/* * Copyright (C) 2007 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "install.h" #include <ctype.h> #include <errno.h> #include <fcntl.h> #include <inttypes.h> #include <limits.h> #include <string.h> #include <sys/stat.h> #include <sys/wait.h> #include <unistd.h> #include <algorithm> #include <atomic> #include <chrono> #include <condition_variable> #include <functional> #include <limits> #include <map> #include <mutex> #include <string> #include <thread> #include <vector> #include <android-base/file.h> #include <android-base/logging.h> #include <android-base/parsedouble.h> #include <android-base/parseint.h> #include <android-base/properties.h> #include <android-base/stringprintf.h> #include <android-base/strings.h> #include <vintf/VintfObjectRecovery.h> #include <ziparchive/zip_archive.h> #include "common.h" #include "otautil/SysUtil.h" #include "otautil/ThermalUtil.h" #include "otautil/error_code.h" #include "private/install.h" #include "roots.h" #include "ui.h" #include "verifier.h" using namespace std::chrono_literals; // Default allocation of progress bar segments to operations static constexpr int VERIFICATION_PROGRESS_TIME = 60; static constexpr float VERIFICATION_PROGRESS_FRACTION = 0.25; static std::condition_variable finish_log_temperature; // This function parses and returns the build.version.incremental static std::string parse_build_number(const std::string& str) { size_t pos = str.find('='); if (pos != std::string::npos) { return android::base::Trim(str.substr(pos+1)); } LOG(ERROR) << "Failed to parse build number in " << str; return ""; } bool read_metadata_from_package(ZipArchiveHandle zip, std::string* metadata) { CHECK(metadata != nullptr); static constexpr const char* METADATA_PATH = "META-INF/com/android/metadata"; ZipString path(METADATA_PATH); ZipEntry entry; if (FindEntry(zip, path, &entry) != 0) { LOG(ERROR) << "Failed to find " << METADATA_PATH; return false; } uint32_t length = entry.uncompressed_length; metadata->resize(length, '\0'); int32_t err = ExtractToMemory(zip, &entry, reinterpret_cast<uint8_t*>(&(*metadata)[0]), length); if (err != 0) { LOG(ERROR) << "Failed to extract " << METADATA_PATH << ": " << ErrorCodeString(err); return false; } return true; } // Read the build.version.incremental of src/tgt from the metadata and log it to last_install. static void read_source_target_build(ZipArchiveHandle zip, std::vector<std::string>* log_buffer) { std::string metadata; if (!read_metadata_from_package(zip, &metadata)) { return; } // Examples of the pre-build and post-build strings in metadata: // pre-build-incremental=2943039 // post-build-incremental=2951741 std::vector<std::string> lines = android::base::Split(metadata, "\n"); for (const std::string& line : lines) { std::string str = android::base::Trim(line); if (android::base::StartsWith(str, "pre-build-incremental")) { std::string source_build = parse_build_number(str); if (!source_build.empty()) { log_buffer->push_back("source_build: " + source_build); } } else if (android::base::StartsWith(str, "post-build-incremental")) { std::string target_build = parse_build_number(str); if (!target_build.empty()) { log_buffer->push_back("target_build: " + target_build); } } } } #ifdef AB_OTA_UPDATER // Parses the metadata of the OTA package in |zip| and checks whether we are // allowed to accept this A/B package. Downgrading is not allowed unless // explicitly enabled in the package and only for incremental packages. static int check_newer_ab_build(ZipArchiveHandle zip) { std::string metadata_str; if (!read_metadata_from_package(zip, &metadata_str)) { return INSTALL_CORRUPT; } std::map<std::string, std::string> metadata; for (const std::string& line : android::base::Split(metadata_str, "\n")) { size_t eq = line.find('='); if (eq != std::string::npos) { metadata[line.substr(0, eq)] = line.substr(eq + 1); } } std::string value = android::base::GetProperty("ro.product.device", ""); const std::string& pkg_device = metadata["pre-device"]; if (pkg_device != value || pkg_device.empty()) { LOG(ERROR) << "Package is for product " << pkg_device << " but expected " << value; return INSTALL_ERROR; } // We allow the package to not have any serialno; and we also allow it to carry multiple serial // numbers split by "|"; e.g. serialno=serialno1|serialno2|serialno3 ... We will fail the // verification if the device's serialno doesn't match any of these carried numbers. value = android::base::GetProperty("ro.serialno", ""); const std::string& pkg_serial_no = metadata["serialno"]; if (!pkg_serial_no.empty()) { bool match = false; for (const std::string& number : android::base::Split(pkg_serial_no, "|")) { if (value == android::base::Trim(number)) { match = true; break; } } if (!match) { LOG(ERROR) << "Package is for serial " << pkg_serial_no; return INSTALL_ERROR; } } if (metadata["ota-type"] != "AB") { LOG(ERROR) << "Package is not A/B"; return INSTALL_ERROR; } // Incremental updates should match the current build. value = android::base::GetProperty("ro.build.version.incremental", ""); const std::string& pkg_pre_build = metadata["pre-build-incremental"]; if (!pkg_pre_build.empty() && pkg_pre_build != value) { LOG(ERROR) << "Package is for source build " << pkg_pre_build << " but expected " << value; return INSTALL_ERROR; } value = android::base::GetProperty("ro.build.fingerprint", ""); const std::string& pkg_pre_build_fingerprint = metadata["pre-build"]; if (!pkg_pre_build_fingerprint.empty() && pkg_pre_build_fingerprint != value) { LOG(ERROR) << "Package is for source build " << pkg_pre_build_fingerprint << " but expected " << value; return INSTALL_ERROR; } // Check for downgrade version. int64_t build_timestamp = android::base::GetIntProperty("ro.build.date.utc", std::numeric_limits<int64_t>::max()); int64_t pkg_post_timestamp = 0; // We allow to full update to the same version we are running, in case there // is a problem with the current copy of that version. if (metadata["post-timestamp"].empty() || !android::base::ParseInt(metadata["post-timestamp"].c_str(), &pkg_post_timestamp) || pkg_post_timestamp < build_timestamp) { if (metadata["ota-downgrade"] != "yes") { LOG(ERROR) << "Update package is older than the current build, expected a build " "newer than timestamp " << build_timestamp << " but package has timestamp " << pkg_post_timestamp << " and downgrade not allowed."; return INSTALL_ERROR; } if (pkg_pre_build_fingerprint.empty()) { LOG(ERROR) << "Downgrade package must have a pre-build version set, not allowed."; return INSTALL_ERROR; } } return 0; } int update_binary_command(const std::string& package, ZipArchiveHandle zip, const std::string& binary_path, int /* retry_count */, int status_fd, std::vector<std::string>* cmd) { CHECK(cmd != nullptr); int ret = check_newer_ab_build(zip); if (ret != 0) { return ret; } // For A/B updates we extract the payload properties to a buffer and obtain the RAW payload offset // in the zip file. static constexpr const char* AB_OTA_PAYLOAD_PROPERTIES = "payload_properties.txt"; ZipString property_name(AB_OTA_PAYLOAD_PROPERTIES); ZipEntry properties_entry; if (FindEntry(zip, property_name, &properties_entry) != 0) { LOG(ERROR) << "Failed to find " << AB_OTA_PAYLOAD_PROPERTIES; return INSTALL_CORRUPT; } uint32_t properties_entry_length = properties_entry.uncompressed_length; std::vector<uint8_t> payload_properties(properties_entry_length); int32_t err = ExtractToMemory(zip, &properties_entry, payload_properties.data(), properties_entry_length); if (err != 0) { LOG(ERROR) << "Failed to extract " << AB_OTA_PAYLOAD_PROPERTIES << ": " << ErrorCodeString(err); return INSTALL_CORRUPT; } static constexpr const char* AB_OTA_PAYLOAD = "payload.bin"; ZipString payload_name(AB_OTA_PAYLOAD); ZipEntry payload_entry; if (FindEntry(zip, payload_name, &payload_entry) != 0) { LOG(ERROR) << "Failed to find " << AB_OTA_PAYLOAD; return INSTALL_CORRUPT; } long payload_offset = payload_entry.offset; *cmd = { binary_path, "--payload=file://" + package, android::base::StringPrintf("--offset=%ld", payload_offset), "--headers=" + std::string(payload_properties.begin(), payload_properties.end()), android::base::StringPrintf("--status_fd=%d", status_fd), }; return 0; } #else // !AB_OTA_UPDATER int update_binary_command(const std::string& package, ZipArchiveHandle zip, const std::string& binary_path, int retry_count, int status_fd, std::vector<std::string>* cmd) { CHECK(cmd != nullptr); // On traditional updates we extract the update binary from the package. static constexpr const char* UPDATE_BINARY_NAME = "META-INF/com/google/android/update-binary"; ZipString binary_name(UPDATE_BINARY_NAME); ZipEntry binary_entry; if (FindEntry(zip, binary_name, &binary_entry) != 0) { LOG(ERROR) << "Failed to find update binary " << UPDATE_BINARY_NAME; return INSTALL_CORRUPT; } unlink(binary_path.c_str()); int fd = open(binary_path.c_str(), O_CREAT | O_WRONLY | O_TRUNC | O_CLOEXEC, 0755); if (fd == -1) { PLOG(ERROR) << "Failed to create " << binary_path; return INSTALL_ERROR; } int32_t error = ExtractEntryToFile(zip, &binary_entry, fd); close(fd); if (error != 0) { LOG(ERROR) << "Failed to extract " << UPDATE_BINARY_NAME << ": " << ErrorCodeString(error); return INSTALL_ERROR; } *cmd = { binary_path, std::to_string(kRecoveryApiVersion), std::to_string(status_fd), package, }; if (retry_count > 0) { cmd->push_back("retry"); } return 0; } #endif // !AB_OTA_UPDATER static void log_max_temperature(int* max_temperature, const std::atomic<bool>& logger_finished) { CHECK(max_temperature != nullptr); std::mutex mtx; std::unique_lock<std::mutex> lck(mtx); while (!logger_finished.load() && finish_log_temperature.wait_for(lck, 20s) == std::cv_status::timeout) { *max_temperature = std::max(*max_temperature, GetMaxValueFromThermalZone()); } } // If the package contains an update binary, extract it and run it. static int try_update_binary(const std::string& package, ZipArchiveHandle zip, bool* wipe_cache, std::vector<std::string>* log_buffer, int retry_count, int* max_temperature) { read_source_target_build(zip, log_buffer); int pipefd[2]; pipe(pipefd); std::vector<std::string> args; #ifdef AB_OTA_UPDATER int ret = update_binary_command(package, zip, "/sbin/update_engine_sideload", retry_count, pipefd[1], &args); #else int ret = update_binary_command(package, zip, "/tmp/update-binary", retry_count, pipefd[1], &args); #endif if (ret) { close(pipefd[0]); close(pipefd[1]); log_buffer->push_back(android::base::StringPrintf("error: %d", kUpdateBinaryCommandFailure)); return ret; } // When executing the update binary contained in the package, the // arguments passed are: // // - the version number for this interface // // - an FD to which the program can write in order to update the // progress bar. The program can write single-line commands: // // progress <frac> <secs> // fill up the next <frac> part of of the progress bar // over <secs> seconds. If <secs> is zero, use // set_progress commands to manually control the // progress of this segment of the bar. // // set_progress <frac> // <frac> should be between 0.0 and 1.0; sets the // progress bar within the segment defined by the most // recent progress command. // // ui_print <string> // display <string> on the screen. // // wipe_cache // a wipe of cache will be performed following a successful // installation. // // clear_display // turn off the text display. // // enable_reboot // packages can explicitly request that they want the user // to be able to reboot during installation (useful for // debugging packages that don't exit). // // retry_update // updater encounters some issue during the update. It requests // a reboot to retry