlags> ALWAYS_INLINE ArraySlice<ArtMethod> GetVirtualMethodsSlice(PointerSize pointer_size) REQUIRES_SHARED(Locks::mutator_lock_); ALWAYS_INLINE ArraySlice<ArtMethod> GetVirtualMethods( PointerSize pointer_size) REQUIRES_SHARED(Locks::mutator_lock_); // Returns the number of non-inherited virtual methods (sum of declared and copied methods). ALWAYS_INLINE uint32_t NumVirtualMethods() REQUIRES_SHARED(Locks::mutator_lock_); // Returns the number of copied virtual methods. ALWAYS_INLINE uint32_t NumCopiedVirtualMethods() REQUIRES_SHARED(Locks::mutator_lock_); // Returns the number of declared virtual methods. ALWAYS_INLINE uint32_t NumDeclaredVirtualMethods() REQUIRES_SHARED(Locks::mutator_lock_); ALWAYS_INLINE uint32_t NumMethods() REQUIRES_SHARED(Locks::mutator_lock_); static ALWAYS_INLINE uint32_t NumMethods(LengthPrefixedArray<ArtMethod>* methods) REQUIRES_SHARED(Locks::mutator_lock_); template<VerifyObjectFlags kVerifyFlags = kDefaultVerifyFlags> ArtMethod* GetVirtualMethod(size_t i, PointerSize pointer_size) REQUIRES_SHARED(Locks::mutator_lock_); ArtMethod* GetVirtualMethodDuringLinking(size_t i, PointerSize pointer_size) REQUIRES_SHARED(Locks::mutator_lock_); template<VerifyObjectFlags kVerifyFlags = kDefaultVerifyFlags, ReadBarrierOption kReadBarrierOption = kWithReadBarrier> ALWAYS_INLINE PointerArray* GetVTable() REQUIRES_SHARED(Locks::mutator_lock_); ALWAYS_INLINE PointerArray* GetVTableDuringLinking() REQUIRES_SHARED(Locks::mutator_lock_); void SetVTable(PointerArray* new_vtable) REQUIRES_SHARED(Locks::mutator_lock_); static MemberOffset VTableOffset() { return OFFSET_OF_OBJECT_MEMBER(Class, vtable_); } static MemberOffset EmbeddedVTableLengthOffset() { return MemberOffset(sizeof(Class)); } static MemberOffset ImtPtrOffset(PointerSize pointer_size) { return MemberOffset( RoundUp(EmbeddedVTableLengthOffset().Uint32Value() + sizeof(uint32_t), static_cast<size_t>(pointer_size))); } template<VerifyObjectFlags kVerifyFlags = kDefaultVerifyFlags, ReadBarrierOption kReadBarrierOption = kWithReadBarrier> bool ShouldHaveImt() REQUIRES_SHARED(Locks::mutator_lock_) { return ShouldHaveEmbeddedVTable<kVerifyFlags, kReadBarrierOption>(); } template<VerifyObjectFlags kVerifyFlags = kDefaultVerifyFlags, ReadBarrierOption kReadBarrierOption = kWithReadBarrier> bool ShouldHaveEmbeddedVTable() REQUIRES_SHARED(Locks::mutator_lock_) { return IsInstantiable<kVerifyFlags, kReadBarrierOption>(); } bool HasVTable() REQUIRES_SHARED(Locks::mutator_lock_); static MemberOffset EmbeddedVTableEntryOffset(uint32_t i, PointerSize pointer_size); template<VerifyObjectFlags kVerifyFlags = kDefaultVerifyFlags, ReadBarrierOption kReadBarrierOption = kWithReadBarrier> int32_t GetVTableLength() REQUIRES_SHARED(Locks::mutator_lock_); template<VerifyObjectFlags kVerifyFlags = kDefaultVerifyFlags, ReadBarrierOption kReadBarrierOption = kWithReadBarrier> ArtMethod* GetVTableEntry(uint32_t i, PointerSize pointer_size) REQUIRES_SHARED(Locks::mutator_lock_); int32_t GetEmbeddedVTableLength() REQUIRES_SHARED(Locks::mutator_lock_); void SetEmbeddedVTableLength(int32_t len) REQUIRES_SHARED(Locks::mutator_lock_); ImTable* GetImt(PointerSize pointer_size) REQUIRES_SHARED(Locks::mutator_lock_); void SetImt(ImTable* imt, PointerSize pointer_size) REQUIRES_SHARED(Locks::mutator_lock_); ArtMethod* GetEmbeddedVTableEntry(uint32_t i, PointerSize pointer_size) REQUIRES_SHARED(Locks::mutator_lock_); void SetEmbeddedVTableEntry(uint32_t i, ArtMethod* method, PointerSize pointer_size) REQUIRES_SHARED(Locks::mutator_lock_); inline void SetEmbeddedVTableEntryUnchecked(uint32_t i, ArtMethod* method, PointerSize pointer_size) REQUIRES_SHARED(Locks::mutator_lock_); void PopulateEmbeddedVTable(PointerSize pointer_size) REQUIRES_SHARED(Locks::mutator_lock_); // Given a method implemented by this class but potentially from a super class, return the // specific implementation method for this class. ArtMethod* FindVirtualMethodForVirtual(ArtMethod* method, PointerSize pointer_size) REQUIRES_SHARED(Locks::mutator_lock_); // Given a method implemented by