/* * Copyright (C) 2014 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "transaction.h" #include <android-base/logging.h> #include "base/stl_util.h" #include "gc/accounting/card_table-inl.h" #include "gc_root-inl.h" #include "intern_table.h" #include "mirror/class-inl.h" #include "mirror/dex_cache-inl.h" #include "mirror/object-inl.h" #include "mirror/object_array-inl.h" #include <list> namespace art { // TODO: remove (only used for debugging purpose). static constexpr bool kEnableTransactionStats = false; Transaction::Transaction() : log_lock_("transaction log lock", kTransactionLogLock), aborted_(false), rolling_back_(false), strict_(false) { CHECK(Runtime::Current()->IsAotCompiler()); } Transaction::Transaction(bool strict, mirror::Class* root) : Transaction() { strict_ = strict; root_ = root; } Transaction::~Transaction() { if (kEnableTransactionStats) { MutexLock mu(Thread::Current(), log_lock_); size_t objects_count = object_logs_.size(); size_t field_values_count = 0; for (const auto& it : object_logs_) { field_values_count += it.second.Size(); } size_t array_count = array_logs_.size(); size_t array_values_count = 0; for (const auto& it : array_logs_) { array_values_count += it.second.Size(); } size_t intern_string_count = intern_string_logs_.size(); size_t resolve_string_count = resolve_string_logs_.size(); LOG(INFO) << "Transaction::~Transaction" << ": objects_count=" << objects_count << ", field_values_count=" << field_values_count << ", array_count=" << array_count << ", array_values_count=" << array_values_count << ", intern_string_count=" << intern_string_count << ", resolve_string_count=" << resolve_string_count; } } void Transaction::Abort(const std::string& abort_message) { MutexLock mu(Thread::Current(), log_lock_); // We may abort more than once if the exception thrown at the time of the // previous abort has been caught during execution of a class initializer. // We just keep the message of the first abort because it will cause the // transaction to be rolled back anyway. if (!aborted_) { aborted_ = true; abort_message_ = abort_message; } } void Transaction::ThrowAbortError(Thread* self, const std::string* abort_message) { const bool rethrow = (abort_message == nullptr); if (kIsDebugBuild && rethrow) { CHECK(IsAborted()) << "Rethrow " << Transaction::kAbortExceptionDescriptor << " while transaction is not aborted"; } if (rethrow) { // Rethrow an exception with the earlier abort message stored in the transaction. self->ThrowNewWrappedException(Transaction::kAbortExceptionSignature, GetAbortMessage().c_str()); } else { // Throw an exception with the given abort message. self->ThrowNewWrappedException(Transaction::kAbortExceptionSignature, abort_message->c_str()); } } bool Transaction::IsAborted() { MutexLock mu(Thread::Current(), log_lock_); return aborted_; } bool Transaction::IsRollingBack() { return rolling_back_; } bool Transaction::IsStrict() { MutexLock mu(Thread::Current(), log_lock_); return strict_; } const std::string& Transaction::GetAbortMessage() { MutexLock mu(Thread::Current(), log_lock_); return abort_message_; } bool Transaction::WriteConstraint(mirror::Object* obj, ArtField* field) { MutexLock mu(Thread::Current(), log_lock_); if (strict_ // no constraint for boot image && field->IsStatic() // no constraint instance updating && obj != root_) { // modifying other classes' static field, fail return true; } return false; } bool Transaction::ReadConstraint(mirror::Object* obj, ArtField* field) { DCHECK(field->IsStatic()); DCHECK(obj->IsClass()); MutexLock mu(Thread::Current(), log_lock_); if (!strict_ || // no constraint for boot image obj == root_) { // self-updating, pass return false; } return true; } void Transaction::RecordWriteFieldBoolean(mirror::Object* obj, MemberOffset field_offset, uint8_t value, bool is_volatile) { DCHECK(obj != nullptr); MutexLock mu(Thread::Current(), log_lock_); ObjectLog& object_log = object_logs_[obj]; object_log.LogBooleanValue(field_offset, value, is_volatile); } void