/* * Copyright (C) 2014 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef ART_RUNTIME_MONITOR_POOL_H_ #define ART_RUNTIME_MONITOR_POOL_H_ #include "monitor.h" #include "base/allocator.h" #ifdef __LP64__ #include <stdint.h> #include "base/atomic.h" #include "runtime.h" #else #include "base/stl_util.h" // STLDeleteElements #endif namespace art { // Abstraction to keep monitors small enough to fit in a lock word (32bits). On 32bit systems the // monitor id loses the alignment bits of the Monitor*. class MonitorPool { public: static MonitorPool* Create() { #ifndef __LP64__ return nullptr; #else return new MonitorPool(); #endif } static Monitor* CreateMonitor(Thread* self, Thread* owner, mirror::Object* obj, int32_t hash_code) REQUIRES_SHARED(Locks::mutator_lock_) { #ifndef __LP64__ Monitor* mon = new Monitor(self, owner, obj, hash_code); DCHECK_ALIGNED(mon, LockWord::kMonitorIdAlignment); return mon; #else return GetMonitorPool()->CreateMonitorInPool(self, owner, obj, hash_code); #endif } static void ReleaseMonitor(Thread* self, Monitor* monitor) { #ifndef __LP64__ UNUSED(self); delete monitor; #else GetMonitorPool()->ReleaseMonitorToPool(self, monitor); #endif } static void ReleaseMonitors(Thread* self, MonitorList::Monitors* monitors) { #ifndef __LP64__ UNUSED(self); STLDeleteElements(monitors); #else GetMonitorPool()->ReleaseMonitorsToPool(self, monitors); #endif } static Monitor* MonitorFromMonitorId(MonitorId mon_id) { #ifndef __LP64__ return reinterpret_cast<Monitor*>(mon_id << LockWord::kMonitorIdAlignmentShift); #else return GetMonitorPool()->LookupMonitor(mon_id); #endif } static MonitorId MonitorIdFromMonitor(Monitor* mon) { #ifndef __LP64__ return reinterpret_cast<MonitorId>(mon) >> LockWord::kMonitorIdAlignmentShift; #else return mon->GetMonitorId(); #endif } static MonitorId ComputeMonitorId(Monitor* mon, Thread* self) { #ifndef __LP64__ UNUSED(self); return MonitorIdFromMonitor(mon); #else return GetMonitorPool()->ComputeMonitorIdInPool(mon, self); #endif } static MonitorPool* GetMonitorPool() { #ifndef __LP64__ return nullptr; #else return Runtime::Current()->GetMonitorPool(); #endif } ~MonitorPool() { #ifdef __LP64__ FreeInternal(); #endif } private: #ifdef __LP64__ // When we create a monitor pool, threads have not been initialized, yet, so ignore thread-safety // analysis. MonitorPool() NO_THREAD_SAFETY_ANALYSIS; void AllocateChunk() REQUIRES(Locks::allocated_monitor_ids_lock_); // Release all chunks and metadata. This is done on shutdown, where threads have been destroyed, // so ignore thead-safety analysis. void FreeInternal() NO_THREAD_SAFETY_ANALYSIS; Monitor* CreateMonitorInPool(Thread* self, Thread* owner, mirror::Object* obj, int32_t hash_code) REQUIRES_SHARED(Locks::mutator_lock_); void ReleaseMonitorToPool(Thread* self, Monitor* monitor); void ReleaseMonitorsToPool(Thread* self, MonitorList::Monitors* monitors); // Note: This is safe as we do not ever move chunks. All needed entries in the monitor_chunks_ // data structure are read-only once we get here. Updates happen-before this call because // the lock word was stored with release semantics and we read it with acquire semantics to // retrieve the id. Monitor* LookupMonitor(MonitorId mon_id) { size_t offset = MonitorIdToOffset(mon_id); size_t index = offset / kChunkSize; size_t top_index = index / kMaxListSize; size_t list_index = index % kMaxListSize; size_t offset_in_chunk = offset % kChunkSize; uintptr_t base = monitor_chunks_[top_index][list_index]; return reinterpret_cast<Monitor*>(base + offset_in_chunk); } static bool IsInChunk(uintptr_t base_addr, Monitor* mon) { uintptr_t mon_ptr = reinterpret_cast<uintptr_t>(mon); return base_addr <= mon_ptr && (mon_ptr - base_addr < kChunkSize); } MonitorId ComputeMonitorIdInPool(Monitor* mon, Thread* self) { MutexLock mu(self, *Locks::allocated_monitor_ids_lock_); for (size_t i = 0; i <= current_chunk_list_index_; ++i) { for (size_t j = 0; j < ChunkListCapacity(i); ++j) { if (j >= num_chunks_ && i == current_chunk_list_index_) { break; } uintptr_t chunk_addr = monitor_chunks_[i][j]; if (IsInChunk(chunk_addr, mon)) { return OffsetToMonitorId( reinterpret_cast<uintptr_t>(mon) - chunk_addr + i * (kMaxListSize * kChunkSize) + j * kChunkSize); } } } LOG(FATAL) << "Did not find chunk that contains monitor."; return 0; } static constexpr size_t