this class' super class, return the specific implementation // method for this class. ArtMethod* FindVirtualMethodForSuper(ArtMethod* method, PointerSize pointer_size) REQUIRES_SHARED(Locks::mutator_lock_); // Given a method from some implementor of this interface, return the specific implementation // method for this class. ArtMethod* FindVirtualMethodForInterfaceSuper(ArtMethod* method, PointerSize pointer_size) REQUIRES_SHARED(Locks::mutator_lock_); // Given a method implemented by this class, but potentially from a // super class or interface, return the specific implementation // method for this class. ArtMethod* FindVirtualMethodForInterface(ArtMethod* method, PointerSize pointer_size) REQUIRES_SHARED(Locks::mutator_lock_) ALWAYS_INLINE; ArtMethod* FindVirtualMethodForVirtualOrInterface(ArtMethod* method, PointerSize pointer_size) REQUIRES_SHARED(Locks::mutator_lock_); // Find a method with the given name and signature in an interface class. // // Search for the method declared in the class, then search for a method declared in any // superinterface, then search the superclass java.lang.Object (implicitly declared methods // in an interface without superinterfaces, see JLS 9.2, can be inherited, see JLS 9.4.1). // TODO: Implement search for a unique maximally-specific non-abstract superinterface method. ArtMethod* FindInterfaceMethod(const StringPiece& name, const StringPiece& signature, PointerSize pointer_size) REQUIRES_SHARED(Locks::mutator_lock_); ArtMethod* FindInterfaceMethod(const StringPiece& name, const Signature& signature, PointerSize pointer_size) REQUIRES_SHARED(Locks::mutator_lock_); ArtMethod* FindInterfaceMethod(ObjPtr<DexCache> dex_cache, uint32_t dex_method_idx, PointerSize pointer_size) REQUIRES_SHARED(Locks::mutator_lock_); // Find a method with the given name and signature in a non-interface class. // // Search for the method in the class, following the JLS rules which conflict with the RI // in some cases. The JLS says that inherited methods are searched (JLS 15.12.2.1) and // these can come from a superclass or a superinterface (JLS 8.4.8). We perform the // following search: // 1. Search the methods declared directly in the class. If we find a method with the // given name and signature, return that method. // 2. Search the methods declared in superclasses until we find a method with the given // signature or complete the search in java.lang.Object. If we find a method with the // given name and signature, check if it's been inherited by the class where we're // performing the lookup (qualifying type). If it's inherited, return it. Otherwise, // just remember the method and its declaring class and proceed to step 3. // 3. Search "copied" methods (containing methods inherited from interfaces) in the class // and its superclass chain. If we found a method in step 2 (which was not inherited, // otherwise we would not be performing step 3), end the search when we reach its // declaring class, otherwise search the entire superclass chain. If we find a method // with the given name and signature, return that method. // 4. Return the method found in step 2 if any (not inherited), or null. // // It's the responsibility of the caller to throw exceptions if the returned method (or null) // does not satisfy the request. Special consideration should be given to the case where this // function returns a method that's not inherited (found in step 2, returned in step 4). ArtMethod* FindClassMethod(const StringPiece& name, const StringPiece& signature, PointerSize pointer_size) REQUIRES_SHARED(Locks::mutator_lock_); ArtMethod* FindClassMethod(const StringPiece& name, const Signature& signature, PointerSize pointer_size) REQUIRES_SHARED(Locks::mutator_lock_); ArtMethod* FindClassMethod(ObjPtr<DexCache> dex_cache, uint32_t dex_method_idx, PointerSize pointer_size) REQUIRES_SHARED(Locks::mutator_lock_); ArtMethod* FindConstructor(const StringPiece& signature, PointerSize pointer_size) REQUIRES_SHARED(Locks::mutator_lock_); ArtMethod* FindDeclaredVirtualMethodByName(const