the same package automatically. // // log <string> // updater requests logging the string (e.g. cause of the // failure). // // - the name of the package zip file. // // - an optional argument "retry" if this update is a retry of a failed // update attempt. // // Convert the vector to a NULL-terminated char* array suitable for execv. const char* chr_args[args.size() + 1]; chr_args[args.size()] = nullptr; for (size_t i = 0; i < args.size(); i++) { chr_args[i] = args[i].c_str(); } pid_t pid = fork(); if (pid == -1) { close(pipefd[0]); close(pipefd[1]); PLOG(ERROR) << "Failed to fork update binary"; log_buffer->push_back(android::base::StringPrintf("error: %d", kForkUpdateBinaryFailure)); return INSTALL_ERROR; } if (pid == 0) { umask(022); close(pipefd[0]); execv(chr_args[0], const_cast<char**>(chr_args)); // Bug: 34769056 // We shouldn't use LOG/PLOG in the forked process, since they may cause // the child process to hang. This deadlock results from an improperly // copied mutex in the ui functions. fprintf(stdout, "E:Can't run %s (%s)\n", chr_args[0], strerror(errno)); _exit(EXIT_FAILURE); } close(pipefd[1]); std::atomic<bool> logger_finished(false); std::thread temperature_logger(log_max_temperature, max_temperature, std::ref(logger_finished)); *wipe_cache = false; bool retry_update = false; char buffer[1024]; FILE* from_child = fdopen(pipefd[0], "r"); while (fgets(buffer, sizeof(buffer), from_child) != nullptr) { std::string line(buffer); size_t space = line.find_first_of(" \n"); std::string command(line.substr(0, space)); if (command.empty()) continue; // Get rid of the leading and trailing space and/or newline. std::string args = space == std::string::npos ? "" : android::base::Trim(line.substr(space)); if (command == "progress") { std::vector<std::string> tokens = android::base::Split(args, " "); double fraction; int seconds; if (tokens.size() == 2 && android::base::ParseDouble(tokens[0].c_str(), &fraction) && android::base::ParseInt(tokens[1], &seconds)) { ui->ShowProgress(fraction * (1 - VERIFICATION_PROGRESS_FRACTION), seconds); } else { LOG(ERROR) << "invalid \"progress\" parameters: " << line; } } else if (command == "set_progress") { std::vector<std::string> tokens = android::base::Split(args, " "); double fraction; if (tokens.size() == 1 && android::base::ParseDouble(tokens[0].c_str(), &fraction)) { ui->SetProgress(fraction); } else { LOG(ERROR) << "invalid \"set_progress\" parameters: " << line; } } else if (command == "ui_print") { ui->PrintOnScreenOnly("%s\n", args.c_str()); fflush(stdout); } else if (command == "wipe_cache") { *wipe_cache = true; } else if (command == "clear_display") { ui->SetBackground(RecoveryUI::NONE); } else if (command == "enable_reboot") { // packages can explicitly request that they want the user // to be able to reboot during installation (useful for // debugging packages that don't exit). ui->SetEnableReboot(true); } else if (command == "retry_update") { retry_update = true; } else if (command == "log") { if (!args.empty()) { // Save the logging request from updater and write to last_install later. log_buffer->push_back(args); } else { LOG(ERROR) << "invalid \"log\" parameters: " << line; } } else { LOG(ERROR) << "unknown command [" << command << "]"; } } fclose(from_child); int status; waitpid(pid, &status, 0); logger_finished.store(true); finish_log_temperature.notify_one(); temperature_logger.join(); if (retry_update) { return INSTALL_RETRY; } if (!WIFEXITED(status) || WEXITSTATUS(status) != 0) { LOG(ERROR) << "Error in " << package << " (Status " << WEXITSTATUS(status) << ")"; return INSTALL_ERROR; } return INSTALL_SUCCESS; } // Verifes the compatibility info in a Treble-compatible package. Returns true directly if the // entry doesn't exist. Note that the compatibility info is packed in a zip file inside the OTA // package. bool verify_package_compatibility(ZipArchiveHandle