/* * Copyright (C) 2008 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "applypatch/applypatch.h" #include <errno.h> #include <fcntl.h> #include <libgen.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/stat.h> #include <sys/statfs.h> #include <sys/types.h> #include <unistd.h> #include <functional> #include <memory> #include <string> #include <utility> #include <vector> #include <android-base/logging.h> #include <android-base/parseint.h> #include <android-base/strings.h> #include <openssl/sha.h> #include "edify/expr.h" #include "otafault/ota_io.h" #include "otautil/cache_location.h" #include "otautil/print_sha1.h" static int LoadPartitionContents(const std::string& filename, FileContents* file); static size_t FileSink(const unsigned char* data, size_t len, int fd); static int GenerateTarget(const FileContents& source_file, const std::unique_ptr<Value>& patch, const std::string& target_filename, const uint8_t target_sha1[SHA_DIGEST_LENGTH], const Value* bonus_data); // Read a file into memory; store the file contents and associated metadata in *file. // Return 0 on success. int LoadFileContents(const char* filename, FileContents* file) { // A special 'filename' beginning with "EMMC:" means to load the contents of a partition. if (strncmp(filename, "EMMC:", 5) == 0) { return LoadPartitionContents(filename, file); } struct stat sb; if (stat(filename, &sb) == -1) { printf("failed to stat \"%s\": %s\n", filename, strerror(errno)); return -1; } std::vector<unsigned char> data(sb.st_size); unique_file f(ota_fopen(filename, "rb")); if (!f) { printf("failed to open \"%s\": %s\n", filename, strerror(errno)); return -1; } size_t bytes_read = ota_fread(data.data(), 1, data.size(), f.get()); if (bytes_read != data.size()) { printf("short read of \"%s\" (%zu bytes of %zu)\n", filename, bytes_read, data.size()); return -1; } file->data = std::move(data); SHA1(file->data.data(), file->data.size(), file->sha1); return 0; } // Load the contents of an EMMC partition into the provided // FileContents. filename should be a string of the form // "EMMC:<partition_device>:...". The smallest size_n bytes for // which that prefix of the partition contents has the corresponding // sha1 hash will be loaded. It is acceptable for a size value to be // repeated with different sha1s. Will return 0 on success. // // This complexity is needed because if an OTA installation is // interrupted, the partition might contain either the source or the // target data, which might be of different lengths. We need to know // the length in order to read from a partition (there is no // "end-of-file" marker), so the caller must specify the possible // lengths and the hash of the data, and we'll do the load expecting // to find one of those hashes. static int LoadPartitionContents(const std::string& filename, FileContents* file) { std::vector<std::string> pieces = android::base::Split(filename, ":"); if (pieces.size() < 4 || pieces.size() % 2 != 0 || pieces[0] != "EMMC") { printf("LoadPartitionContents called with bad filename \"%s\"\n", filename.c_str()); return -1; } size_t pair_count = (pieces.size() - 2) / 2; // # of (size, sha1) pairs in filename std::vector<std::pair<size_t, std::string>> pairs; for (size_t i = 0; i < pair_count; ++i) { size_t size; if (!android::base::ParseUint(pieces[i * 2 + 2], &size) || size == 0) { printf("LoadPartitionContents called with bad size \"%s\"\n", pieces[i * 2 + 2].c_str()); return -1; } pairs.push_back({ size, pieces[i * 2 + 3] }); } // Sort the pairs array so that they are in order of increasing size. std::sort(pairs.begin(), pairs.end()); const char* partition = pieces[1].c_str(); unique_file dev(ota_fopen(partition, "rb")); if (!dev) { printf("failed to open emmc partition \"%s\": %s\n", partition, strerror(errno)); return -1; } SHA_CTX sha_ctx; SHA1_Init(&sha_ctx); // Allocate enough memory to hold the largest size. std::vector<unsigned char> buffer(pairs[pair_count - 1].first); unsigned char* buffer_ptr = buffer.data(); size_t buffer_size = 0; // # bytes read so far bool found = false; for (const auto& pair : pairs) { size_t current_size = pair.first; const std::string& current_sha1 = pair.second; // Read enough additional