StringPiece& name, PointerSize pointer_size) REQUIRES_SHARED(Locks::mutator_lock_); ArtMethod* FindDeclaredDirectMethodByName(const StringPiece& name, PointerSize pointer_size) REQUIRES_SHARED(Locks::mutator_lock_); ArtMethod* FindClassInitializer(PointerSize pointer_size) REQUIRES_SHARED(Locks::mutator_lock_); bool HasDefaultMethods() REQUIRES_SHARED(Locks::mutator_lock_) { return (GetAccessFlags() & kAccHasDefaultMethod) != 0; } bool HasBeenRecursivelyInitialized() REQUIRES_SHARED(Locks::mutator_lock_) { return (GetAccessFlags() & kAccRecursivelyInitialized) != 0; } template<VerifyObjectFlags kVerifyFlags = kDefaultVerifyFlags, ReadBarrierOption kReadBarrierOption = kWithReadBarrier> ALWAYS_INLINE int32_t GetIfTableCount() REQUIRES_SHARED(Locks::mutator_lock_); template<VerifyObjectFlags kVerifyFlags = kDefaultVerifyFlags, ReadBarrierOption kReadBarrierOption = kWithReadBarrier> ALWAYS_INLINE IfTable* GetIfTable() REQUIRES_SHARED(Locks::mutator_lock_); ALWAYS_INLINE void SetIfTable(ObjPtr<IfTable> new_iftable) REQUIRES_SHARED(Locks::mutator_lock_); // Get instance fields of the class (See also GetSFields). LengthPrefixedArray<ArtField>* GetIFieldsPtr() REQUIRES_SHARED(Locks::mutator_lock_); ALWAYS_INLINE IterationRange<StrideIterator<ArtField>> GetIFields() REQUIRES_SHARED(Locks::mutator_lock_); void SetIFieldsPtr(LengthPrefixedArray<ArtField>* new_ifields) REQUIRES_SHARED(Locks::mutator_lock_); // Unchecked edition has no verification flags. void SetIFieldsPtrUnchecked(LengthPrefixedArray<ArtField>* new_sfields) REQUIRES_SHARED(Locks::mutator_lock_); uint32_t NumInstanceFields() REQUIRES_SHARED(Locks::mutator_lock_); ArtField* GetInstanceField(uint32_t i) REQUIRES_SHARED(Locks::mutator_lock_); // Returns the number of instance fields containing reference types. Does not count fields in any // super classes. uint32_t NumReferenceInstanceFields() REQUIRES_SHARED(Locks::mutator_lock_) { DCHECK(IsResolved()); return GetField32(OFFSET_OF_OBJECT_MEMBER(Class, num_reference_instance_fields_)); } uint32_t NumReferenceInstanceFieldsDuringLinking() REQUIRES_SHARED(Locks::mutator_lock_) { DCHECK(IsLoaded() || IsErroneous()); return GetField32(OFFSET_OF_OBJECT_MEMBER(Class, num_reference_instance_fields_)); } void SetNumReferenceInstanceFields(uint32_t new_num) REQUIRES_SHARED(Locks::mutator_lock_) { // Not called within a transaction. SetField32<false>(OFFSET_OF_OBJECT_MEMBER(Class, num_reference_instance_fields_), new_num); } template<VerifyObjectFlags kVerifyFlags = kDefaultVerifyFlags> uint32_t GetReferenceInstanceOffsets() ALWAYS_INLINE REQUIRES_SHARED(Locks::mutator_lock_); void SetReferenceInstanceOffsets(uint32_t new_reference_offsets) REQUIRES_SHARED(Locks::mutator_lock_); // Get the offset of the first reference instance field. Other reference instance fields follow. template<VerifyObjectFlags kVerifyFlags = kDefaultVerifyFlags, ReadBarrierOption kReadBarrierOption = kWithReadBarrier> MemberOffset GetFirstReferenceInstanceFieldOffset() REQUIRES_SHARED(Locks::mutator_lock_); // Returns the number of static fields containing reference types. uint32_t NumReferenceStaticFields() REQUIRES_SHARED(Locks::mutator_lock_) { DCHECK(IsResolved()); return GetField32(OFFSET_OF_OBJECT_MEMBER(Class, num_reference_static_fields_)); } uint32_t NumReferenceStaticFieldsDuringLinking() REQUIRES_SHARED(Locks::mutator_lock_) { DCHECK(IsLoaded() || IsErroneous() || IsRetired()); return GetField32(OFFSET_OF_OBJECT_MEMBER(Class, num_reference_static_fields_)); } void SetNumReferenceStaticFields(uint32_t new_num) REQUIRES_SHARED(Locks::mutator_lock_) { // Not called within a transaction. SetField32<false>(OFFSET_OF_OBJECT_MEMBER(Class, num_reference_static_fields_), new_num); } // Get the offset of the first reference static field. Other reference static fields follow. template <VerifyObjectFlags kVerifyFlags = kDefaultVerifyFlags, ReadBarrierOption kReadBarrierOption = kWithReadBarrier> MemberOffset GetFirstReferenceStaticFieldOffset(PointerSize pointer_size) REQUIRES_SHARED(Locks::mutator_lock_); // Get the offset of the