package_zip) { LOG(INFO) << "Verifying package compatibility..."; static constexpr const char* COMPATIBILITY_ZIP_ENTRY = "compatibility.zip"; ZipString compatibility_entry_name(COMPATIBILITY_ZIP_ENTRY); ZipEntry compatibility_entry; if (FindEntry(package_zip, compatibility_entry_name, &compatibility_entry) != 0) { LOG(INFO) << "Package doesn't contain " << COMPATIBILITY_ZIP_ENTRY << " entry"; return true; } std::string zip_content(compatibility_entry.uncompressed_length, '\0'); int32_t ret; if ((ret = ExtractToMemory(package_zip, &compatibility_entry, reinterpret_cast<uint8_t*>(&zip_content[0]), compatibility_entry.uncompressed_length)) != 0) { LOG(ERROR) << "Failed to read " << COMPATIBILITY_ZIP_ENTRY << ": " << ErrorCodeString(ret); return false; } ZipArchiveHandle zip_handle; ret = OpenArchiveFromMemory(static_cast<void*>(const_cast<char*>(zip_content.data())), zip_content.size(), COMPATIBILITY_ZIP_ENTRY, &zip_handle); if (ret != 0) { LOG(ERROR) << "Failed to OpenArchiveFromMemory: " << ErrorCodeString(ret); return false; } // Iterate all the entries inside COMPATIBILITY_ZIP_ENTRY and read the contents. void* cookie; ret = StartIteration(zip_handle, &cookie, nullptr, nullptr); if (ret != 0) { LOG(ERROR) << "Failed to start iterating zip entries: " << ErrorCodeString(ret); CloseArchive(zip_handle); return false; } std::unique_ptr<void, decltype(&EndIteration)> guard(cookie, EndIteration); std::vector<std::string> compatibility_info; ZipEntry info_entry; ZipString info_name; while (Next(cookie, &info_entry, &info_name) == 0) { std::string content(info_entry.uncompressed_length, '\0'); int32_t ret = ExtractToMemory(zip_handle, &info_entry, reinterpret_cast<uint8_t*>(&content[0]), info_entry.uncompressed_length); if (ret != 0) { LOG(ERROR) << "Failed to read " << info_name.name << ": " << ErrorCodeString(ret); CloseArchive(zip_handle); return false; } compatibility_info.emplace_back(std::move(content)); } CloseArchive(zip_handle); // VintfObjectRecovery::CheckCompatibility returns zero on success. std::string err; int result = android::vintf::VintfObjectRecovery::CheckCompatibility(compatibility_info, &err); if (result == 0) { return true; } LOG(ERROR) << "Failed to verify package compatibility (result " << result << "): " << err; return false; } static int really_install_package(const std::string& path, bool* wipe_cache, bool needs_mount, std::vector<std::string>* log_buffer, int retry_count, int* max_temperature) { ui->SetBackground(RecoveryUI::INSTALLING_UPDATE); ui->Print("Finding update package...\n"); // Give verification half the progress bar... ui->SetProgressType(RecoveryUI::DETERMINATE); ui->ShowProgress(VERIFICATION_PROGRESS_FRACTION, VERIFICATION_PROGRESS_TIME); LOG(INFO) << "Update location: " << path; // Map the update package into memory. ui->Print("Opening update package...\n"); if (needs_mount) { if (path[0] == '@') { ensure_path_mounted(path.substr(1).c_str()); } else { ensure_path_mounted(path.c_str()); } } MemMapping map; if (!map.MapFile(path)) { LOG(ERROR) << "failed to map file"; log_buffer->push_back(android::base::StringPrintf("error: %d", kMapFileFailure)); return INSTALL_CORRUPT; } // Verify package. if (!verify_package(map.addr, map.length)) { log_buffer->push_back(android::base::StringPrintf("error: %d", kZipVerificationFailure)); return INSTALL_CORRUPT; } // Try to open the package. ZipArchiveHandle zip; int err = OpenArchiveFromMemory(map.addr, map.length, path.c_str(), &zip); if (err != 0) { LOG(ERROR) << "Can't open " << path << " : " << ErrorCodeString(err); log_buffer->push_back(android::base::StringPrintf("error: %d", kZipOpenFailure)); CloseArchive(zip); return INSTALL_CORRUPT; } // Additionally verify the compatibility of the package. if (!verify_package_compatibility(zip)) { log_buffer->push_back(android::base::StringPrintf("error: %d", kPackageCompatibilityFailure)); CloseArchive(zip); return INSTALL_CORRUPT; } // Verify and install the contents of the package. ui->Print("Installing update...