/* * Copyright (c) 2012-2013, The Linux Foundation. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials provided * with the distribution. * * Neither the name of The Linux Foundation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE * OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN * IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #define LOG_NDEBUG 1 #include <errno.h> #include <inttypes.h> #include <string.h> #include <unistd.h> #include <sys/types.h> #include <sys/stat.h> #include <fcntl.h> #include <dlfcn.h> #include <stdlib.h> #include <time.h> #define LOG_TAG "QCOM PowerHAL" #include <utils/Log.h> #include <hardware/power.h> #include <cutils/properties.h> #include "utils.h" #include "metadata-defs.h" #include "hint-data.h" #include "performance.h" #include "power-common.h" #include "power-helper.h" #define USINSEC 1000000L #define NSINUS 1000L #ifndef RPM_STAT #define RPM_STAT "/d/rpm_stats" #endif #ifndef RPM_MASTER_STAT #define RPM_MASTER_STAT "/d/rpm_master_stats" #endif #ifndef WLAN_POWER_STAT #define WLAN_POWER_STAT "/d/wlan_wcnss/power_stats" #endif static const char *rpm_param_names[] = { "vlow_count", "accumulated_vlow_time", "vmin_count", "accumulated_vmin_time" }; static const char *rpm_master_param_names[] = { "xo_accumulated_duration", "xo_count", "xo_accumulated_duration", "xo_count", "xo_accumulated_duration", "xo_count", "xo_accumulated_duration", "xo_count" }; static const char *wlan_param_names[] = { "cumulative_sleep_time_ms", "cumulative_total_on_time_ms", "deep_sleep_enter_counter", "last_deep_sleep_enter_tstamp_ms" }; static int saved_dcvs_cpu0_slack_max = -1; static int saved_dcvs_cpu0_slack_min = -1; static int saved_mpdecision_slack_max = -1; static int saved_mpdecision_slack_min = -1; static int saved_interactive_mode = -1; static int slack_node_rw_failed = 0; static int display_hint_sent; int display_boost; static int sustained_mode_handle = 0; static int vr_mode_handle = 0; int sustained_performance_mode = 0; int vr_mode = 0; //interaction boost global variables static struct timespec s_previous_boost_timespec; static int s_previous_duration; void power_init(void) { ALOGV("QCOM power HAL initing."); int fd; char buf[10] = {0}; fd = open("/sys/devices/soc0/soc_id", O_RDONLY); if (fd >= 0) { if (read(fd, buf, sizeof(buf) - 1) == -1) { ALOGW("Unable to read soc_id"); } else { int soc_id = atoi(buf); if (soc_id == 194 || (soc_id >= 208 && soc_id <= 218) || soc_id == 178) { display_boost = 1; } } close(fd); } } int __attribute__ ((weak)) power_hint_override(power_hint_t UNUSED(hint), void * UNUSED(data)) { return HINT_NONE; } /* Declare function before use */ void interaction(int duration, int num_args, int opt_list[]); void release_request(int lock_handle); static long long calc_timespan_us(struct timespec start, struct timespec end) { long long diff_in_us = 0; diff_in_us += (end.tv_sec - start.tv_sec) * USINSEC; diff_in_us += (end.tv_nsec - start.tv_nsec) / NSINUS; return diff_in_us; } void power_hint(power_hint_t hint, void *data) { /* Check if this hint has been overridden. */ if (power_hint_override(hint, data) == HINT_HANDLED) { /* The power_hint has been handled. We can skip the rest. */ return; } switch(hint) { case POWER_HINT_VSYNC: break; /* Sustained performance mode: * All CPUs are capped to ~1.2GHz * GPU frequency is capped to 315MHz */ /* VR+Sustained performance mode: * All CPUs are locked to ~1.2GHz * GPU frequency is locked to 315MHz * GPU BW min_freq is raised to 775MHz */ case