first reference static field. Other reference static fields follow. MemberOffset GetFirstReferenceStaticFieldOffsetDuringLinking(PointerSize pointer_size) REQUIRES_SHARED(Locks::mutator_lock_); // Gets the static fields of the class. LengthPrefixedArray<ArtField>* GetSFieldsPtr() REQUIRES_SHARED(Locks::mutator_lock_); ALWAYS_INLINE IterationRange<StrideIterator<ArtField>> GetSFields() REQUIRES_SHARED(Locks::mutator_lock_); void SetSFieldsPtr(LengthPrefixedArray<ArtField>* new_sfields) REQUIRES_SHARED(Locks::mutator_lock_); // Unchecked edition has no verification flags. void SetSFieldsPtrUnchecked(LengthPrefixedArray<ArtField>* new_sfields) REQUIRES_SHARED(Locks::mutator_lock_); uint32_t NumStaticFields() REQUIRES_SHARED(Locks::mutator_lock_); // TODO: uint16_t ArtField* GetStaticField(uint32_t i) REQUIRES_SHARED(Locks::mutator_lock_); // Find a static or instance field using the JLS resolution order static ArtField* FindField(Thread* self, ObjPtr<Class> klass, const StringPiece& name, const StringPiece& type) REQUIRES_SHARED(Locks::mutator_lock_); // Finds the given instance field in this class or a superclass. ArtField* FindInstanceField(const StringPiece& name, const StringPiece& type) REQUIRES_SHARED(Locks::mutator_lock_); // Finds the given instance field in this class or a superclass, only searches classes that // have the same dex cache. ArtField* FindInstanceField(ObjPtr<DexCache> dex_cache, uint32_t dex_field_idx) REQUIRES_SHARED(Locks::mutator_lock_); ArtField* FindDeclaredInstanceField(const StringPiece& name, const StringPiece& type) REQUIRES_SHARED(Locks::mutator_lock_); ArtField* FindDeclaredInstanceField(ObjPtr<DexCache> dex_cache, uint32_t dex_field_idx) REQUIRES_SHARED(Locks::mutator_lock_); // Finds the given static field in this class or a superclass. static ArtField* FindStaticField(Thread* self, ObjPtr<Class> klass, const StringPiece& name, const StringPiece& type) REQUIRES_SHARED(Locks::mutator_lock_); // Finds the given static field in this class or superclass, only searches classes that // have the same dex cache. static ArtField* FindStaticField(Thread* self, ObjPtr<Class> klass, ObjPtr<DexCache> dex_cache, uint32_t dex_field_idx) REQUIRES_SHARED(Locks::mutator_lock_); ArtField* FindDeclaredStaticField(const StringPiece& name, const StringPiece& type) REQUIRES_SHARED(Locks::mutator_lock_); ArtField* FindDeclaredStaticField(ObjPtr<DexCache> dex_cache, uint32_t dex_field_idx) REQUIRES_SHARED(Locks::mutator_lock_); pid_t GetClinitThreadId() REQUIRES_SHARED(Locks::mutator_lock_) { DCHECK(IsIdxLoaded() || IsErroneous()) << PrettyClass(); return GetField32(OFFSET_OF_OBJECT_MEMBER(Class, clinit_thread_id_)); } void SetClinitThreadId(pid_t new_clinit_thread_id) REQUIRES_SHARED(Locks::mutator_lock_); template<VerifyObjectFlags kVerifyFlags = kDefaultVerifyFlags, ReadBarrierOption kReadBarrierOption = kWithReadBarrier> ClassExt* GetExtData() REQUIRES_SHARED(Locks::mutator_lock_); // Returns the ExtData for this class, allocating one if necessary. This should be the only way // to force ext_data_ to be set. No functions are available for changing an already set ext_data_ // since doing so is not allowed. ClassExt* EnsureExtDataPresent(Thread* self) REQUIRES_SHARED(Locks::mutator_lock_) REQUIRES(!Roles::uninterruptible_); uint16_t GetDexClassDefIndex() REQUIRES_SHARED(Locks::mutator_lock_) { return GetField32(OFFSET_OF_OBJECT_MEMBER(Class, dex_class_def_idx_)); } void SetDexClassDefIndex(uint16_t class_def_idx) REQUIRES_SHARED(Locks::mutator_lock_) { SetField32Transaction(OFFSET_OF_OBJECT_MEMBER(Class, dex_class_def_idx_), class_def_idx); } dex::TypeIndex GetDexTypeIndex() REQUIRES_SHARED(Locks::mutator_lock_) { return dex::TypeIndex( static_cast<uint16_t>(GetField32(OFFSET_OF_OBJECT_MEMBER(Class, dex_type_idx_)))); } void SetDexTypeIndex(dex::TypeIndex type_idx) REQUIRES_SHARED(Locks::mutator_lock_) { SetField32Transaction(OFFSET_OF_OBJECT_MEMBER(Class, dex_type_idx_), type_idx.index_); } dex::TypeIndex FindTypeIndexInOtherDexFile(const DexFile& dex_file) REQUIRES_SHARED(Locks::mutator_lock_); static