\n"); if (retry_count > 0) { ui->Print("Retry attempt: %d\n", retry_count); } ui->SetEnableReboot(false); int result = try_update_binary(path, zip, wipe_cache, log_buffer, retry_count, max_temperature); ui->SetEnableReboot(true); ui->Print("\n"); CloseArchive(zip); return result; } int install_package(const std::string& path, bool* wipe_cache, const std::string& install_file, bool needs_mount, int retry_count) { CHECK(!path.empty()); CHECK(!install_file.empty()); CHECK(wipe_cache != nullptr); modified_flash = true; auto start = std::chrono::system_clock::now(); int start_temperature = GetMaxValueFromThermalZone(); int max_temperature = start_temperature; int result; std::vector<std::string> log_buffer; if (setup_install_mounts() != 0) { LOG(ERROR) << "failed to set up expected mounts for install; aborting"; result = INSTALL_ERROR; } else { result = really_install_package(path, wipe_cache, needs_mount, &log_buffer, retry_count, &max_temperature); } // Measure the time spent to apply OTA update in seconds. std::chrono::duration<double> duration = std::chrono::system_clock::now() - start; int time_total = static_cast<int>(duration.count()); bool has_cache = volume_for_mount_point("/cache") != nullptr; // Skip logging the uncrypt_status on devices without /cache. if (has_cache) { static constexpr const char* UNCRYPT_STATUS = "/cache/recovery/uncrypt_status"; if (ensure_path_mounted(UNCRYPT_STATUS) != 0) { LOG(WARNING) << "Can't mount " << UNCRYPT_STATUS; } else { std::string uncrypt_status; if (!android::base::ReadFileToString(UNCRYPT_STATUS, &uncrypt_status)) { PLOG(WARNING) << "failed to read uncrypt status"; } else if (!android::base::StartsWith(uncrypt_status, "uncrypt_")) { LOG(WARNING) << "corrupted uncrypt_status: " << uncrypt_status; } else { log_buffer.push_back(android::base::Trim(uncrypt_status)); } } } // The first two lines need to be the package name and install result. std::vector<std::string> log_header = { path, result == INSTALL_SUCCESS ? "1" : "0", "time_total: " + std::to_string(time_total), "retry: " + std::to_string(retry_count), }; int end_temperature = GetMaxValueFromThermalZone(); max_temperature = std::max(end_temperature, max_temperature); if (start_temperature > 0) { log_buffer.push_back("temperature_start: " + std::to_string(start_temperature)); } if (end_temperature > 0) { log_buffer.push_back("temperature_end: " + std::to_string(end_temperature)); } if (max_temperature > 0) { log_buffer.push_back("temperature_max: " + std::to_string(max_temperature)); } std::string log_content = android::base::Join(log_header, "\n") + "\n" + android::base::Join(log_buffer, "\n") + "\n"; if (!android::base::WriteStringToFile(log_content, install_file)) { PLOG(ERROR) << "failed to write " << install_file; } // Write a copy into last_log. LOG(INFO) << log_content; return result; } bool verify_package(const unsigned char* package_data, size_t package_size) { static constexpr const char* PUBLIC_KEYS_FILE = "/res/keys"; std::vector<Certificate> loadedKeys; if (!load_keys(PUBLIC_KEYS_FILE, loadedKeys)) { LOG(ERROR) << "Failed to load keys"; return false; } LOG(INFO) << loadedKeys.size() << " key(s) loaded from " << PUBLIC_KEYS_FILE; // Verify package. ui->Print("Verifying update package...\n"); auto t0 = std::chrono::system_clock::now(); int err = verify_file(package_data, package_size, loadedKeys, std::bind(&RecoveryUI::SetProgress, ui, std::placeholders::_1)); std::chrono::duration<double> duration = std::chrono::system_clock::now() - t0; ui->Print("Update package verification took %.1f s (result %d).\n", duration.count(), err); if (err != VERIFY_SUCCESS) { LOG(ERROR) << "Signature verification failed"; LOG(ERROR) << "error: " << kZipVerificationFailure; return false; } return true; }