Transaction::RecordWriteFieldByte(mirror::Object* obj, MemberOffset field_offset, int8_t value, bool is_volatile) { DCHECK(obj != nullptr); MutexLock mu(Thread::Current(), log_lock_); ObjectLog& object_log = object_logs_[obj]; object_log.LogByteValue(field_offset, value, is_volatile); } void Transaction::RecordWriteFieldChar(mirror::Object* obj, MemberOffset field_offset, uint16_t value, bool is_volatile) { DCHECK(obj != nullptr); MutexLock mu(Thread::Current(), log_lock_); ObjectLog& object_log = object_logs_[obj]; object_log.LogCharValue(field_offset, value, is_volatile); } void Transaction::RecordWriteFieldShort(mirror::Object* obj, MemberOffset field_offset, int16_t value, bool is_volatile) { DCHECK(obj != nullptr); MutexLock mu(Thread::Current(), log_lock_); ObjectLog& object_log = object_logs_[obj]; object_log.LogShortValue(field_offset, value, is_volatile); } void Transaction::RecordWriteField32(mirror::Object* obj, MemberOffset field_offset, uint32_t value, bool is_volatile) { DCHECK(obj != nullptr); MutexLock mu(Thread::Current(), log_lock_); ObjectLog& object_log = object_logs_[obj]; object_log.Log32BitsValue(field_offset, value, is_volatile); } void Transaction::RecordWriteField64(mirror::Object* obj, MemberOffset field_offset, uint64_t value, bool is_volatile) { DCHECK(obj != nullptr); MutexLock mu(Thread::Current(), log_lock_); ObjectLog& object_log = object_logs_[obj]; object_log.Log64BitsValue(field_offset, value, is_volatile); } void Transaction::RecordWriteFieldReference(mirror::Object* obj, MemberOffset field_offset, mirror::Object* value, bool is_volatile) { DCHECK(obj != nullptr); MutexLock mu(Thread::Current(), log_lock_); ObjectLog& object_log = object_logs_[obj]; object_log.LogReferenceValue(field_offset, value, is_volatile); } void Transaction::RecordWriteArray(mirror::Array* array, size_t index, uint64_t value) { DCHECK(array != nullptr); DCHECK(array->IsArrayInstance()); DCHECK(!array->IsObjectArray()); MutexLock mu(Thread::Current(), log_lock_); auto it = array_logs_.find(array); if (it == array_logs_.end()) { ArrayLog log; it = array_logs_.emplace(array, std::move(log)).first; } it->second.LogValue(index, value); } void Transaction::RecordResolveString(ObjPtr<mirror::DexCache> dex_cache, dex::StringIndex string_idx) { DCHECK(dex_cache != nullptr); DCHECK_LT(string_idx.index_, dex_cache->GetDexFile()->NumStringIds()); MutexLock mu(Thread::Current(), log_lock_); resolve_string_logs_.emplace_back(dex_cache, string_idx); } void Transaction::RecordStrongStringInsertion(ObjPtr<mirror::String> s) { InternStringLog log(s, InternStringLog::kStrongString, InternStringLog::kInsert); LogInternedString(std::move(log)); } void Transaction::RecordWeakStringInsertion(ObjPtr<mirror::String> s) { InternStringLog log(s, InternStringLog::kWeakString, InternStringLog::kInsert); LogInternedString(std::move(log)); } void Transaction::RecordStrongStringRemoval(ObjPtr<mirror::String> s) { InternStringLog log(s, InternStringLog::kStrongString, InternStringLog::kRemove); LogInternedString(std::move(log)); } void Transaction::RecordWeakStringRemoval(ObjPtr<mirror::String> s) { InternStringLog log(s, InternStringLog::kWeakString, InternStringLog::kRemove); LogInternedString(std::move(log)); } void Transaction::LogInternedString(InternStringLog&& log) { Locks::intern_table_lock_->AssertExclusiveHeld(Thread::Current()); MutexLock mu(Thread::Current(), log_lock_); intern_string_logs_.push_front(std::move(log)); } void Transaction::Rollback() { Thread* self = Thread::Current(); self->AssertNoPendingException(); MutexLock mu1(self, *Locks::intern_table_lock_); MutexLock mu2(self, log_lock_); rolling_back_ = true; CHECK(!Runtime::Current()->IsActiveTransaction()); UndoObjectModifications(); UndoArrayModifications(); UndoInternStringTableModifications(); UndoResolveStringModifications(); rolling_back_ = false; } void Transaction::UndoObjectModifications() { // TODO we may not need to restore objects allocated during this