Class* GetJavaLangClass() REQUIRES_SHARED(Locks::mutator_lock_) { DCHECK(HasJavaLangClass()); return java_lang_Class_.Read(); } static bool HasJavaLangClass() REQUIRES_SHARED(Locks::mutator_lock_) { return !java_lang_Class_.IsNull(); } // Can't call this SetClass or else gets called instead of Object::SetClass in places. static void SetClassClass(ObjPtr<Class> java_lang_Class) REQUIRES_SHARED(Locks::mutator_lock_); static void ResetClass(); static void VisitRoots(RootVisitor* visitor) REQUIRES_SHARED(Locks::mutator_lock_); // Visit native roots visits roots which are keyed off the native pointers such as ArtFields and // ArtMethods. template<ReadBarrierOption kReadBarrierOption = kWithReadBarrier, class Visitor> void VisitNativeRoots(Visitor& visitor, PointerSize pointer_size) REQUIRES_SHARED(Locks::mutator_lock_); // Get one of the primitive classes. static ObjPtr<mirror::Class> GetPrimitiveClass(ObjPtr<mirror::String> name) REQUIRES_SHARED(Locks::mutator_lock_); // When class is verified, set the kAccSkipAccessChecks flag on each method. void SetSkipAccessChecksFlagOnAllMethods(PointerSize pointer_size) REQUIRES_SHARED(Locks::mutator_lock_); // Get the descriptor of the class. In a few cases a std::string is required, rather than // always create one the storage argument is populated and its internal c_str() returned. We do // this to avoid memory allocation in the common case. const char* GetDescriptor(std::string* storage) REQUIRES_SHARED(Locks::mutator_lock_); const char* GetArrayDescriptor(std::string* storage) REQUIRES_SHARED(Locks::mutator_lock_); bool DescriptorEquals(const char* match) REQUIRES_SHARED(Locks::mutator_lock_); const DexFile::ClassDef* GetClassDef() REQUIRES_SHARED(Locks::mutator_lock_); ALWAYS_INLINE uint32_t NumDirectInterfaces() REQUIRES_SHARED(Locks::mutator_lock_); dex::TypeIndex GetDirectInterfaceTypeIdx(uint32_t idx) REQUIRES_SHARED(Locks::mutator_lock_); // Get the direct interface of the `klass` at index `idx` if resolved, otherwise return null. // If the caller expects the interface to be resolved, for example for a resolved `klass`, // that assumption should be checked by `DCHECK(result != nullptr)`. static ObjPtr<Class> GetDirectInterface(Thread* self, ObjPtr<Class> klass, uint32_t idx) REQUIRES_SHARED(Locks::mutator_lock_); // Resolve and get the direct interface of the `klass` at index `idx`. // Returns null with a pending exception if the resolution fails. static ObjPtr<Class> ResolveDirectInterface(Thread* self, Handle<Class> klass, uint32_t idx) REQUIRES_SHARED(Locks::mutator_lock_); const char* GetSourceFile() REQUIRES_SHARED(Locks::mutator_lock_); std::string GetLocation() REQUIRES_SHARED(Locks::mutator_lock_); const DexFile& GetDexFile() REQUIRES_SHARED(Locks::mutator_lock_); const DexFile::TypeList* GetInterfaceTypeList() REQUIRES_SHARED(Locks::mutator_lock_); // Asserts we are initialized or initializing in the given thread. void AssertInitializedOrInitializingInThread(Thread* self) REQUIRES_SHARED(Locks::mutator_lock_); Class* CopyOf(Thread* self, int32_t new_length, ImTable* imt, PointerSize pointer_size) REQUIRES_SHARED(Locks::mutator_lock_) REQUIRES(!Roles::uninterruptible_); // For proxy class only. ObjectArray<Class>* GetProxyInterfaces() REQUIRES_SHARED(Locks::mutator_lock_); // For proxy class only. ObjectArray<ObjectArray<Class>>* GetProxyThrows() REQUIRES_SHARED(Locks::mutator_lock_); // For reference class only. MemberOffset GetDisableIntrinsicFlagOffset() REQUIRES_SHARED(Locks::mutator_lock_); MemberOffset GetSlowPathFlagOffset() REQUIRES_SHARED(Locks::mutator_lock_); bool GetSlowPathEnabled() REQUIRES_SHARED(Locks::mutator_lock_); void SetSlowPath(bool enabled) REQUIRES_SHARED(Locks::mutator_lock_); // May cause thread suspension due to EqualParameters. ArtMethod* GetDeclaredConstructor(Thread* self, Handle<ObjectArray<Class>> args, PointerSize pointer_size) REQUIRES_SHARED(Locks::mutator_lock_); static int32_t GetInnerClassFlags(Handle<Class> h_this, int32_t default_value) REQUIRES_SHARED(Locks::mutator_lock_); // Used