MonitorIdToOffset(MonitorId id) { return id << 3; } static constexpr MonitorId OffsetToMonitorId(size_t offset) { return static_cast<MonitorId>(offset >> 3); } static constexpr size_t ChunkListCapacity(size_t index) { return kInitialChunkStorage << index; } // TODO: There are assumptions in the code that monitor addresses are 8B aligned (>>3). static constexpr size_t kMonitorAlignment = 8; // Size of a monitor, rounded up to a multiple of alignment. static constexpr size_t kAlignedMonitorSize = (sizeof(Monitor) + kMonitorAlignment - 1) & -kMonitorAlignment; // As close to a page as we can get seems a good start. static constexpr size_t kChunkCapacity = kPageSize / kAlignedMonitorSize; // Chunk size that is referenced in the id. We can collapse this to the actually used storage // in a chunk, i.e., kChunkCapacity * kAlignedMonitorSize, but this will mean proper divisions. static constexpr size_t kChunkSize = kPageSize; static_assert(IsPowerOfTwo(kChunkSize), "kChunkSize must be power of 2"); // The number of chunks of storage that can be referenced by the initial chunk list. // The total number of usable monitor chunks is typically 255 times this number, so it // should be large enough that we don't run out. We run out of address bits if it's > 512. // Currently we set it a bit smaller, to save half a page per process. We make it tiny in // debug builds to catch growth errors. The only value we really expect to tune. static constexpr size_t kInitialChunkStorage = kIsDebugBuild ? 1U : 256U; static_assert(IsPowerOfTwo(kInitialChunkStorage), "kInitialChunkStorage must be power of 2"); // The number of lists, each containing pointers to storage chunks. static constexpr size_t kMaxChunkLists = 8; // Dictated by 3 bit index. Don't increase above 8. static_assert(IsPowerOfTwo(kMaxChunkLists), "kMaxChunkLists must be power of 2"); static constexpr size_t kMaxListSize = kInitialChunkStorage << (kMaxChunkLists - 1); // We lose 3 bits in monitor id due to 3 bit monitor_chunks_ index, and gain it back from // the 3 bit alignment constraint on monitors: static_assert(kMaxListSize * kChunkSize < (1 << LockWord::kMonitorIdSize), "Monitor id bits don't fit"); static_assert(IsPowerOfTwo(kMaxListSize), "kMaxListSize must be power of 2"); // Array of pointers to lists (again arrays) of pointers to chunks containing monitors. // Zeroth entry points to a list (array) of kInitialChunkStorage pointers to chunks. // Each subsequent list as twice as large as the preceding one. // Monitor Ids are interpreted as follows: // Top 3 bits (of 28): index into monitor_chunks_. // Next 16 bits: index into the chunk list, i.e. monitor_chunks_[i]. // Last 9 bits: offset within chunk, expressed as multiple of kMonitorAlignment. // If we set kInitialChunkStorage to 512, this would allow us to use roughly 128K chunks of // monitors, which is 0.5GB of monitors. With this maximum setting, the largest chunk list // contains 64K entries, and we make full use of the available index space. With a // kInitialChunkStorage value of 256, this is proportionately reduced to 0.25GB of monitors. // Updates to monitor_chunks_ are guarded by allocated_monitor_ids_lock_ . // No field in this entire data structure is ever updated once a monitor id whose lookup // requires it has been made visible to another thread. Thus readers never race with // updates, in spite of the fact that they acquire no locks. uintptr_t* monitor_chunks_[kMaxChunkLists]; // uintptr_t is really a Monitor* . // Highest currently used index in monitor_chunks_ . Used for newly allocated chunks. size_t current_chunk_list_index_ GUARDED_BY(Locks::allocated_monitor_ids_lock_); // Number of chunk pointers stored in monitor_chunks_[current_chunk_list_index_] so far. size_t num_chunks_ GUARDED_BY(Locks::allocated_monitor_ids_lock_); // After the initial allocation, this is always equal to // ChunkListCapacity(current_chunk_list_index_). size_t current_chunk_list_capacity_ GUARDED_BY(Locks::allocated_monitor_ids_lock_); typedef TrackingAllocator<uint8_t, kAllocatorTagMonitorPool> Allocator; Allocator allocator_; // Start of free list of monitors. // Note: these point to the right memory regions, but do *not* denote initialized objects. Monitor* first_free_ GUARDED_BY(Locks::allocated_monitor_ids_lock_); #endif }; } // namespace art #endif // ART_RUNTIME_MONITOR_POOL_H_