/* * Copyright (C) 2011 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef ART_RUNTIME_MIRROR_OBJECT_INL_H_ #define ART_RUNTIME_MIRROR_OBJECT_INL_H_ #include "object.h" #include "array-inl.h" #include "art_field.h" #include "art_method.h" #include "base/atomic.h" #include "class-inl.h" #include "class_flags.h" #include "class_linker.h" #include "dex_cache.h" #include "heap_poisoning.h" #include "lock_word-inl.h" #include "monitor.h" #include "obj_ptr-inl.h" #include "object-readbarrier-inl.h" #include "object_array-inl.h" #include "object_reference-inl.h" #include "read_barrier-inl.h" #include "reference.h" #include "runtime.h" #include "string-inl.h" #include "throwable.h" namespace art { namespace mirror { inline uint32_t Object::ClassSize(PointerSize pointer_size) { uint32_t vtable_entries = kVTableLength; return Class::ComputeClassSize(true, vtable_entries, 0, 0, 0, 0, 0, pointer_size); } template<VerifyObjectFlags kVerifyFlags, ReadBarrierOption kReadBarrierOption> inline Class* Object::GetClass() { return GetFieldObject<Class, kVerifyFlags, kReadBarrierOption>( OFFSET_OF_OBJECT_MEMBER(Object, klass_)); } template<VerifyObjectFlags kVerifyFlags> inline void Object::SetClass(ObjPtr<Class> new_klass) { // new_klass may be null prior to class linker initialization. // We don't mark the card as this occurs as part of object allocation. Not all objects have // backing cards, such as large objects. // We use non transactional version since we can't undo this write. We also disable checking as // we may run in transaction mode here. SetFieldObjectWithoutWriteBarrier<false, false, static_cast<VerifyObjectFlags>(kVerifyFlags & ~kVerifyThis)>( OFFSET_OF_OBJECT_MEMBER(Object, klass_), new_klass); } template<VerifyObjectFlags kVerifyFlags> inline void Object::SetLockWord(LockWord new_val, bool as_volatile) { // Force use of non-transactional mode and do not check. if (as_volatile) { SetField32Volatile<false, false, kVerifyFlags>( OFFSET_OF_OBJECT_MEMBER(Object, monitor_), new_val.GetValue()); } else { SetField32<false, false, kVerifyFlags>( OFFSET_OF_OBJECT_MEMBER(Object, monitor_), new_val.GetValue()); } } inline bool Object::CasLockWordWeakSequentiallyConsistent(LockWord old_val, LockWord new_val) { // Force use of non-transactional mode and do not check. return CasFieldWeakSequentiallyConsistent32<false, false>( OFFSET_OF_OBJECT_MEMBER(Object, monitor_), old_val.GetValue(), new_val.GetValue()); } inline bool Object::CasLockWordWeakAcquire(LockWord old_val, LockWord new_val) { // Force use of non-transactional mode and do not check. return CasFieldWeakAcquire32<false, false>( OFFSET_OF_OBJECT_MEMBER(Object, monitor_), old_val.GetValue(), new_val.GetValue()); } inline uint32_t Object::GetLockOwnerThreadId() { return Monitor::GetLockOwnerThreadId(this); } inline mirror::Object* Object::MonitorEnter(Thread* self) { return Monitor::MonitorEnter(self, this, /*trylock*/false); } inline mirror::Object* Object::MonitorTryEnter(Thread* self) { return Monitor::MonitorEnter(self, this, /*trylock*/true); } inline bool Object::MonitorExit(Thread* self) { return Monitor::MonitorExit(self, this); } inline void Object::Notify(Thread* self) { Monitor::Notify(self, this); } inline void Object::NotifyAll(Thread* self) { Monitor::NotifyAll(self, this); } inline void Object::Wait(Thread* self) { Monitor::Wait(self, this, 0, 0, true, kWaiting); } inline void Object::Wait(Thread* self, int64_t ms, int32_t ns) { Monitor::Wait(self, this, ms, ns, true, kTimedWaiting); } inline uint32_t Object::GetMarkBit() { #ifdef USE_READ_BARRIER return GetLockWord(false).MarkBitState(); #else LOG(FATAL) << "Unreachable"; UNREACHABLE(); #endif } inline void Object::SetReadBarrierState(uint32_t rb_state) { if (!kUseBakerReadBarrier) { LOG(FATAL) << "Unreachable"; UNREACHABLE(); } DCHECK(ReadBarrier::IsValidReadBarrierState(rb_state)) << rb_state; LockWord lw = GetLockWord(false); lw.SetReadBarrierState(rb_state); SetLockWord(lw, false); } inline void Object::AssertReadBarrierState() const { CHECK(kUseBakerReadBarrier); Object* obj = const_cast<Object*>(this); DCHECK(obj->GetReadBarrierState() == ReadBarrier::WhiteState()) << "Bad Baker pointer: obj=" << reinterpret_cast<void*>(obj) << " rb_state" << reinterpret_cast<void*>(obj->GetReadBarrierState()); } template<VerifyObjectFlags kVerifyFlags> inline bool Object::VerifierInstanceOf(ObjPtr<Class> klass) { DCHECK(klass != nullptr); DCHECK(GetClass<kVerifyFlags>() != nullptr); return klass->IsInterface() || InstanceOf(klass); } template<VerifyObjectFlags kVerifyFlags> inline bool Object::InstanceOf(ObjPtr<Class> klass) { DCHECK(klass != nullptr); DCHECK(GetClass<kVerifyNone>() != nullptr) << "this=" << std::hex << reinterpret_cast<uintptr_t>(this) << std::dec; return klass->IsAssignableFrom(GetClass<kVerifyFlags>()); } template<VerifyObjectFlags kVerifyFlags, ReadBarrierOption kReadBarrierOption> inline bool Object::IsClass() { Class* java_lang_Class = GetClass<kVerifyFlags, kReadBarrierOption>()-> template GetClass<kVerifyFlags, kReadBarrierOption>(); return GetClass<static_cast<VerifyObjectFlags>(kVerifyFlags & ~kVerifyThis), kReadBarrierOption>() == java_lang_Class; } template<VerifyObjectFlags kVerifyFlags, ReadBarrierOption kReadBarrierOption> inline Class* Object::AsClass() { DCHECK((IsClass<kVerifyFlags, kReadBarrierOption>())); return down_cast<Class*>(this); } template<VerifyObjectFlags kVerifyFlags, ReadBarrierOption kReadBarrierOption> inline bool Object::IsObjectArray() { constexpr auto kNewFlags = static_cast<VerifyObjectFlags>(kVerifyFlags & ~kVerifyThis); return IsArrayInstance<kVerifyFlags, kReadBarrierOption>() && !GetClass<kNewFlags, kReadBarrierOption>()-> template GetComponentType<kNewFlags, kReadBarrierOption>()->IsPrimitive(); } template<class