to initialize a class in the allocation code path to ensure it is guarded by a StoreStore // fence. class InitializeClassVisitor { public: explicit InitializeClassVisitor(uint32_t class_size) : class_size_(class_size) { } void operator()(ObjPtr<Object> obj, size_t usable_size) const REQUIRES_SHARED(Locks::mutator_lock_); private: const uint32_t class_size_; DISALLOW_COPY_AND_ASSIGN(InitializeClassVisitor); }; // Returns true if the class loader is null, ie the class loader is the boot strap class loader. bool IsBootStrapClassLoaded() REQUIRES_SHARED(Locks::mutator_lock_) { return GetClassLoader() == nullptr; } static size_t ImTableEntrySize(PointerSize pointer_size) { return static_cast<size_t>(pointer_size); } static size_t VTableEntrySize(PointerSize pointer_size) { return static_cast<size_t>(pointer_size); } ALWAYS_INLINE ArraySlice<ArtMethod> GetDirectMethodsSliceUnchecked(PointerSize pointer_size) REQUIRES_SHARED(Locks::mutator_lock_); ALWAYS_INLINE ArraySlice<ArtMethod> GetVirtualMethodsSliceUnchecked(PointerSize pointer_size) REQUIRES_SHARED(Locks::mutator_lock_); ALWAYS_INLINE ArraySlice<ArtMethod> GetDeclaredMethodsSliceUnchecked(PointerSize pointer_size) REQUIRES_SHARED(Locks::mutator_lock_); ALWAYS_INLINE ArraySlice<ArtMethod> GetDeclaredVirtualMethodsSliceUnchecked( PointerSize pointer_size) REQUIRES_SHARED(Locks::mutator_lock_); ALWAYS_INLINE ArraySlice<ArtMethod> GetCopiedMethodsSliceUnchecked(PointerSize pointer_size) REQUIRES_SHARED(Locks::mutator_lock_); static std::string PrettyDescriptor(ObjPtr<mirror::Class> klass) REQUIRES_SHARED(Locks::mutator_lock_); std::string PrettyDescriptor() REQUIRES_SHARED(Locks::mutator_lock_); // Returns a human-readable form of the name of the given class. // Given String.class, the output would be "java.lang.Class<java.lang.String>". static std::string PrettyClass(ObjPtr<mirror::Class> c) REQUIRES_SHARED(Locks::mutator_lock_); std::string PrettyClass() REQUIRES_SHARED(Locks::mutator_lock_); // Returns a human-readable form of the name of the given class with its class loader. static std::string PrettyClassAndClassLoader(ObjPtr<mirror::Class> c) REQUIRES_SHARED(Locks::mutator_lock_); std::string PrettyClassAndClassLoader() REQUIRES_SHARED(Locks::mutator_lock_); // Fix up all of the native pointers in the class by running them through the visitor. Only sets // the corresponding entry in dest if visitor(obj) != obj to prevent dirty memory. Dest should be // initialized to a copy of *this to prevent issues. Does not visit the ArtMethod and ArtField // roots. template <VerifyObjectFlags kVerifyFlags = kDefaultVerifyFlags, ReadBarrierOption kReadBarrierOption = kWithReadBarrier, typename Visitor> void FixupNativePointers(Class* dest, PointerSize pointer_size, const Visitor& visitor) REQUIRES_SHARED(Locks::mutator_lock_); private: ALWAYS_INLINE void SetMethodsPtrInternal(LengthPrefixedArray<ArtMethod>* new_methods) REQUIRES_SHARED(Locks::mutator_lock_); ALWAYS_INLINE static ArraySlice<ArtMethod> GetMethodsSliceRangeUnchecked( LengthPrefixedArray<ArtMethod>* methods, PointerSize pointer_size, uint32_t start_offset, uint32_t end_offset) REQUIRES_SHARED(Locks::mutator_lock_); template <bool throw_on_failure> bool ResolvedFieldAccessTest(ObjPtr<Class> access_to, ArtField* field, ObjPtr<DexCache> dex_cache, uint32_t field_idx) REQUIRES_SHARED(Locks::mutator_lock_); template <bool throw_on_failure> bool ResolvedMethodAccessTest(ObjPtr<Class> access_to, ArtMethod* resolved_method, ObjPtr<DexCache> dex_cache, uint32_t method_idx, InvokeType throw_invoke_type) REQUIRES_SHARED(Locks::mutator_lock_); bool Implements(ObjPtr<Class> klass) REQUIRES_SHARED(Locks::mutator_lock_); bool IsArrayAssignableFromArray(ObjPtr<Class> klass) REQUIRES_SHARED(Locks::mutator_lock_); bool IsAssignableFromArray(ObjPtr<Class> klass) REQUIRES_SHARED(Locks::mutator_lock_); void CheckObjectAlloc() REQUIRES_SHARED(Locks::mutator_lock_); // Unchecked editions is for root