POWER_HINT_SUSTAINED_PERFORMANCE: { int duration = 0; if (data && sustained_performance_mode == 0) { int* resources; if (vr_mode == 0) { // Sustained mode only. // Ensure that POWER_HINT_LAUNCH is not in progress. if (launch_mode == 1) { release_request(launch_handle); launch_mode = 0; } // 0x40804000: cpu0 max freq // 0x40804100: cpu2 max freq // 0x42C20000: gpu max freq // 0x42C24000: gpu min freq // 0x42C28000: gpu bus min freq int resources[] = {0x40804000, 1209, 0x40804100, 1209, 0x42C24000, 133, 0x42C20000, 315, 0x42C28000, 7759}; sustained_mode_handle = interaction_with_handle( sustained_mode_handle, duration, sizeof(resources) / sizeof(resources[0]), resources); } else if (vr_mode == 1) { // Sustained + VR mode. release_request(vr_mode_handle); // 0x40804000: cpu0 max freq // 0x40804100: cpu2 max freq // 0x40800000: cpu0 min freq // 0x40800100: cpu2 min freq // 0x42C20000: gpu max freq // 0x42C24000: gpu min freq // 0x42C28000: gpu bus min freq int resources[] = {0x40800000, 1209, 0x40800100, 1209, 0x40804000, 1209, 0x40804100, 1209, 0x42C24000, 315, 0x42C20000, 315, 0x42C28000, 7759}; sustained_mode_handle = interaction_with_handle( sustained_mode_handle, duration, sizeof(resources) / sizeof(resources[0]), resources); } sustained_performance_mode = 1; } else if (sustained_performance_mode == 1) { release_request(sustained_mode_handle); if (vr_mode == 1) { // Switch back to VR Mode. // 0x40804000: cpu0 max freq // 0x40804100: cpu2 max freq // 0x40800000: cpu0 min freq // 0x40800100: cpu2 min freq // 0x42C20000: gpu max freq // 0x42C24000: gpu min freq // 0x42C28000: gpu bus min freq int resources[] = {0x40804000, 1440, 0x40804100, 1440, 0x40800000, 1440, 0x40800100, 1440, 0x42C20000, 510, 0x42C24000, 510, 0x42C28000, 7759}; vr_mode_handle = interaction_with_handle( vr_mode_handle, duration, sizeof(resources) / sizeof(resources[0]), resources); } sustained_performance_mode = 0; } } break; /* VR mode: * All CPUs are locked at ~1.4GHz * GPU frequency is locked to 510MHz * GPU BW min_freq is raised to 775MHz */ case POWER_HINT_VR_MODE: { int duration = 0; if (data && vr_mode == 0) { if (sustained_performance_mode == 0) { // VR mode only. // Ensure that POWER_HINT_LAUNCH is not in progress. if (launch_mode == 1) { release_request(launch_handle); launch_mode = 0; } // 0x40804000: cpu0 max freq // 0x40804100: cpu2 max freq // 0x40800000: cpu0 min freq // 0x40800100: cpu2 min freq // 0x42C20000: gpu max freq // 0x42C24000: gpu min freq // 0x42C28000: gpu bus min freq int resources[] = {0x40800000, 1440, 0x40800100, 1440, 0x40804000, 1440, 0x40804100, 1440, 0x42C20000, 510, 0x42C24000, 510, 0x42C28000, 7759}; vr_mode_handle = interaction_with_handle( vr_mode_handle, duration, sizeof(resources) / sizeof(resources[0]), resources); } else if (sustained_performance_mode == 1) { // Sustained + VR mode. release_request(sustained_mode_handle); // 0x40804000: cpu0 max freq // 0x40804100: cpu2 max freq // 0x40800000: cpu0 min freq // 0x40800100: cpu2 min freq // 0x42C20000: gpu max freq // 0x42C24000: gpu min freq // 0x42C28000: gpu bus min freq int resources[] = {0x40800000, 1209, 0x40800100, 1209, 0x40804000, 1209, 0x40804100, 1209, 0x42C24000, 315, 0x42C20000, 315, 0x42C28000, 7759}; vr_mode_handle = interaction_with_handle( vr_mode_handle, duration, sizeof(resources) / sizeof(resources[0]), resources); } vr_mode = 1; } else if (vr_mode == 1) { release_request(vr_mode_handle); if (sustained_performance_mode == 1) { // Switch back to sustained Mode. // 0x40804000: cpu0 