transaction. Or we could directly // remove them from the heap. for (const auto& it : object_logs_) { it.second.Undo(it.first); } object_logs_.clear(); } void Transaction::UndoArrayModifications() { // TODO we may not need to restore array allocated during this transaction. Or we could directly // remove them from the heap. for (const auto& it : array_logs_) { it.second.Undo(it.first); } array_logs_.clear(); } void Transaction::UndoInternStringTableModifications() { InternTable* const intern_table = Runtime::Current()->GetInternTable(); // We want to undo each operation from the most recent to the oldest. List has been filled so the // most recent operation is at list begin so just have to iterate over it. for (const InternStringLog& string_log : intern_string_logs_) { string_log.Undo(intern_table); } intern_string_logs_.clear(); } void Transaction::UndoResolveStringModifications() { for (ResolveStringLog& string_log : resolve_string_logs_) { string_log.Undo(); } resolve_string_logs_.clear(); } void Transaction::VisitRoots(RootVisitor* visitor) { MutexLock mu(Thread::Current(), log_lock_); visitor->VisitRoot(reinterpret_cast<mirror::Object**>(&root_), RootInfo(kRootUnknown)); VisitObjectLogs(visitor); VisitArrayLogs(visitor); VisitInternStringLogs(visitor); VisitResolveStringLogs(visitor); } void Transaction::VisitObjectLogs(RootVisitor* visitor) { // List of moving roots. typedef std::pair<mirror::Object*, mirror::Object*> ObjectPair; std::list<ObjectPair> moving_roots; // Visit roots. for (auto& it : object_logs_) { it.second.VisitRoots(visitor); mirror::Object* old_root = it.first; mirror::Object* new_root = old_root; visitor->VisitRoot(&new_root, RootInfo(kRootUnknown)); if (new_root != old_root) { moving_roots.push_back(std::make_pair(old_root, new_root)); } } // Update object logs with moving roots. for (const ObjectPair& pair : moving_roots) { mirror::Object* old_root = pair.first; mirror::Object* new_root = pair.second; auto old_root_it = object_logs_.find(old_root); CHECK(old_root_it != object_logs_.end()); CHECK(object_logs_.find(new_root) == object_logs_.end()); object_logs_.emplace(new_root, std::move(old_root_it->second)); object_logs_.erase(old_root_it); } } void Transaction::VisitArrayLogs(RootVisitor* visitor) { // List of moving roots. typedef std::pair<mirror::Array*, mirror::Array*> ArrayPair; std::list<ArrayPair> moving_roots; for (auto& it : array_logs_) { mirror::Array* old_root = it.first; CHECK(!old_root->IsObjectArray()); mirror::Array* new_root = old_root; visitor->VisitRoot(reinterpret_cast<mirror::Object**>(&new_root), RootInfo(kRootUnknown)); if (new_root != old_root) { moving_roots.push_back(std::make_pair(old_root, new_root)); } } // Update array logs with moving roots. for (const ArrayPair& pair : moving_roots) { mirror::Array* old_root = pair.first; mirror::Array* new_root = pair.second; auto old_root_it = array_logs_.find(old_root); CHECK(old_root_it != array_logs_.end()); CHECK(array_logs_.find(new_root) == array_logs_.end()); array_logs_.emplace(new_root, std::move(old_root_it->second)); array_logs_.erase(old_root_it); } } void Transaction::VisitInternStringLogs(RootVisitor* visitor) { for (InternStringLog& log : intern_string_logs_) { log.VisitRoots(visitor); } } void Transaction::VisitResolveStringLogs(RootVisitor* visitor) { for (ResolveStringLog& log : resolve_string_logs_) { log.VisitRoots(visitor); } } void Transaction::ObjectLog::LogBooleanValue(MemberOffset offset, uint8_t value, bool is_volatile) { LogValue(ObjectLog::kBoolean, offset, value, is_volatile); } void Transaction::ObjectLog::LogByteValue(MemberOffset offset, int8_t value, bool is_volatile) { LogValue(ObjectLog::kByte, offset, value, is_volatile); } void Transaction::ObjectLog::LogCharValue(MemberOffset offset, uint16_t value, bool is_volatile) { LogValue(ObjectLog::kChar, offset, value, is_volatile); } void Transaction::ObjectLog::LogShortValue(MemberOffset offset, int16_t value, bool