T, VerifyObjectFlags kVerifyFlags, ReadBarrierOption kReadBarrierOption> inline ObjectArray<T>* Object::AsObjectArray() { DCHECK((IsObjectArray<kVerifyFlags, kReadBarrierOption>())); return down_cast<ObjectArray<T>*>(this); } template<VerifyObjectFlags kVerifyFlags, ReadBarrierOption kReadBarrierOption> inline bool Object::IsArrayInstance() { return GetClass<kVerifyFlags, kReadBarrierOption>()-> template IsArrayClass<kVerifyFlags, kReadBarrierOption>(); } template<VerifyObjectFlags kVerifyFlags, ReadBarrierOption kReadBarrierOption> inline bool Object::IsReferenceInstance() { return GetClass<kVerifyFlags, kReadBarrierOption>()->IsTypeOfReferenceClass(); } template<VerifyObjectFlags kVerifyFlags, ReadBarrierOption kReadBarrierOption> inline Reference* Object::AsReference() { DCHECK((IsReferenceInstance<kVerifyFlags, kReadBarrierOption>())); return down_cast<Reference*>(this); } template<VerifyObjectFlags kVerifyFlags, ReadBarrierOption kReadBarrierOption> inline Array* Object::AsArray() { DCHECK((IsArrayInstance<kVerifyFlags, kReadBarrierOption>())); return down_cast<Array*>(this); } template<VerifyObjectFlags kVerifyFlags> inline BooleanArray* Object::AsBooleanArray() { constexpr auto kNewFlags = static_cast<VerifyObjectFlags>(kVerifyFlags & ~kVerifyThis); DCHECK(GetClass<kVerifyFlags>()->IsArrayClass()); DCHECK(GetClass<kNewFlags>()->GetComponentType()->IsPrimitiveBoolean()); return down_cast<BooleanArray*>(this); } template<VerifyObjectFlags kVerifyFlags> inline ByteArray* Object::AsByteArray() { constexpr auto kNewFlags = static_cast<VerifyObjectFlags>(kVerifyFlags & ~kVerifyThis); DCHECK(GetClass<kVerifyFlags>()->IsArrayClass()); DCHECK(GetClass<kNewFlags>()->template GetComponentType<kNewFlags>()->IsPrimitiveByte()); return down_cast<ByteArray*>(this); } template<VerifyObjectFlags kVerifyFlags> inline ByteArray* Object::AsByteSizedArray() { constexpr auto kNewFlags = static_cast<VerifyObjectFlags>(kVerifyFlags & ~kVerifyThis); DCHECK(GetClass<kVerifyFlags>()->IsArrayClass()); DCHECK(GetClass<kNewFlags>()->template GetComponentType<kNewFlags>()->IsPrimitiveByte() || GetClass<kNewFlags>()->template GetComponentType<kNewFlags>()->IsPrimitiveBoolean()); return down_cast<ByteArray*>(this); } template<VerifyObjectFlags kVerifyFlags> inline CharArray* Object::AsCharArray() { constexpr auto kNewFlags = static_cast<VerifyObjectFlags>(kVerifyFlags & ~kVerifyThis); DCHECK(GetClass<kVerifyFlags>()->IsArrayClass()); DCHECK(GetClass<kNewFlags>()->template GetComponentType<kNewFlags>()->IsPrimitiveChar()); return down_cast<CharArray*>(this); } template<VerifyObjectFlags kVerifyFlags> inline ShortArray* Object::AsShortArray() { constexpr auto kNewFlags = static_cast<VerifyObjectFlags>(kVerifyFlags & ~kVerifyThis); DCHECK(GetClass<kVerifyFlags>()->IsArrayClass()); DCHECK(GetClass<kNewFlags>()->template GetComponentType<kNewFlags>()->IsPrimitiveShort()); return down_cast<ShortArray*>(this); } template<VerifyObjectFlags kVerifyFlags> inline ShortArray* Object::AsShortSizedArray() { constexpr auto kNewFlags = static_cast<VerifyObjectFlags>(kVerifyFlags & ~kVerifyThis); DCHECK(GetClass<kVerifyFlags>()->IsArrayClass()); DCHECK(GetClass<kNewFlags>()->template GetComponentType<kNewFlags>()->IsPrimitiveShort() || GetClass<kNewFlags>()->template GetComponentType<kNewFlags>()->IsPrimitiveChar()); return down_cast<ShortArray*>(this); } template<VerifyObjectFlags kVerifyFlags, ReadBarrierOption kReadBarrierOption> inline bool Object::IsIntArray() { constexpr auto kNewFlags = static_cast<VerifyObjectFlags>(kVerifyFlags & ~kVerifyThis); ObjPtr<Class> klass = GetClass<kVerifyFlags, kReadBarrierOption>(); ObjPtr<Class> component_type = klass->GetComponentType<kVerifyFlags, kReadBarrierOption>(); return component_type != nullptr && component_type->template IsPrimitiveInt<kNewFlags>(); } template<VerifyObjectFlags kVerifyFlags, ReadBarrierOption kReadBarrierOption> inline IntArray* Object::AsIntArray() { DCHECK((IsIntArray<kVerifyFlags, kReadBarrierOption>())); return down_cast<IntArray*>(this); } template<VerifyObjectFlags kVerifyFlags, ReadBarrierOption kReadBarrierOption> inline bool Object::IsLongArray() { constexpr auto kNewFlags = static_cast<VerifyObjectFlags>(kVerifyFlags & ~kVerifyThis); ObjPtr<Class> klass = GetClass<kVerifyFlags, kReadBarrierOption>(); ObjPtr<Class> component_type = klass->GetComponentType<kVerifyFlags, kReadBarrierOption>(); return component_type != nullptr && component_type->template IsPrimitiveLong<kNewFlags>(); } template<VerifyObjectFlags kVerifyFlags, ReadBarrierOption kReadBarrierOption> inline LongArray* Object::AsLongArray() { DCHECK((IsLongArray<kVerifyFlags, kReadBarrierOption>())); return down_cast<LongArray*>(this); } template<VerifyObjectFlags kVerifyFlags> inline bool Object::IsFloatArray() { constexpr auto kNewFlags = static_cast<VerifyObjectFlags>(kVerifyFlags & ~kVerifyThis); auto* component_type = GetClass<kVerifyFlags>()->GetComponentType(); return component_type != nullptr && component_type->template IsPrimitiveFloat<kNewFlags>(); } template<VerifyObjectFlags kVerifyFlags> inline FloatArray* Object::AsFloatArray() { DCHECK(IsFloatArray<kVerifyFlags>()); constexpr auto kNewFlags = static_cast<VerifyObjectFlags>(kVerifyFlags & ~kVerifyThis); DCHECK(GetClass<kVerifyFlags>()->IsArrayClass()); DCHECK(GetClass<kNewFlags>()->template GetComponentType<kNewFlags>()->IsPrimitiveFloat()); return down_cast<FloatArray*>(this); } template<VerifyObjectFlags kVerifyFlags> inline bool Object::IsDoubleArray() { constexpr auto kNewFlags = static_cast<VerifyObjectFlags>(kVerifyFlags & ~kVerifyThis); auto* component_type = GetClass<kVerifyFlags>()->GetComponentType(); return component_type != nullptr && component_type->template IsPrimitiveDouble<kNewFlags>(); } template<VerifyObjectFlags kVerifyFlags> inline DoubleArray* Object::AsDoubleArray() { DCHECK(IsDoubleArray<kVerifyFlags>()); constexpr auto kNewFlags = static_cast<VerifyObjectFlags>(kVerifyFlags & ~kVerifyThis); DCHECK(GetClass<kVerifyFlags>()->IsArrayClass()); DCHECK(GetClass<kNewFlags>()->template GetComponentType<kNewFlags>()->IsPrimitiveDouble()); return down_cast<DoubleArray*>(this); } template<VerifyObjectFlags kVerifyFlags, ReadBarrierOption kReadBarrierOption> inline bool Object::IsString() { return GetClass<kVerifyFlags, kReadBarrierOption>()->IsStringClass(); } template<VerifyObjectFlags kVerifyFlags, ReadBarrierOption kReadBarrierOption> inline String* Object::AsString() { DCHECK((IsString<kVerifyFlags, kReadBarrierOption>())); return down_cast<String*>(this); } template<VerifyObjectFlags kVerifyFlags> inline Throwable* Object::AsThrowable() { DCHECK(GetClass<kVerifyFlags>()->IsThrowableClass()); return down_cast<Throwable*>(this); } template<VerifyObjectFlags kVerifyFlags> inline bool Object::IsWeakReferenceInstance() { return GetClass<kVerifyFlags>()->IsWeakReferenceClass(); } template<VerifyObjectFlags kVerifyFlags> inline bool Object::IsSoftReferenceInstance() { return GetClass<kVerifyFlags>()->IsSoftReferenceClass(); } template<VerifyObjectFlags kVerifyFlags> inline bool Object::IsFinalizerReferenceInstance() { return GetClass<kVerifyFlags>()->IsFinalizerReferenceClass(); } template<VerifyObjectFlags kVerifyFlags> inline FinalizerReference* Object::AsFinalizerReference() { DCHECK(IsFinalizerReferenceInstance<kVerifyFlags>()); return down_cast<FinalizerReference*>(this); } template<VerifyObjectFlags kVerifyFlags> inline bool Object::IsPhantomReferenceInstance() { return GetClass<kVerifyFlags>()->IsPhantomReferenceClass(); } template<VerifyObjectFlags kVerifyFlags> inline size_t Object::SizeOf() { // Read barrier is never required for SizeOf since objects sizes are constant. Reading from-space // values is OK because of that. static constexpr ReadBarrierOption kReadBarrierOption = kWithoutReadBarrier; size_t result; constexpr auto kNewFlags = static_cast<VerifyObjectFlags>(kVerifyFlags & ~kVerifyThis); if (IsArrayInstance<kVerifyFlags, kReadBarrierOption>()) { result = AsArray<kNewFlags, kReadBarrierOption>()-> template SizeOf<kNewFlags, kReadBarrierOption>(); } else if (IsClass<kNewFlags, kReadBarrierOption>()) { result = AsClass<kNewFlags, kReadBarrierOption>()-> template SizeOf<kNewFlags, kReadBarrierOption>(); } else if (GetClass<kNewFlags, kReadBarrierOption>()->IsStringClass()) { result = AsString<kNewFlags, kReadBarrierOption>()-> template SizeOf<kNewFlags>(); } else { result = GetClass<kNewFlags, kReadBarrierOption>()-> template GetObjectSize<kNewFlags, kReadBarrierOption>(); } DCHECK_GE(result, sizeof(Object)) << " class=" << Class::PrettyClass(GetClass<kNewFlags, kReadBarrierOption>()); return result; } template<VerifyObjectFlags kVerifyFlags, bool kIsVolatile> inline int8_t Object::GetFieldByte(MemberOffset field_offset) { if (kVerifyFlags & kVerifyThis) { VerifyObject(this); } return GetField<int8_t, kIsVolatile>(field_offset); } template<VerifyObjectFlags kVerifyFlags> inline uint8_t Object::GetFieldBooleanVolatile(MemberOffset field_offset) { return GetFieldBoolean<kVerifyFlags, true>(field_offset); } template<VerifyObjectFlags kVerifyFlags> inline int8_t Object::GetFieldByteVolatile(MemberOffset field_offset) { return GetFieldByte<kVerifyFlags, true>(field_offset); } template<bool kTransactionActive, bool kCheckTransaction, VerifyObjectFlags kVerifyFlags, bool kIsVolatile> inline void Object::SetFieldBoolean(MemberOffset field_offset, uint8_t new_value) REQUIRES_SHARED(Locks::mutator_lock_) { if (kCheckTransaction) { DCHECK_EQ(kTransactionActive, Runtime::Current()->IsActiveTransaction()); } if (kTransactionActive) { Runtime::Current()->RecordWriteFieldBoolean(this, field_offset, GetFieldBoolean<kVerifyFlags, kIsVolatile>(field_offset), kIsVolatile); } if (kVerifyFlags & kVerifyThis) { VerifyObject(this); } SetField<uint8_t, kIsVolatile>(field_offset, new_value); } template<bool kTransactionActive, bool kCheckTransaction, VerifyObjectFlags kVerifyFlags, bool kIsVolatile> inline void Object::SetFieldByte(MemberOffset field_offset, int8_t new_value) REQUIRES_SHARED(Locks::mutator_lock_) { if (kCheckTransaction) { DCHECK_EQ(kTransactionActive, Runtime::Current()->IsActiveTransaction()); } if (kTransactionActive) { Runtime::Current()->RecordWriteFieldByte(this, field_offset, GetFieldByte<kVerifyFlags, kIsVolatile>(field_offset), kIsVolatile); } if (kVerifyFlags & kVerifyThis) { VerifyObject(this); } SetField<int8_t, kIsVolatile>(field_offset, new_value); } template<bool kTransactionActive, bool kCheckTransaction, VerifyObjectFlags kVerifyFlags> inline void Object::SetFieldBooleanVolatile(MemberOffset field_offset, uint8_t new_value) { return SetFieldBoolean<kTransactionActive, kCheckTransaction, kVerifyFlags, true>( field_offset, new_value); } template<bool kTransactionActive, bool kCheckTransaction, VerifyObjectFlags kVerifyFlags> inline void Object::SetFieldByteVolatile(MemberOffset field_offset, int8_t new_value) { return SetFieldByte<kTransactionActive, kCheckTransaction, kVerifyFlags, true>( field_offset, new_value); } template<VerifyObjectFlags kVerifyFlags, bool kIsVolatile> inline uint16_t Object::GetFieldChar(MemberOffset field_offset) { if (kVerifyFlags & kVerifyThis) { VerifyObject(this); } return GetField<uint16_t, kIsVolatile>(field_offset); } template<VerifyObjectFlags kVerifyFlags, bool kIsVolatile> inline int16_t Object::GetFieldShort(MemberOffset field_offset) { if (kVerifyFlags & kVerifyThis) { VerifyObject(this); } return