visiting. LengthPrefixedArray<ArtField>* GetSFieldsPtrUnchecked() REQUIRES_SHARED(Locks::mutator_lock_); IterationRange<StrideIterator<ArtField>> GetSFieldsUnchecked() REQUIRES_SHARED(Locks::mutator_lock_); LengthPrefixedArray<ArtField>* GetIFieldsPtrUnchecked() REQUIRES_SHARED(Locks::mutator_lock_); IterationRange<StrideIterator<ArtField>> GetIFieldsUnchecked() REQUIRES_SHARED(Locks::mutator_lock_); // The index in the methods_ array where the first declared virtual method is. ALWAYS_INLINE uint32_t GetVirtualMethodsStartOffset() REQUIRES_SHARED(Locks::mutator_lock_); // The index in the methods_ array where the first direct method is. ALWAYS_INLINE uint32_t GetDirectMethodsStartOffset() REQUIRES_SHARED(Locks::mutator_lock_); // The index in the methods_ array where the first copied method is. ALWAYS_INLINE uint32_t GetCopiedMethodsStartOffset() REQUIRES_SHARED(Locks::mutator_lock_); bool ProxyDescriptorEquals(const char* match) REQUIRES_SHARED(Locks::mutator_lock_); template<VerifyObjectFlags kVerifyFlags> void GetAccessFlagsDCheck() REQUIRES_SHARED(Locks::mutator_lock_); // Check that the pointer size matches the one in the class linker. ALWAYS_INLINE static void CheckPointerSize(PointerSize pointer_size); static MemberOffset EmbeddedVTableOffset(PointerSize pointer_size); template <bool kVisitNativeRoots, VerifyObjectFlags kVerifyFlags = kDefaultVerifyFlags, ReadBarrierOption kReadBarrierOption = kWithReadBarrier, typename Visitor> void VisitReferences(ObjPtr<Class> klass, const Visitor& visitor) REQUIRES_SHARED(Locks::mutator_lock_); // 'Class' Object Fields // Order governed by java field ordering. See art::ClassLinker::LinkFields. // Defining class loader, or null for the "bootstrap" system loader. HeapReference<ClassLoader> class_loader_; // For array classes, the component class object for instanceof/checkcast // (for String[][][], this will be String[][]). null for non-array classes. HeapReference<Class> component_type_; // DexCache of resolved constant pool entries (will be null for classes generated by the // runtime such as arrays and primitive classes). HeapReference<DexCache> dex_cache_; // Extraneous class data that is not always needed. This field is allocated lazily and may // only be set with 'this' locked. This is synchronized on 'this'. // TODO(allight) We should probably synchronize it on something external or handle allocation in // some other (safe) way to prevent possible deadlocks. HeapReference<ClassExt> ext_data_; // The interface table (iftable_) contains pairs of a interface class and an array of the // interface methods. There is one pair per interface supported by this class. That means one // pair for each interface we support directly, indirectly via superclass, or indirectly via a // superinterface. This will be null if neither we nor our superclass implement any interfaces. // // Why we need this: given "class Foo implements Face", declare "Face faceObj = new Foo()". // Invoke faceObj.blah(), where "blah" is part of the Face interface. We can't easily use a // single vtable. // // For every interface a concrete class implements, we create an array of the concrete vtable_ // methods for the methods in the interface. HeapReference<IfTable> iftable_; // Descriptor for the class such as "java.lang.Class" or "[C". Lazily initialized by ComputeName HeapReference<String> name_; // The superclass, or null if this is java.lang.Object or a primitive type. // // Note that interfaces have java.lang.Object as their // superclass. This doesn't match the expectations in JNI // GetSuperClass or java.lang.Class.getSuperClass() which need to // check for interfaces and return null. HeapReference<Class> super_class_; // Virtual method table (vtable), for use by "invoke-virtual". The vtable from the superclass is // copied in, and virtual methods from our class either replace those from the super or are // appended. For abstract classes, methods may be created in the vtable that aren't in // virtual_ methods_ for miranda methods. HeapReference<PointerArray> vtable_; // instance fields // // These describe the layout of the contents of an Object. // Note that only the fields directly