bytes to get us up to the next size. (Again, // we're trying the possibilities in order of increasing size). size_t next = current_size - buffer_size; if (next > 0) { size_t read = ota_fread(buffer_ptr, 1, next, dev.get()); if (next != read) { printf("short read (%zu bytes of %zu) for partition \"%s\"\n", read, next, partition); return -1; } SHA1_Update(&sha_ctx, buffer_ptr, read); buffer_size += read; buffer_ptr += read; } // Duplicate the SHA context and finalize the duplicate so we can // check it against this pair's expected hash. SHA_CTX temp_ctx; memcpy(&temp_ctx, &sha_ctx, sizeof(SHA_CTX)); uint8_t sha_so_far[SHA_DIGEST_LENGTH]; SHA1_Final(sha_so_far, &temp_ctx); uint8_t parsed_sha[SHA_DIGEST_LENGTH]; if (ParseSha1(current_sha1.c_str(), parsed_sha) != 0) { printf("failed to parse SHA-1 %s in %s\n", current_sha1.c_str(), filename.c_str()); return -1; } if (memcmp(sha_so_far, parsed_sha, SHA_DIGEST_LENGTH) == 0) { // We have a match. Stop reading the partition; we'll return the data we've read so far. printf("partition read matched size %zu SHA-1 %s\n", current_size, current_sha1.c_str()); found = true; break; } } if (!found) { // Ran off the end of the list of (size, sha1) pairs without finding a match. printf("contents of partition \"%s\" didn't match %s\n", partition, filename.c_str()); return -1; } SHA1_Final(file->sha1, &sha_ctx); buffer.resize(buffer_size); file->data = std::move(buffer); return 0; } // Save the contents of the given FileContents object under the given // filename. Return 0 on success. int SaveFileContents(const char* filename, const FileContents* file) { unique_fd fd(ota_open(filename, O_WRONLY | O_CREAT | O_TRUNC | O_SYNC, S_IRUSR | S_IWUSR)); if (fd == -1) { printf("failed to open \"%s\" for write: %s\n", filename, strerror(errno)); return -1; } size_t bytes_written = FileSink(file->data.data(), file->data.size(), fd); if (bytes_written != file->data.size()) { printf("short write of \"%s\" (%zd bytes of %zu): %s\n", filename, bytes_written, file->data.size(), strerror(errno)); return -1; } if (ota_fsync(fd) != 0) { printf("fsync of \"%s\" failed: %s\n", filename, strerror(errno)); return -1; } if (ota_close(fd) != 0) { printf("close of \"%s\" failed: %s\n", filename, strerror(errno)); return -1; } return 0; } // Write a memory buffer to 'target' partition, a string of the form // "EMMC:<partition_device>[:...]". The target name // might contain multiple colons, but WriteToPartition() only uses the first // two and ignores the rest. Return 0 on success. int WriteToPartition(const unsigned char* data, size_t len, const std::string& target) { std::vector<std::string> pieces = android::base::Split(target, ":"); if (pieces.size() < 2 || pieces[0] != "EMMC") { printf("WriteToPartition called with bad target (%s)\n", target.c_str()); return -1; } const char* partition = pieces[1].c_str(); unique_fd fd(ota_open(partition, O_RDWR)); if (fd == -1) { printf("failed to open %s: %s\n", partition, strerror(errno)); return -1; } size_t start = 0; bool success = false; for (size_t attempt = 0; attempt < 2; ++attempt) { if (TEMP_FAILURE_RETRY(lseek(fd, start, SEEK_SET)) == -1) { printf("failed seek on %s: %s\n", partition, strerror(errno)); return -1; } while (start < len) { size_t to_write = len - start; if (to_write > 1 << 20) to_write = 1 << 20; ssize_t written = TEMP_FAILURE_RETRY(ota_write(fd, data + start, to_write)); if (written == -1) { printf("failed write writing to %s: %s\n", partition, strerror(errno)); return -1; } start += written; } if (ota_fsync(fd) != 0) { printf("failed to sync to %s: %s\n", partition, strerror(errno)); return -1; } if (ota_close(fd) != 0) { printf("failed to close %s: %s\n", partition, strerror(errno)); return -1; } fd.reset(ota_open(partition, O_RDONLY)); if (fd == -1) { printf("failed to reopen %s for verify: %s\n", partition, strerror(errno)); return -1; } // Drop caches so our subsequent verification read won't just be reading the cache. sync(); unique_fd dc(ota_open("/proc/sys/vm/drop_caches", O_WRONLY)); if (TEMP_FAILURE_RETRY(ota_write(dc, "3\n", 2)) == -1) { printf("write to /proc/sys/vm/drop_caches failed: %s\n", strerror(errno)); } else { printf(" caches