GetField<int16_t, kIsVolatile>(field_offset); } template<VerifyObjectFlags kVerifyFlags> inline uint16_t Object::GetFieldCharVolatile(MemberOffset field_offset) { return GetFieldChar<kVerifyFlags, true>(field_offset); } template<VerifyObjectFlags kVerifyFlags> inline int16_t Object::GetFieldShortVolatile(MemberOffset field_offset) { return GetFieldShort<kVerifyFlags, true>(field_offset); } template<bool kTransactionActive, bool kCheckTransaction, VerifyObjectFlags kVerifyFlags, bool kIsVolatile> inline void Object::SetFieldChar(MemberOffset field_offset, uint16_t new_value) { if (kCheckTransaction) { DCHECK_EQ(kTransactionActive, Runtime::Current()->IsActiveTransaction()); } if (kTransactionActive) { Runtime::Current()->RecordWriteFieldChar(this, field_offset, GetFieldChar<kVerifyFlags, kIsVolatile>(field_offset), kIsVolatile); } if (kVerifyFlags & kVerifyThis) { VerifyObject(this); } SetField<uint16_t, kIsVolatile>(field_offset, new_value); } template<bool kTransactionActive, bool kCheckTransaction, VerifyObjectFlags kVerifyFlags, bool kIsVolatile> inline void Object::SetFieldShort(MemberOffset field_offset, int16_t new_value) { if (kCheckTransaction) { DCHECK_EQ(kTransactionActive, Runtime::Current()->IsActiveTransaction()); } if (kTransactionActive) { Runtime::Current()->RecordWriteFieldChar(this, field_offset, GetFieldShort<kVerifyFlags, kIsVolatile>(field_offset), kIsVolatile); } if (kVerifyFlags & kVerifyThis) { VerifyObject(this); } SetField<int16_t, kIsVolatile>(field_offset, new_value); } template<bool kTransactionActive, bool kCheckTransaction, VerifyObjectFlags kVerifyFlags> inline void Object::SetFieldCharVolatile(MemberOffset field_offset, uint16_t new_value) { return SetFieldChar<kTransactionActive, kCheckTransaction, kVerifyFlags, true>( field_offset, new_value); } template<bool kTransactionActive, bool kCheckTransaction, VerifyObjectFlags kVerifyFlags> inline void Object::SetFieldShortVolatile(MemberOffset field_offset, int16_t new_value) { return SetFieldShort<kTransactionActive, kCheckTransaction, kVerifyFlags, true>( field_offset, new_value); } template<bool kTransactionActive, bool kCheckTransaction, VerifyObjectFlags kVerifyFlags, bool kIsVolatile> inline void Object::SetField32(MemberOffset field_offset, int32_t new_value) { if (kCheckTransaction) { DCHECK_EQ(kTransactionActive, Runtime::Current()->IsActiveTransaction()); } if (kTransactionActive) { Runtime::Current()->RecordWriteField32(this, field_offset, GetField32<kVerifyFlags, kIsVolatile>(field_offset), kIsVolatile); } if (kVerifyFlags & kVerifyThis) { VerifyObject(this); } SetField<int32_t, kIsVolatile>(field_offset, new_value); } template<bool kTransactionActive, bool kCheckTransaction, VerifyObjectFlags kVerifyFlags> inline void Object::SetField32Volatile(MemberOffset field_offset, int32_t new_value) { SetField32<kTransactionActive, kCheckTransaction, kVerifyFlags, true>(field_offset, new_value); } template<bool kCheckTransaction, VerifyObjectFlags kVerifyFlags, bool kIsVolatile> inline void Object::SetField32Transaction(MemberOffset field_offset, int32_t new_value) { if (Runtime::Current()->IsActiveTransaction()) { SetField32<true, kCheckTransaction, kVerifyFlags, kIsVolatile>(field_offset, new_value); } else { SetField32<false, kCheckTransaction, kVerifyFlags, kIsVolatile>(field_offset, new_value); } } // TODO: Pass memory_order_ and strong/weak as arguments to avoid code duplication? template<bool kTransactionActive, bool kCheckTransaction, VerifyObjectFlags kVerifyFlags> inline bool Object::CasFieldWeakSequentiallyConsistent32(MemberOffset field_offset, int32_t old_value, int32_t new_value) { if (kCheckTransaction) { DCHECK_EQ(kTransactionActive, Runtime::Current()->IsActiveTransaction()); } if (kTransactionActive) { Runtime::Current()->RecordWriteField32(this, field_offset, old_value, true); } if (kVerifyFlags & kVerifyThis) { VerifyObject(this); } uint8_t* raw_addr = reinterpret_cast<uint8_t*>(this) + field_offset.Int32Value(); AtomicInteger* atomic_addr = reinterpret_cast<AtomicInteger*>(raw_addr); return atomic_addr->CompareAndSetWeakSequentiallyConsistent(old_value, new_value); } template<bool kTransactionActive, bool kCheckTransaction, VerifyObjectFlags kVerifyFlags> inline bool Object::CasFieldWeakAcquire32(MemberOffset field_offset, int32_t old_value, int32_t new_value) { if (kCheckTransaction) { DCHECK_EQ(kTransactionActive, Runtime::Current()->IsActiveTransaction()); } if (kTransactionActive) { Runtime::Current()->RecordWriteField32(this, field_offset, old_value, true); } if (kVerifyFlags & kVerifyThis) { VerifyObject(this); } uint8_t* raw_addr = reinterpret_cast<uint8_t*>(this) + field_offset.Int32Value(); AtomicInteger* atomic_addr = reinterpret_cast<AtomicInteger*>(raw_addr); return atomic_addr->CompareAndSetWeakAcquire(old_value, new_value); } template<bool kTransactionActive, bool kCheckTransaction, VerifyObjectFlags kVerifyFlags> inline bool Object::CasFieldWeakRelease32(MemberOffset field_offset, int32_t old_value, int32_t new_value) { if (kCheckTransaction) { DCHECK_EQ(kTransactionActive, Runtime::Current()->IsActiveTransaction()); } if (kTransactionActive) { Runtime::Current()->RecordWriteField32(this, field_offset, old_value, true); } if (kVerifyFlags & kVerifyThis) { VerifyObject(this); } uint8_t* raw_addr = reinterpret_cast<uint8_t*>(this) + field_offset.Int32Value(); AtomicInteger* atomic_addr = reinterpret_cast<AtomicInteger*>(raw_addr); return atomic_addr->CompareAndSetWeakRelease(old_value, new_value); } template<bool kTransactionActive, bool kCheckTransaction, VerifyObjectFlags kVerifyFlags> inline bool Object::CasFieldStrongSequentiallyConsistent32(MemberOffset field_offset, int32_t old_value, int32_t new_value) { if (kCheckTransaction) { DCHECK_EQ(kTransactionActive, Runtime::Current()->IsActiveTransaction()); } if (kTransactionActive) { Runtime::Current()->RecordWriteField32(this, field_offset, old_value, true); } if (kVerifyFlags & kVerifyThis) { VerifyObject(this); } uint8_t* raw_addr = reinterpret_cast<uint8_t*>(this) + field_offset.Int32Value(); AtomicInteger* atomic_addr = reinterpret_cast<AtomicInteger*>(raw_addr); return atomic_addr->CompareAndSetStrongSequentiallyConsistent(old_value, new_value); } template<bool kTransactionActive, bool kCheckTransaction, VerifyObjectFlags kVerifyFlags, bool kIsVolatile> inline void Object::SetField64(MemberOffset field_offset, int64_t new_value) { if (kCheckTransaction) { DCHECK_EQ(kTransactionActive, Runtime::Current()->IsActiveTransaction()); } if (kTransactionActive) { Runtime::Current()->RecordWriteField64(this, field_offset, GetField64<kVerifyFlags, kIsVolatile>(field_offset), kIsVolatile); } if (kVerifyFlags & kVerifyThis) { VerifyObject(this); } SetField<int64_t, kIsVolatile>(field_offset, new_value); } template<bool kTransactionActive, bool kCheckTransaction, VerifyObjectFlags kVerifyFlags> inline void Object::SetField64Volatile(MemberOffset field_offset, int64_t new_value) { return SetField64<kTransactionActive, kCheckTransaction, kVerifyFlags, true>(field_offset, new_value); } template<bool kCheckTransaction, VerifyObjectFlags kVerifyFlags, bool kIsVolatile> inline void Object::SetField64Transaction(MemberOffset field_offset, int32_t new_value) { if (Runtime::Current()->IsActiveTransaction()) { SetField64<true, kCheckTransaction, kVerifyFlags, kIsVolatile>(field_offset, new_value); } else { SetField64<false, kCheckTransaction, kVerifyFlags, kIsVolatile>(field_offset, new_value); } } template<typename kSize> inline kSize Object::GetFieldAcquire(MemberOffset field_offset) { const uint8_t* raw_addr = reinterpret_cast<const uint8_t*>(this) + field_offset.Int32Value(); const kSize* addr = reinterpret_cast<const kSize*>(raw_addr); return reinterpret_cast<const Atomic<kSize>*>(addr)->LoadAcquire(); } template<bool kTransactionActive, bool kCheckTransaction, VerifyObjectFlags kVerifyFlags> inline bool Object::CasFieldWeakSequentiallyConsistent64(MemberOffset field_offset, int64_t old_value, int64_t new_value) { if (kCheckTransaction) { DCHECK_EQ(kTransactionActive, Runtime::Current()->IsActiveTransaction()); } if (kTransactionActive) { Runtime::Current()->RecordWriteField64(this, field_offset, old_value, true); } if (kVerifyFlags & kVerifyThis) { VerifyObject(this); } uint8_t* raw_addr = reinterpret_cast<uint8_t*>(this) + field_offset.Int32Value(); Atomic<int64_t>* atomic_addr = reinterpret_cast<Atomic<int64_t>*>(raw_addr); return atomic_addr->CompareAndSetWeakSequentiallyConsistent(old_value, new_value); } template<bool kTransactionActive, bool kCheckTransaction, VerifyObjectFlags kVerifyFlags> inline bool Object::CasFieldStrongSequentiallyConsistent64(MemberOffset field_offset, int64_t old_value, int64_t new_value) { if (kCheckTransaction) { DCHECK_EQ(kTransactionActive, Runtime::Current()->IsActiveTransaction()); } if (kTransactionActive) { Runtime::Current()->RecordWriteField64(this, field_offset, old_value, true); } if (kVerifyFlags & kVerifyThis) { VerifyObject(this); } uint8_t* raw_addr = reinterpret_cast<uint8_t*>(this) + field_offset.Int32Value(); Atomic<int64_t>* atomic_addr = reinterpret_cast<Atomic<int64_t>*>(raw_addr); return atomic_addr->CompareAndSetStrongSequentiallyConsistent(old_value, new_value); } template<class T, VerifyObjectFlags kVerifyFlags, ReadBarrierOption kReadBarrierOption, bool kIsVolatile> inline T* Object::GetFieldObject(MemberOffset field_offset) { if (kVerifyFlags & kVerifyThis) { VerifyObject(this); } uint8_t* raw_addr = reinterpret_cast<uint8_t*>(this) + field_offset.Int32Value(); HeapReference<T>* objref_addr = reinterpret_cast<HeapReference<T>*>(raw_addr); T* result = ReadBarrier::Barrier<T, kIsVolatile, kReadBarrierOption>( this, field_offset, objref_addr); if (kVerifyFlags & kVerifyReads) { VerifyObject(result); } return result; } template<class T, VerifyObjectFlags kVerifyFlags, ReadBarrierOption kReadBarrierOption> inline T* Object::GetFieldObjectVolatile(MemberOffset field_offset) { return GetFieldObject<T, kVerifyFlags, kReadBarrierOption, true>(field_offset); } template<bool kTransactionActive, bool kCheckTransaction, VerifyObjectFlags kVerifyFlags, bool kIsVolatile> inline void Object::SetFieldObjectWithoutWriteBarrier(MemberOffset field_offset, ObjPtr<Object> new_value) { if (kCheckTransaction) { DCHECK_EQ(kTransactionActive, Runtime::Current()->IsActiveTransaction()); } if (kTransactionActive) { ObjPtr<Object> obj; if (kIsVolatile) { obj = GetFieldObjectVolatile<Object>(field_offset); } else { obj = GetFieldObject<Object>(field_offset); } Runtime::Current()->RecordWriteFieldReference(this, field_offset, obj.Ptr(), true); } if (kVerifyFlags & kVerifyThis) { VerifyObject(this); } if (kVerifyFlags & kVerifyWrites) { VerifyObject(new_value); } uint8_t* raw_addr = reinterpret_cast<uint8_t*>(this) + field_offset.Int32Value(); HeapReference<Object>* objref_addr = reinterpret_cast<HeapReference<Object>*>(raw_addr); objref_addr->Assign<kIsVolatile>(new_value.Ptr()); } template<bool kTransactionActive, bool kCheckTransaction, VerifyObjectFlags kVerifyFlags, bool kIsVolatile> inline void Object::SetFieldObject(MemberOffset field_offset, ObjPtr<Object> new_value) { SetFieldObjectWithoutWriteBarrier<kTransactionActive, kCheckTransaction, kVerifyFlags, kIsVolatile>(field_offset, new_value); if (new_value != nullptr) { Runtime::Current()->GetHeap()->WriteBarrierField(this, field_offset, new_value); // TODO: Check field assignment could theoretically cause thread suspension, TODO: fix this. CheckFieldAssignment(field_offset, new_value); } } template<bool kTransactionActive, bool kCheckTransaction, VerifyObjectFlags kVerifyFlags> inline void Object::SetFieldObjectVolatile(MemberOffset field_offset, ObjPtr<Object> new_value) { SetFieldObject<kTransactionActive, kCheckTransaction, kVerifyFlags, true>(field_offset, new_value); } template<bool kCheckTransaction, VerifyObjectFlags kVerifyFlags, bool kIsVolatile> inline void Object::SetFieldObjectTransaction(MemberOffset field_offset, ObjPtr<Object> new_value) { if (Runtime::Current()->IsActiveTransaction()) { SetFieldObject<true, kCheckTransaction, kVerifyFlags, kIsVolatile>(field_offset, new_value); } else { SetFieldObject<false, kCheckTransaction, kVerifyFlags, kIsVolatile>(field_offset, new_value); } } template <VerifyObjectFlags kVerifyFlags> inline HeapReference<Object>* Object::GetFieldObjectReferenceAddr(MemberOffset field_offset) { if (kVerifyFlags & kVerifyThis) { VerifyObject(this); } return reinterpret_cast<HeapReference<Object>*>(reinterpret_cast<uint8_t*>(this) + field_offset.Int32Value()); } template<bool kTransactionActive, bool kCheckTransaction, VerifyObjectFlags kVerifyFlags> inline bool Object::CasFieldWeakSequentiallyConsistentObject(MemberOffset field_offset, ObjPtr<Object> old_value, ObjPtr<Object> new_value) { bool success = CasFieldWeakSequentiallyConsistentObjectWithoutWriteBarrier< kTransactionActive, kCheckTransaction, kVerifyFlags>(field_offset, old_value, new_value); if (success) { Runtime::Current()->GetHeap()->WriteBarrierField(this, field_offset, new_value); } return success; } template<bool kTransactionActive, bool kCheckTransaction, VerifyObjectFlags kVerifyFlags> inline bool Object::CasFieldWeakSequentiallyConsistentObjectWithoutWriteBarrier( MemberOffset field_offset, ObjPtr<Object> old_value, ObjPtr<Object> new_value) { if (kCheckTransaction) { DCHECK_EQ(kTransactionActive, Runtime::Current()->IsActiveTransaction()); } if (kVerifyFlags & kVerifyThis) { VerifyObject(this); } if (kVerifyFlags & kVerifyWrites) { VerifyObject(new_value); } if (kVerifyFlags & kVerifyReads) { VerifyObject(old_value); } if (kTransactionActive) { Runtime::Current()->RecordWriteFieldReference(this, field_offset, old_value, true); } uint32_t old_ref(PtrCompression<kPoisonHeapReferences, Object>::Compress(old_value)); uint32_t new_ref(PtrCompression<kPoisonHeapReferences, Object>::Compress(new_value)); uint8_t* raw_addr = reinterpret_cast<uint8_t*>(this) + field_offset.Int32Value(); Atomic<uint32_t>* atomic_addr = reinterpret_cast<Atomic<uint32_t>*>(raw_addr); bool success = atomic_addr->CompareAndSetWeakSequentiallyConsistent(old_ref, new_ref); return success; } template<bool kTransactionActive, bool kCheckTransaction, VerifyObjectFlags kVerifyFlags> inline bool Object::CasFieldStrongSequentiallyConsistentObject(MemberOffset field_offset, ObjPtr<Object> old_value, ObjPtr<Object> new_value) { bool success = CasFieldStrongSequentiallyConsistentObjectWithoutWriteBarrier< kTransactionActive, kCheckTransaction, kVerifyFlags>(field_offset, old_value, new_value); if (success) { Runtime::Current()->GetHeap()->WriteBarrierField(this, field_offset, new_value); } return success; } template<bool kTransactionActive, bool kCheckTransaction, VerifyObjectFlags kVerifyFlags> inline bool Object::CasFieldStrongSequentiallyConsistentObjectWithoutWriteBarrier( MemberOffset field_offset, ObjPtr<Object> old_value, ObjPtr<Object> new_value) { if (kCheckTransaction) { DCHECK_EQ(kTransactionActive, Runtime::Current()->IsActiveTransaction()); } if (kVerifyFlags & kVerifyThis) { VerifyObject(this); } if (kVerifyFlags & kVerifyWrites) { VerifyObject(new_value); } if (kVerifyFlags & kVerifyReads) { VerifyObject(old_value); } if (kTransactionActive) { Runtime::Current()->RecordWriteFieldReference(this, field_offset, old_value, true); } uint32_t old_ref(PtrCompression<kPoisonHeapReferences, Object>::Compress(old_value)); uint32_t new_ref(PtrCompression<kPoisonHeapReferences, Object>::Compress(new_value)); uint8_t* raw_addr = reinterpret_cast<uint8_t*>(this) + field_offset.Int32Value(); Atomic<uint32_t>* atomic_addr = reinterpret_cast<Atomic<uint32_t>*>(raw_addr); bool success = atomic_addr->CompareAndSetStrongSequentiallyConsistent(old_ref, new_ref); return success; } template<bool kTransactionActive, bool kCheckTransaction, VerifyObjectFlags kVerifyFlags> inline bool Object::CasFieldWeakRelaxedObjectWithoutWriteBarrier( MemberOffset field_offset, ObjPtr<Object> old_value, ObjPtr<Object> new_value) { if (kCheckTransaction) { DCHECK_EQ(kTransactionActive, Runtime::Current()->IsActiveTransaction()); } if (kVerifyFlags & kVerifyThis) { VerifyObject(this); } if (kVerifyFlags & kVerifyWrites) { VerifyObject(new_value); } if (kVerifyFlags & kVerifyReads) { VerifyObject(old_value); } if (kTransactionActive) { Runtime::Current()->RecordWriteFieldReference(this, field_offset, old_value, true); } uint32_t old_ref(PtrCompression<kPoisonHeapReferences, Object>::Compress(old_value)); uint32_t new_ref(PtrCompression<kPoisonHeapReferences, Object>::Compress(new_value)); uint8_t* raw_addr = reinterpret_cast<uint8_t*>(this) + field_offset.Int32Value(); Atomic<uint32_t>* atomic_addr = reinterpret_cast<Atomic<uint32_t>*>(raw_addr); bool success = atomic_addr->CompareAndSetWeakRelaxed(old_ref, new_ref); return success; } template<bool kTransactionActive, bool kCheckTransaction, VerifyObjectFlags kVerifyFlags> inline bool Object::CasFieldWeakReleaseObjectWithoutWriteBarrier( MemberOffset field_offset, ObjPtr<Object> old_value, ObjPtr<Object> new_value) { if (kCheckTransaction) { DCHECK_EQ(kTransactionActive, Runtime::Current()->IsActiveTransaction()); } if (kVerifyFlags & kVerifyThis) { VerifyObject(this); } if (kVerifyFlags & kVerifyWrites) { VerifyObject(new_value); } if (kVerifyFlags & kVerifyReads) { VerifyObject(old_value); } if (kTransactionActive) { Runtime::Current()->RecordWriteFieldReference(this, field_offset, old_value, true); } uint32_t old_ref(PtrCompression<kPoisonHeapReferences, Object>::Compress(old_value)); uint32_t new_ref(PtrCompression<kPoisonHeapReferences, Object>::Compress(new_value)); uint8_t* raw_addr = reinterpret_cast<uint8_t*>(this) + field_offset.Int32Value(); Atomic<uint32_t>* atomic_addr = reinterpret_cast<Atomic<uint32_t>*>(raw_addr); bool success = atomic_addr->CompareAndSetWeakRelease(old_ref, new_ref); return success; } template<bool kTransactionActive, bool kCheckTransaction, VerifyObjectFlags kVerifyFlags> inline ObjPtr<Object> Object::CompareAndExchangeFieldObject(MemberOffset field_offset, ObjPtr<Object> old_value, ObjPtr<Object> new_value) { if (kCheckTransaction) { DCHECK_EQ(kTransactionActive, Runtime::Current()->IsActiveTransaction()); } if (kVerifyFlags & kVerifyThis) { VerifyObject(this); } if (kVerifyFlags & kVerifyWrites) { VerifyObject(new_value); } if (kVerifyFlags & kVerifyReads) { VerifyObject(old_value); } uint32_t old_ref(PtrCompression<kPoisonHeapReferences, Object>::Compress(old_value)); uint32_t new_ref(PtrCompression<kPoisonHeapReferences, Object>::Compress(new_value)); uint8_t* raw_addr = reinterpret_cast<uint8_t*>(this) + field_offset.Int32Value(); Atomic<uint32_t>* atomic_addr = reinterpret_cast<Atomic<uint32_t>*>(raw_addr); bool success = atomic_addr->CompareAndExchangeStrongSequentiallyConsistent(&old_ref, new_ref); ObjPtr<Object> witness_value(PtrCompression<kPoisonHeapReferences, Object>::Decompress(old_ref)); if (kIsDebugBuild) { // Ensure caller has done read barrier on the reference field so it's in the to-space. ReadBarrier::AssertToSpaceInvariant(witness_value.Ptr()); } if (kTransactionActive && success) { Runtime::Current()->RecordWriteFieldReference(this, field_offset, witness_value, true); } if (kVerifyFlags & kVerifyReads) { VerifyObject(witness_value); } return witness_value; } template<bool kTransactionActive, bool kCheckTransaction, VerifyObjectFlags kVerifyFlags> inline ObjPtr<Object> Object::ExchangeFieldObject(MemberOffset field_offset, ObjPtr<Object> new_value) { if (kCheckTransaction) { DCHECK_EQ(kTransactionActive, Runtime::Current()->IsActiveTransaction()); } if (kVerifyFlags & kVerifyThis) { VerifyObject(this); } if (kVerifyFlags & kVerifyWrites) { VerifyObject(new_value); } uint32_t new_ref(PtrCompression<kPoisonHeapReferences, Object>::Compress(new_value)); uint8_t* raw_addr = reinterpret_cast<uint8_t*>(this) + field_offset.Int32Value(); Atomic<uint32_t>* atomic_addr = reinterpret_cast<Atomic<uint32_t>*>(raw_addr); uint32_t old_ref = atomic_addr->ExchangeSequentiallyConsistent(new_ref); ObjPtr<Object> old_value(PtrCompression<kPoisonHeapReferences, Object>::Decompress(old_ref)); if (kIsDebugBuild) { // Ensure caller has done read barrier on the reference field so it's in the to-space. ReadBarrier::AssertToSpaceInvariant(old_value.Ptr()); } if (kTransactionActive) { Runtime::Current()->RecordWriteFieldReference(this, field_offset, old_value, true); } if (kVerifyFlags & kVerifyReads) { VerifyObject(old_value); } return old_value; } template<typename T, VerifyObjectFlags kVerifyFlags> inline void Object::GetPrimitiveFieldViaAccessor(MemberOffset field_offset, Accessor<T>* accessor) { if (kVerifyFlags & kVerifyThis) { VerifyObject(this); } uint8_t* raw_addr = reinterpret_cast<uint8_t*>(this) + field_offset.Int32Value(); T* addr = reinterpret_cast<T*>(raw_addr); accessor->Access(addr); } template<bool kTransactionActive, bool kCheckTransaction, VerifyObjectFlags kVerifyFlags> inline void Object::UpdateFieldBooleanViaAccessor(MemberOffset field_offset, Accessor<uint8_t>* accessor) { if (kCheckTransaction) { DCHECK_EQ(kTransactionActive, Runtime::Current()->IsActiveTransaction()); } if (kTransactionActive) { static const bool kIsVolatile = true; uint8_t old_value = GetFieldBoolean<kVerifyFlags, kIsVolatile>(field_offset); Runtime::Current()->RecordWriteFieldBoolean(this, field_offset, old_value, kIsVolatile); } if (kVerifyFlags & kVerifyThis) { VerifyObject(this); } uint8_t* raw_addr = reinterpret_cast<uint8_t*>(this) + field_offset.Int32Value(); uint8_t* addr = raw_addr; accessor->Access(addr); } template<bool kTransactionActive, bool kCheckTransaction, VerifyObjectFlags kVerifyFlags> inline void Object::UpdateFieldByteViaAccessor(MemberOffset field_offset, Accessor<int8_t>* accessor) { if (kCheckTransaction) { DCHECK_EQ(kTransactionActive, Runtime::Current()->IsActiveTransaction()); } if (kTransactionActive) { static const bool kIsVolatile = true; int8_t old_value = GetFieldByte<kVerifyFlags, kIsVolatile>(field_offset); Runtime::Current()->RecordWriteFieldByte(this, field_offset, old_value, kIsVolatile); } if (kVerifyFlags & kVerifyThis) { VerifyObject(this); } uint8_t* raw_addr = reinterpret_cast<uint8_t*>(this) + field_offset.Int32Value(); int8_t* addr = reinterpret_cast<int8_t*>(raw_addr); accessor->Access(addr); } template<bool kTransactionActive, bool kCheckTransaction, VerifyObjectFlags kVerifyFlags> inline void Object::UpdateFieldCharViaAccessor(MemberOffset field_offset, Accessor<uint16_t>* accessor) { if (kCheckTransaction) { DCHECK_EQ(kTransactionActive, Runtime::Current()->IsActiveTransaction()); } if (kTransactionActive) { static const bool kIsVolatile = true; uint16_t old_value = GetFieldChar<kVerifyFlags, kIsVolatile>(field_offset); Runtime::Current()->RecordWriteFieldChar(this, field_offset, old_value, kIsVolatile); } if (kVerifyFlags & kVerifyThis) { VerifyObject(this); } uint8_t* raw_addr = reinterpret_cast<uint8_t*>(this) + field_offset.Int32Value(); uint16_t* addr = reinterpret_cast<uint16_t*>(raw_addr); accessor->Access(addr); } template<bool kTransactionActive, bool kCheckTransaction, VerifyObjectFlags kVerifyFlags> inline void Object::UpdateFieldShortViaAccessor(MemberOffset field_offset, Accessor<int16_t>* accessor) { if (kCheckTransaction) { DCHECK_EQ(kTransactionActive, Runtime::Current()->IsActiveTransaction()); } if (kTransactionActive) { static const bool kIsVolatile = true; int16_t old_value = GetFieldShort<kVerifyFlags, kIsVolatile>(field_offset); Runtime::Current()->RecordWriteFieldShort(this, field_offset, old_value, kIsVolatile); } if (kVerifyFlags & kVerifyThis) { VerifyObject(this); } uint8_t* raw_addr = reinterpret_cast<uint8_t*>(this) + field_offset.Int32Value(); int16_t* addr = reinterpret_cast<int16_t*>(raw_addr); accessor->Access(addr); } template<bool kTransactionActive, bool kCheckTransaction, VerifyObjectFlags kVerifyFlags> inline void Object::UpdateField32ViaAccessor(MemberOffset field_offset, Accessor<int32_t>* accessor) { if (kCheckTransaction) { DCHECK_EQ(kTransactionActive, Runtime::Current()->IsActiveTransaction()); } if (kTransactionActive) { static const bool kIsVolatile = true; int32_t old_value = GetField32<kVerifyFlags, kIsVolatile>(field_offset); Runtime::Current()->RecordWriteField32(this, field_offset, old_value, kIsVolatile); } if (kVerifyFlags & kVerifyThis) { VerifyObject(this); } uint8_t* raw_addr = reinterpret_cast<uint8_t*>(this) + field_offset.Int32Value(); int32_t* addr = reinterpret_cast<int32_t*>(raw_addr); accessor->Access(addr); } template<bool kTransactionActive, bool kCheckTransaction, VerifyObjectFlags kVerifyFlags> inline void Object::UpdateField64ViaAccessor(MemberOffset field_offset, Accessor<int64_t>* accessor) { if (kCheckTransaction) { DCHECK_EQ(kTransactionActive, Runtime::Current()->IsActiveTransaction()); } if (kTransactionActive) { static const bool kIsVolatile = true; int64_t old_value = GetField64<kVerifyFlags, kIsVolatile>(field_offset); Runtime::Current()->RecordWriteField64(this, field_offset, old_value, kIsVolatile); } if (kVerifyFlags & kVerifyThis) { VerifyObject(this); } uint8_t* raw_addr = reinterpret_cast<uint8_t*>(this) + field_offset.Int32Value(); int64_t* addr = reinterpret_cast<int64_t*>(raw_addr); accessor->Access(addr); } template<bool kIsStatic, VerifyObjectFlags kVerifyFlags, ReadBarrierOption kReadBarrierOption, typename Visitor> inline void Object::VisitFieldsReferences(uint32_t ref_offsets, const Visitor& visitor) { if (!kIsStatic && (ref_offsets != mirror::Class::kClassWalkSuper)) { // Instance fields and not the slow-path. uint32_t field_offset = mirror::kObjectHeaderSize; while (ref_offsets != 0) { if ((ref_offsets & 1) != 0) { visitor(this, MemberOffset(field_offset), kIsStatic); } ref_offsets >>= 1; field_offset += sizeof(mirror::HeapReference<mirror::Object>); } } else { // There is no reference offset bitmap. In the non-static case, walk up the class // inheritance hierarchy and find reference offsets the hard way. In the static case, just // consider this class. for (ObjPtr<Class> klass = kIsStatic ? AsClass<kVerifyFlags, kReadBarrierOption>() : GetClass<kVerifyFlags, kReadBarrierOption>(); klass != nullptr; klass = kIsStatic ? nullptr : klass->GetSuperClass<kVerifyFlags, kReadBarrierOption>()) { const size_t num_reference_fields = kIsStatic ? klass->NumReferenceStaticFields() : klass->NumReferenceInstanceFields(); if (num_reference_fields == 0u) { continue; } // Presumably GC can happen when we are cross compiling, it should not cause performance // problems to do pointer size logic. MemberOffset field_offset = kIsStatic ? klass->GetFirstReferenceStaticFieldOffset<kVerifyFlags, kReadBarrierOption>( Runtime::Current()->GetClassLinker()->GetImagePointerSize()) : klass->GetFirstReferenceInstanceFieldOffset<kVerifyFlags, kReadBarrierOption>(); for (size_t i = 0u; i < num_reference_fields; ++i) { // TODO: Do a simpler check? if (field_offset.Uint32Value() != ClassOffset().Uint32Value()) { visitor(this, field_offset, kIsStatic); } field_offset = MemberOffset(field_offset.Uint32Value() + sizeof(mirror::HeapReference<mirror::Object>)); } } } } template<VerifyObjectFlags kVerifyFlags, ReadBarrierOption kReadBarrierOption, typename Visitor> inline void Object::VisitInstanceFieldsReferences(ObjPtr<Class> klass, const Visitor& visitor) { VisitFieldsReferences<false, kVerifyFlags, kReadBarrierOption>( klass->GetReferenceInstanceOffsets<kVerifyFlags>(), visitor); } template<VerifyObjectFlags kVerifyFlags, ReadBarrierOption kReadBarrierOption, typename Visitor> inline void Object::VisitStaticFieldsReferences(ObjPtr<Class> klass, const Visitor& visitor) { DCHECK(!klass->IsTemp()); klass->VisitFieldsReferences<true, kVerifyFlags, kReadBarrierOption>(0, visitor); } template<VerifyObjectFlags kVerifyFlags, ReadBarrierOption kReadBarrierOption> inline bool Object::IsClassLoader() { return GetClass<kVerifyFlags, kReadBarrierOption>()->IsClassLoaderClass(); } template<VerifyObjectFlags kVerifyFlags, ReadBarrierOption kReadBarrierOption> inline mirror::ClassLoader* Object::AsClassLoader() { DCHECK((IsClassLoader<kVerifyFlags, kReadBarrierOption>())); return down_cast<mirror::ClassLoader*>(this); } template<VerifyObjectFlags kVerifyFlags, ReadBarrierOption kReadBarrierOption> inline bool Object::IsDexCache() { return GetClass<kVerifyFlags, kReadBarrierOption>()->IsDexCacheClass(); } template<VerifyObjectFlags kVerifyFlags, ReadBarrierOption kReadBarrierOption> inline mirror::DexCache* Object::AsDexCache() { DCHECK((IsDexCache<kVerifyFlags, kReadBarrierOption>())); return down_cast<mirror::DexCache*>(this); } } // namespace mirror } // namespace art #endif // ART_RUNTIME_MIRROR_OBJECT_INL_H_