is_volatile) { LogValue(ObjectLog::kShort, offset, value, is_volatile); } void Transaction::ObjectLog::Log32BitsValue(MemberOffset offset, uint32_t value, bool is_volatile) { LogValue(ObjectLog::k32Bits, offset, value, is_volatile); } void Transaction::ObjectLog::Log64BitsValue(MemberOffset offset, uint64_t value, bool is_volatile) { LogValue(ObjectLog::k64Bits, offset, value, is_volatile); } void Transaction::ObjectLog::LogReferenceValue(MemberOffset offset, mirror::Object* obj, bool is_volatile) { LogValue(ObjectLog::kReference, offset, reinterpret_cast<uintptr_t>(obj), is_volatile); } void Transaction::ObjectLog::LogValue(ObjectLog::FieldValueKind kind, MemberOffset offset, uint64_t value, bool is_volatile) { auto it = field_values_.find(offset.Uint32Value()); if (it == field_values_.end()) { ObjectLog::FieldValue field_value; field_value.value = value; field_value.is_volatile = is_volatile; field_value.kind = kind; field_values_.emplace(offset.Uint32Value(), std::move(field_value)); } } void Transaction::ObjectLog::Undo(mirror::Object* obj) const { for (auto& it : field_values_) { // Garbage collector needs to access object's class and array's length. So we don't rollback // these values. MemberOffset field_offset(it.first); if (field_offset.Uint32Value() == mirror::Class::ClassOffset().Uint32Value()) { // Skip Object::class field. continue; } if (obj->IsArrayInstance() && field_offset.Uint32Value() == mirror::Array::LengthOffset().Uint32Value()) { // Skip Array::length field. continue; } const FieldValue& field_value = it.second; UndoFieldWrite(obj, field_offset, field_value); } } void Transaction::ObjectLog::UndoFieldWrite(mirror::Object* obj, MemberOffset field_offset, const FieldValue& field_value) const { // TODO We may want to abort a transaction while still being in transaction mode. In this case, // we'd need to disable the check. constexpr bool kCheckTransaction = false; switch (field_value.kind) { case kBoolean: if (UNLIKELY(field_value.is_volatile)) { obj->SetFieldBooleanVolatile<false, kCheckTransaction>( field_offset, static_cast<bool>(field_value.value)); } else { obj->SetFieldBoolean<false, kCheckTransaction>( field_offset, static_cast<bool>(field_value.value)); } break; case kByte: if (UNLIKELY(field_value.is_volatile)) { obj->SetFieldByteVolatile<false, kCheckTransaction>( field_offset, static_cast<int8_t>(field_value.value)); } else { obj->SetFieldByte<false, kCheckTransaction>( field_offset, static_cast<int8_t>(field_value.value)); } break; case kChar: if (UNLIKELY(field_value.is_volatile)) { obj->SetFieldCharVolatile<false, kCheckTransaction>( field_offset, static_cast<uint16_t>(field_value.value)); } else { obj->SetFieldChar<false, kCheckTransaction>( field_offset, static_cast<uint16_t>(field_value.value)); } break; case kShort: if (UNLIKELY(field_value.is_volatile)) { obj->SetFieldShortVolatile<false, kCheckTransaction>( field_offset, static_cast<int16_t>(field_value.value)); } else { obj->SetFieldShort<false, kCheckTransaction>( field_offset, static_cast<int16_t>(field_value.value)); } break; case k32Bits: if (UNLIKELY(field_value.is_volatile)) { obj->SetField32Volatile<false, kCheckTransaction>( field_offset, static_cast<uint32_t>(field_value.value)); } else { obj->SetField32<false, kCheckTransaction>( field_offset, static_cast<uint32_t>(field_value.value)); } break; case k64Bits: if (UNLIKELY(field_value.is_volatile)) { obj->SetField64Volatile<false, kCheckTransaction>(field_offset, field_value.value); } else { obj->SetField64<false, kCheckTransaction>(field_offset, field_value.value); } break; case kReference: if (UNLIKELY(field_value.is_volatile)) { obj->SetFieldObjectVolatile<false, kCheckTransaction>( field_offset, reinterpret_cast<mirror::Object*>(field_value.value)); } else { obj->SetFieldObject<false, kCheckTransaction>( field_offset, reinterpret_cast<mirror::Object*>(field_value.value)); } break; default: LOG(FATAL) << "Unknown value kind " << static_cast<int>(field_value.kind); break; } } void