dropped\n"); } ota_close(dc); sleep(1); // Verify. if (TEMP_FAILURE_RETRY(lseek(fd, 0, SEEK_SET)) == -1) { printf("failed to seek back to beginning of %s: %s\n", partition, strerror(errno)); return -1; } unsigned char buffer[4096]; start = len; for (size_t p = 0; p < len; p += sizeof(buffer)) { size_t to_read = len - p; if (to_read > sizeof(buffer)) { to_read = sizeof(buffer); } size_t so_far = 0; while (so_far < to_read) { ssize_t read_count = TEMP_FAILURE_RETRY(ota_read(fd, buffer + so_far, to_read - so_far)); if (read_count == -1) { printf("verify read error %s at %zu: %s\n", partition, p, strerror(errno)); return -1; } else if (read_count == 0) { printf("verify read reached unexpected EOF, %s at %zu\n", partition, p); return -1; } if (static_cast<size_t>(read_count) < to_read) { printf("short verify read %s at %zu: %zd %zu\n", partition, p, read_count, to_read); } so_far += read_count; } if (memcmp(buffer, data + p, to_read) != 0) { printf("verification failed starting at %zu\n", p); start = p; break; } } if (start == len) { printf("verification read succeeded (attempt %zu)\n", attempt + 1); success = true; break; } if (ota_close(fd) != 0) { printf("failed to close %s: %s\n", partition, strerror(errno)); return -1; } fd.reset(ota_open(partition, O_RDWR)); if (fd == -1) { printf("failed to reopen %s for retry write && verify: %s\n", partition, strerror(errno)); return -1; } } if (!success) { printf("failed to verify after all attempts\n"); return -1; } if (ota_close(fd) == -1) { printf("error closing %s: %s\n", partition, strerror(errno)); return -1; } sync(); return 0; } // Take a string 'str' of 40 hex digits and parse it into the 20 // byte array 'digest'. 'str' may contain only the digest or be of // the form "<digest>:<anything>". Return 0 on success, -1 on any // error. int ParseSha1(const char* str, uint8_t* digest) { const char* ps = str; uint8_t* pd = digest; for (int i = 0; i < SHA_DIGEST_LENGTH * 2; ++i, ++ps) { int digit; if (*ps >= '0' && *ps <= '9') { digit = *ps - '0'; } else if (*ps >= 'a' && *ps <= 'f') { digit = *ps - 'a' + 10; } else if (*ps >= 'A' && *ps <= 'F') { digit = *ps - 'A' + 10; } else { return -1; } if (i % 2 == 0) { *pd = digit << 4; } else { *pd |= digit; ++pd; } } if (*ps != '\0') return -1; return 0; } // Search an array of sha1 strings for one matching the given sha1. // Return the index of the match on success, or -1 if no match is // found. static int FindMatchingPatch(uint8_t* sha1, const std::vector<std::string>& patch_sha1_str) { for (size_t i = 0; i < patch_sha1_str.size(); ++i) { uint8_t patch_sha1[SHA_DIGEST_LENGTH]; if (ParseSha1(patch_sha1_str[i].c_str(), patch_sha1) == 0 && memcmp(patch_sha1, sha1, SHA_DIGEST_LENGTH) == 0) { return i; } } return -1; } // Returns 0 if the contents of the file (argv[2]) or the cached file // match any of the sha1's on the command line (argv[3:]). Returns // nonzero otherwise. int applypatch_check(const char* filename, const std::vector<std::string>& patch_sha1_str) { FileContents file; // It's okay to specify no sha1s; the check will pass if the // LoadFileContents is successful. (Useful for reading // partitions, where the filename encodes the sha1s; no need to // check them twice.) if (LoadFileContents(filename, &file) != 0 || (!patch_sha1_str.empty() && FindMatchingPatch(file.sha1, patch_sha1_str) < 0)) { printf("file \"%s\" doesn't have any of expected sha1 sums; checking cache\n", filename); // If the source file is missing or corrupted, it might be because we were killed in the middle // of patching it. A copy of it should have been made in cache_temp_source. If that file // exists and matches the sha1 we're looking for, the check still passes. if (LoadFileContents(CacheLocation::location().cache_temp_source().c_str(), &file) != 0) { printf("failed to load cache file\n"); return 1; } if (FindMatchingPatch(file.sha1, patch_sha1_str) < 0) { printf("cache bits don't match any sha1 for \"%s\"\n", filename); return 1; } } return 0; } int ShowLicenses() { ShowBSDiffLicense(); return 0; } static size_t FileSink(const unsigned char* data, size_t len, int fd) { size_t done = 0; while (done < len) { ssize_t wrote = TEMP_FAILURE_RETRY(ota_write(fd, data + done, len - done)); if (wrote == -1) { printf("error writing %zd bytes: %s\n", (len - done), strerror(errno)); return done; } done += wrote; } return done; } // Return the amount of free space (in bytes) on the filesystem // containing filename. filename must exist. Return -1 on error. size_t FreeSpaceForFile(const char* filename) { struct statfs sf; if (statfs(filename, &sf) != 0) { printf("failed to statfs %s: %s\n", filename, strerror(errno)); return -1; } return sf.f_bsize * sf.f_bavail; } int CacheSizeCheck(size_t bytes) { if (MakeFreeSpaceOnCache(bytes) < 0) { printf("unable to make %zu bytes available on /cache\n", bytes); return 1; } return 0; } // This function applies binary patches to EMMC target files in a way that is safe (the original // file is not touched until we have the desired replacement for it) and idempotent (it's okay to // run this program multiple times). // // - If the SHA-1 hash of <target_filename> is <target_sha1_string>, does nothing and exits // successfully. // // - Otherwise, if the SHA-1 hash of <source_filename> is one of the entries in <patch_sha1_str>, // the corresponding patch from <patch_data> (which must be a VAL_BLOB) is applied to produce a // new file (the type of patch is automatically detected from the blob data). If that new file // has SHA-1 hash <target_sha1_str>, moves it to replace <target_filename>, and exits // successfully. Note that if <source_filename> and <target_filename> are not the same, // <source_filename> is NOT deleted on success. <target_filename> may be the string "-" to mean // "the same as <source_filename>". // // - Otherwise, or if any error is encountered, exits with non-zero status. // // <source_filename> must refer to an EMMC partition to read the source data. See the comments for // the LoadPartitionContents() function above for the format of such a filename. <target_size> has // become obsolete since we have dropped the support for patching non-EMMC targets (EMMC targets // have the size embedded in the filename). int applypatch(const char* source_filename, const char* target_filename, const char* target_sha1_str, size_t /* target_size */, const std::vector<std::string>& patch_sha1_str, const std::vector<std::unique_ptr<Value>>& patch_data, const Value* bonus_data) { printf("patch %s: ", source_filename); if (target_filename[0] == '-' && target_filename[1] == '\0') { target_filename = source_filename; } if (strncmp(target_filename, "EMMC:", 5) != 0) { printf("Supporting patching EMMC targets only.\n"); return 1; } uint8_t target_sha1[SHA_DIGEST_LENGTH]; if (ParseSha1(target_sha1_str, target_sha1) != 0) { printf("failed to parse tgt-sha1 \"%s\"\n", target_sha1_str); return 1; } // We try to load the target file into the source_file object. FileContents source_file; if (LoadFileContents(target_filename, &source_file) == 0) { if (memcmp(source_file.sha1, target_sha1, SHA_DIGEST_LENGTH) == 0) { // The early-exit case: the patch was already applied, this file has the desired hash, nothing // for us to do. printf("already %s\n", short_sha1(target_sha1).c_str()); return 0; } } if (source_file.data.empty() || (target_filename != source_filename && strcmp(target_filename, source_filename) != 0)) { // Need to load the source file: either we failed to load the target file, or we did but it's // different from the expected. source_file.data.clear(); LoadFileContents(source_filename, &source_file); } if (!source_file.data.empty()) { int to_use = FindMatchingPatch(source_file.sha1, patch_sha1_str); if (to_use != -1) { return GenerateTarget(source_file, patch_data[to_use], target_filename, target_sha1, bonus_data); } } printf("source file is bad; trying copy\n"); FileContents copy_file; if (LoadFileContents(CacheLocation::location().cache_temp_source().c_str(), ©_file) < 0) { printf("failed to read copy file\n"); return 1; } int to_use = FindMatchingPatch(copy_file.sha1, patch_sha1_str); if (to_use == -1) { printf("copy file doesn't match source SHA-1s either\n"); return 1; } return GenerateTarget(copy_file, patch_data[to_use], target_filename, target_sha1, bonus_data); } /* * This function flashes a given image to the target partition. It verifies * the target cheksum first, and