declared by this class are // listed in ifields; fields declared by a superclass are listed in // the superclass's Class.ifields. // // ArtFields are allocated as a length prefixed ArtField array, and not an array of pointers to // ArtFields. uint64_t ifields_; // Pointer to an ArtMethod length-prefixed array. All the methods where this class is the place // where they are logically defined. This includes all private, static, final and virtual methods // as well as inherited default methods and miranda methods. // // The slice methods_ [0, virtual_methods_offset_) are the direct (static, private, init) methods // declared by this class. // // The slice methods_ [virtual_methods_offset_, copied_methods_offset_) are the virtual methods // declared by this class. // // The slice methods_ [copied_methods_offset_, |methods_|) are the methods that are copied from // interfaces such as miranda or default methods. These are copied for resolution purposes as this // class is where they are (logically) declared as far as the virtual dispatch is concerned. // // Note that this field is used by the native debugger as the unique identifier for the type. uint64_t methods_; // Static fields length-prefixed array. uint64_t sfields_; // Access flags; low 16 bits are defined by VM spec. uint32_t access_flags_; // Class flags to help speed up visiting object references. uint32_t class_flags_; // Total size of the Class instance; used when allocating storage on gc heap. // See also object_size_. uint32_t class_size_; // Tid used to check for recursive <clinit> invocation. pid_t clinit_thread_id_; // ClassDef index in dex file, -1 if no class definition such as an array. // TODO: really 16bits int32_t dex_class_def_idx_; // Type index in dex file. // TODO: really 16bits int32_t dex_type_idx_; // Number of instance fields that are object refs. uint32_t num_reference_instance_fields_; // Number of static fields that are object refs, uint32_t num_reference_static_fields_; // Total object size; used when allocating storage on gc heap. // (For interfaces and abstract classes this will be zero.) // See also class_size_. uint32_t object_size_; // Aligned object size for allocation fast path. The value is max uint32_t if the object is // uninitialized or finalizable. Not currently used for variable sized objects. uint32_t object_size_alloc_fast_path_; // The lower 16 bits contains a Primitive::Type value. The upper 16 // bits contains the size shift of the primitive type. uint32_t primitive_type_; // Bitmap of offsets of ifields. uint32_t reference_instance_offsets_; // See the real definition in subtype_check_bits_and_status.h // typeof(status_) is actually SubtypeCheckBitsAndStatus. uint32_t status_; // The offset of the first virtual method that is copied from an interface. This includes miranda, // default, and default-conflict methods. Having a hard limit of ((2 << 16) - 1) for methods // defined on a single class is well established in Java so we will use only uint16_t's here. uint16_t copied_methods_offset_; // The offset of the first declared virtual methods in the methods_ array. uint16_t virtual_methods_offset_; // TODO: ? // initiating class loader list // NOTE: for classes with low serialNumber, these are unused, and the // values are kept in a table in gDvm. // InitiatingLoaderList initiating_loader_list_; // The following data exist in real class objects. // Embedded Imtable, for class object that's not an interface, fixed size. // ImTableEntry embedded_imtable_[0]; // Embedded Vtable, for class object that's not an interface, variable size. // VTableEntry embedded_vtable_[0]; // Static fields, variable size. // uint32_t fields_[0]; // java.lang.Class static GcRoot<Class> java_lang_Class_; ART_FRIEND_TEST(DexCacheTest, TestResolvedFieldAccess); // For ResolvedFieldAccessTest friend struct art::ClassOffsets; // for verifying offset information friend class Object; // For VisitReferences DISALLOW_IMPLICIT_CONSTRUCTORS(Class); }; } // namespace mirror } // namespace art #endif // ART_RUNTIME_MIRROR_CLASS_H_