Transaction::ObjectLog::VisitRoots(RootVisitor* visitor) { for (auto& it : field_values_) { FieldValue& field_value = it.second; if (field_value.kind == ObjectLog::kReference) { visitor->VisitRootIfNonNull(reinterpret_cast<mirror::Object**>(&field_value.value), RootInfo(kRootUnknown)); } } } void Transaction::InternStringLog::Undo(InternTable* intern_table) const { DCHECK(intern_table != nullptr); switch (string_op_) { case InternStringLog::kInsert: { switch (string_kind_) { case InternStringLog::kStrongString: intern_table->RemoveStrongFromTransaction(str_.Read()); break; case InternStringLog::kWeakString: intern_table->RemoveWeakFromTransaction(str_.Read()); break; default: LOG(FATAL) << "Unknown interned string kind"; break; } break; } case InternStringLog::kRemove: { switch (string_kind_) { case InternStringLog::kStrongString: intern_table->InsertStrongFromTransaction(str_.Read()); break; case InternStringLog::kWeakString: intern_table->InsertWeakFromTransaction(str_.Read()); break; default: LOG(FATAL) << "Unknown interned string kind"; break; } break; } default: LOG(FATAL) << "Unknown interned string op"; break; } } void Transaction::InternStringLog::VisitRoots(RootVisitor* visitor) { str_.VisitRoot(visitor, RootInfo(kRootInternedString)); } void Transaction::ResolveStringLog::Undo() const { dex_cache_.Read()->ClearString(string_idx_); } Transaction::ResolveStringLog::ResolveStringLog(ObjPtr<mirror::DexCache> dex_cache, dex::StringIndex string_idx) : dex_cache_(dex_cache), string_idx_(string_idx) { DCHECK(dex_cache != nullptr); DCHECK_LT(string_idx_.index_, dex_cache->GetDexFile()->NumStringIds()); } void Transaction::ResolveStringLog::VisitRoots(RootVisitor* visitor) { dex_cache_.VisitRoot(visitor, RootInfo(kRootVMInternal)); } Transaction::InternStringLog::InternStringLog(ObjPtr<mirror::String> s, StringKind kind, StringOp op) : str_(s), string_kind_(kind), string_op_(op) { DCHECK(s != nullptr); } void Transaction::ArrayLog::LogValue(size_t index, uint64_t value) { auto it = array_values_.find(index); if (it == array_values_.end()) { array_values_.insert(std::make_pair(index, value)); } } void Transaction::ArrayLog::Undo(mirror::Array* array) const { DCHECK(array != nullptr); DCHECK(array->IsArrayInstance()); Primitive::Type type = array->GetClass()->GetComponentType()->GetPrimitiveType(); for (auto it : array_values_) { UndoArrayWrite(array, type, it.first, it.second); } } void Transaction::ArrayLog::UndoArrayWrite(mirror::Array* array, Primitive::Type array_type, size_t index, uint64_t value) const { // TODO We may want to abort a transaction while still being in transaction mode. In this case, // we'd need to disable the check. constexpr bool kCheckTransaction = false; switch (array_type) { case Primitive::kPrimBoolean: array->AsBooleanArray()->SetWithoutChecks<false, kCheckTransaction>( index, static_cast<uint8_t>(value)); break; case Primitive::kPrimByte: array->AsByteArray()->SetWithoutChecks<false, kCheckTransaction>( index, static_cast<int8_t>(value)); break; case Primitive::kPrimChar: array->AsCharArray()->SetWithoutChecks<false, kCheckTransaction>( index, static_cast<uint16_t>(value)); break; case Primitive::kPrimShort: array->AsShortArray()->SetWithoutChecks<false, kCheckTransaction>( index, static_cast<int16_t>(value)); break; case Primitive::kPrimInt: array->AsIntArray()->SetWithoutChecks<false, kCheckTransaction>( index, static_cast<int32_t>(value)); break; case Primitive::kPrimFloat: array->AsFloatArray()->SetWithoutChecks<false, kCheckTransaction>( index, static_cast<float>(value)); break; case Primitive::kPrimLong: array->AsLongArray()->SetWithoutChecks<false, kCheckTransaction>( index, static_cast<int64_t>(value)); break; case Primitive::kPrimDouble: array->AsDoubleArray()->SetWithoutChecks<false, kCheckTransaction>( index, static_cast<double>(value)); break; case Primitive::kPrimNot: LOG(FATAL) << "ObjectArray should be treated as Object"; break; default: LOG(FATAL) << "Unsupported type " << array_type; } } } // namespace art