will return if target has the desired hash. * It checks the checksum of the given source image before flashing, and * verifies the target partition afterwards. The function is idempotent. * Returns zero on success. */ int applypatch_flash(const char* source_filename, const char* target_filename, const char* target_sha1_str, size_t target_size) { printf("flash %s: ", target_filename); uint8_t target_sha1[SHA_DIGEST_LENGTH]; if (ParseSha1(target_sha1_str, target_sha1) != 0) { printf("failed to parse tgt-sha1 \"%s\"\n", target_sha1_str); return 1; } std::string target_str(target_filename); std::vector<std::string> pieces = android::base::Split(target_str, ":"); if (pieces.size() != 2 || pieces[0] != "EMMC") { printf("invalid target name \"%s\"", target_filename); return 1; } // Load the target into the source_file object to see if already applied. pieces.push_back(std::to_string(target_size)); pieces.push_back(target_sha1_str); std::string fullname = android::base::Join(pieces, ':'); FileContents source_file; if (LoadPartitionContents(fullname, &source_file) == 0 && memcmp(source_file.sha1, target_sha1, SHA_DIGEST_LENGTH) == 0) { // The early-exit case: the image was already applied, this partition // has the desired hash, nothing for us to do. printf("already %s\n", short_sha1(target_sha1).c_str()); return 0; } if (LoadFileContents(source_filename, &source_file) == 0) { if (memcmp(source_file.sha1, target_sha1, SHA_DIGEST_LENGTH) != 0) { // The source doesn't have desired checksum. printf("source \"%s\" doesn't have expected sha1 sum\n", source_filename); printf("expected: %s, found: %s\n", short_sha1(target_sha1).c_str(), short_sha1(source_file.sha1).c_str()); return 1; } } if (WriteToPartition(source_file.data.data(), target_size, target_filename) != 0) { printf("write of copied data to %s failed\n", target_filename); return 1; } return 0; } static int GenerateTarget(const FileContents& source_file, const std::unique_ptr<Value>& patch, const std::string& target_filename, const uint8_t target_sha1[SHA_DIGEST_LENGTH], const Value* bonus_data) { if (patch->type != VAL_BLOB) { printf("patch is not a blob\n"); return 1; } const char* header = &patch->data[0]; size_t header_bytes_read = patch->data.size(); bool use_bsdiff = false; if (header_bytes_read >= 8 && memcmp(header, "BSDIFF40", 8) == 0) { use_bsdiff = true; } else if (header_bytes_read >= 8 && memcmp(header, "IMGDIFF2", 8) == 0) { use_bsdiff = false; } else { printf("Unknown patch file format\n"); return 1; } CHECK(android::base::StartsWith(target_filename, "EMMC:")); // We still write the original source to cache, in case the partition write is interrupted. if (MakeFreeSpaceOnCache(source_file.data.size()) < 0) { printf("not enough free space on /cache\n"); return 1; } if (SaveFileContents(CacheLocation::location().cache_temp_source().c_str(), &source_file) < 0) { printf("failed to back up source file\n"); return 1; } // We store the decoded output in memory. std::string memory_sink_str; // Don't need to reserve space. SinkFn sink = [&memory_sink_str](const unsigned char* data, size_t len) { memory_sink_str.append(reinterpret_cast<const char*>(data), len); return len; }; SHA_CTX ctx; SHA1_Init(&ctx); int result; if (use_bsdiff) { result = ApplyBSDiffPatch(source_file.data.data(), source_file.data.size(), *patch, 0, sink, &ctx); } else { result = ApplyImagePatch(source_file.data.data(), source_file.data.size(), *patch, sink, &ctx, bonus_data); } if (result != 0) { printf("applying patch failed\n"); return 1; } uint8_t current_target_sha1[SHA_DIGEST_LENGTH]; SHA1_Final(current_target_sha1, &ctx); if (memcmp(current_target_sha1, target_sha1, SHA_DIGEST_LENGTH) != 0) { printf("patch did not produce expected sha1\n"); return 1; } else { printf("now %s\n", short_sha1(target_sha1).c_str()); } // Write back the temp file to the partition. if (WriteToPartition(reinterpret_cast<const unsigned char*>(memory_sink_str.c_str()), memory_sink_str.size(), target_filename) != 0) { printf("write of patched data to %s failed\n", target_filename.c_str()); return 1; } // Delete the backup copy of the source. unlink(CacheLocation::location().cache_temp_source().c_str()); // Success! return 0; }