max freq // 0x40804100: cpu2 max freq // 0x40800000: cpu0 min freq // 0x40800100: cpu2 min freq // 0x42C20000: gpu max freq // 0x42C24000: gpu min freq // 0x42C28000: gpu bus min freq int resources[] = {0x40800000, 0, 0x40800100, 0, 0x40804000, 1209, 0x40804100, 1209, 0x42C24000, 133, 0x42C20000, 315, 0x42C28000, 0}; sustained_mode_handle = interaction_with_handle( sustained_mode_handle, duration, sizeof(resources) / sizeof(resources[0]), resources); } vr_mode = 0; } } break; case POWER_HINT_INTERACTION: { char governor[80]; if (get_scaling_governor(governor, sizeof(governor)) == -1) { ALOGE("Can't obtain scaling governor."); return; } if (sustained_performance_mode || vr_mode) { return; } int duration = 1500; // 1.5s by default if (data) { int input_duration = *((int*)data) + 750; if (input_duration > duration) { duration = (input_duration > 5750) ? 5750 : input_duration; } } struct timespec cur_boost_timespec; clock_gettime(CLOCK_MONOTONIC, &cur_boost_timespec); long long elapsed_time = calc_timespan_us(s_previous_boost_timespec, cur_boost_timespec); // don't hint if previous hint's duration covers this hint's duration if ((s_previous_duration * 1000) > (elapsed_time + duration * 1000)) { return; } s_previous_boost_timespec = cur_boost_timespec; s_previous_duration = duration; // Scheduler is EAS. if (true || strncmp(governor, SCHED_GOVERNOR, strlen(SCHED_GOVERNOR)) == 0) { // Setting the value of foreground schedtune boost to 50 and // scaling_min_freq to 1100MHz. int resources[] = {0x40800000, 1100, 0x40800100, 1100, 0x42C0C000, 0x32, 0x41800000, 0x33}; interaction(duration, sizeof(resources)/sizeof(resources[0]), resources); } else { // Scheduler is HMP. int resources[] = {0x41800000, 0x33, 0x40800000, 1000, 0x40800100, 1000, 0x40C00000, 0x1}; interaction(duration, sizeof(resources)/sizeof(resources[0]), resources); } } break; default: break; } } int __attribute__ ((weak)) set_interactive_override(int UNUSED(on)) { return HINT_NONE; } void power_set_interactive(int on) { char governor[80]; char tmp_str[NODE_MAX]; struct video_encode_metadata_t video_encode_metadata; int rc = 0; if (set_interactive_override(on) == HINT_HANDLED) { return; } ALOGV("Got set_interactive hint"); if (get_scaling_governor(governor, sizeof(governor)) == -1) { ALOGE("Can't obtain scaling governor."); return; } if (!on) { /* Display off. */ if ((strncmp(governor, ONDEMAND_GOVERNOR, strlen(ONDEMAND_GOVERNOR)) == 0) && (strlen(governor) == strlen(ONDEMAND_GOVERNOR))) { int resource_values[] = {DISPLAY_OFF, MS_500, THREAD_MIGRATION_SYNC_OFF}; if (!display_hint_sent) { perform_hint_action(DISPLAY_STATE_HINT_ID, resource_values, sizeof(resource_values)/sizeof(resource_values[0])); display_hint_sent = 1; } } else if ((strncmp(governor, INTERACTIVE_GOVERNOR, strlen(INTERACTIVE_GOVERNOR)) == 0) && (strlen(governor) == strlen(INTERACTIVE_GOVERNOR))) { int resource_values[] = {TR_MS_50, THREAD_MIGRATION_SYNC_OFF}; if (!display_hint_sent) { perform_hint_action(DISPLAY_STATE_HINT_ID, resource_values, sizeof(resource_values)/sizeof(resource_values[0])); display_hint_sent = 1; } } else if ((strncmp(governor, MSMDCVS_GOVERNOR, strlen(MSMDCVS_GOVERNOR)) == 0) && (strlen(governor) == strlen(MSMDCVS_GOVERNOR))) { if (saved_interactive_mode == 1){ /* Display turned off. */ if (sysfs_read(DCVS_CPU0_SLACK_MAX_NODE, tmp_str, NODE_MAX - 1)) { if (!slack_node_rw_failed) { ALOGE("Failed to read from %s", DCVS_CPU0_SLACK_MAX_NODE); } rc = 1; } else { saved_dcvs_cpu0_slack_max = atoi(tmp_str); } if (sysfs_read(DCVS_CPU0_SLACK_MIN_NODE, tmp_str, NODE_MAX - 1)) { if (!slack_node_rw_failed) { ALOGE("Failed to read from %s", DCVS_CPU0_SLACK_MIN_NODE); } rc = 1; } else { saved_dcvs_cpu0_slack_min = atoi(tmp_str); } if (sysfs_read(MPDECISION_SLACK_MAX_NODE, tmp_str, NODE_MAX - 1)) { if (!slack_node_rw_failed) { ALOGE("Failed to read from %s", MPDECISION_SLACK_MAX_NODE); } rc = 1; } else { saved_mpdecision_slack_max = atoi(tmp_str); } if (sysfs_read(MPDECISION_SLACK_MIN_NODE, tmp_str, NODE_MAX - 1)) { if(!slack_node_rw_failed) { ALOGE("Failed to read from %s", MPDECISION_SLACK_MIN_NODE); } rc = 1; } else { saved_mpdecision_slack_min = atoi(tmp_str); } /* Write new values. */ if (saved_dcvs_cpu0_slack_max != -1) { snprintf(tmp_str, NODE_MAX, "%d", 10 * saved_dcvs_cpu0_slack_max); if (sysfs_write(DCVS_CPU0_SLACK_MAX_NODE, tmp_str) != 0) { if (!slack_node_rw_failed) { ALOGE("Failed to write to %s", DCVS_CPU0_SLACK_MAX_NODE); } rc = 1; } } if (saved_dcvs_cpu0_slack_min != -1) { snprintf(tmp_str, NODE_MAX, "%d", 10 * saved_dcvs_cpu0_slack_min); if (sysfs_write(DCVS_CPU0_SLACK_MIN_NODE, tmp_str) != 0) { if(!slack_node_rw_failed) { ALOGE("Failed to write to %s", DCVS_CPU0_SLACK_MIN_NODE); } rc = 1; } } if (saved_mpdecision_slack_max != -1) { snprintf(tmp_str, NODE_MAX, "%d", 10 * saved_mpdecision_slack_max); if (sysfs_write(MPDECISION_SLACK_MAX_NODE, tmp_str) != 0) { if(!slack_node_rw_failed) { ALOGE("Failed to write to %s", MPDECISION_SLACK_MAX_NODE); } rc = 1; } } if (saved_mpdecision_slack_min != -1) { snprintf(tmp_str, NODE_MAX, "%d", 10 * saved_mpdecision_slack_min); if (sysfs_write(MPDECISION_SLACK_MIN_NODE, tmp_str) != 0) { if(!slack_node_rw_failed) { ALOGE("Failed to write to %s", MPDECISION_SLACK_MIN_NODE); } rc = 1; } } } slack_node_rw_failed = rc; } } else { /* Display on. */ if ((strncmp(governor, ONDEMAND_GOVERNOR, strlen(ONDEMAND_GOVERNOR)) == 0) && (strlen(governor) == strlen(ONDEMAND_GOVERNOR))) { undo_hint_action(DISPLAY_STATE_HINT_ID); display_hint_sent = 0; } else if ((strncmp(governor, INTERACTIVE_GOVERNOR, strlen(INTERACTIVE_GOVERNOR)) == 0) && (strlen(governor) == strlen(INTERACTIVE_GOVERNOR))) { undo_hint_action(DISPLAY_STATE_HINT_ID); display_hint_sent = 0; } else if ((strncmp(governor, MSMDCVS_GOVERNOR, strlen(MSMDCVS_GOVERNOR)) == 0) && (strlen(governor) == strlen(MSMDCVS_GOVERNOR))) { if (saved_interactive_mode == -1 || saved_interactive_mode == 0) { /* Display turned on. Restore if possible. */ if (saved_dcvs_cpu0_slack_max != -1) { snprintf(tmp_str, NODE_MAX, "%d", saved_dcvs_cpu0_slack_max); if (sysfs_write(DCVS_CPU0_SLACK_MAX_NODE, tmp_str) != 0) { if (!slack_node_rw_failed) { ALOGE("Failed to write to %s", DCVS_CPU0_SLACK_MAX_NODE); } rc = 1; } } if (saved_dcvs_cpu0_slack_min != -1) { snprintf(tmp_str, NODE_MAX, "%d", saved_dcvs_cpu0_slack_min); if (sysfs_write(DCVS_CPU0_SLACK_MIN_NODE, tmp_str) != 0) { if (!slack_node_rw_failed) { ALOGE("Failed to write to %s", DCVS_CPU0_SLACK_MIN_NODE); } rc = 1; } } if (saved_mpdecision_slack_max != -1) { snprintf(tmp_str, NODE_MAX, "%d", saved_mpdecision_slack_max); if (sysfs_write(MPDECISION_SLACK_MAX_NODE, tmp_str) != 0) { if (!slack_node_rw_failed) { ALOGE("Failed to write to %s", MPDECISION_SLACK_MAX_NODE); } rc = 1; } } if (saved_mpdecision_slack_min != -1) { snprintf(tmp_str, NODE_MAX, "%d", saved_mpdecision_slack_min); if (sysfs_write(MPDECISION_SLACK_MIN_NODE, tmp_str) != 0) { if (!slack_node_rw_failed) { ALOGE("Failed to write to %s", MPDECISION_SLACK_MIN_NODE); } rc = 1; } } } slack_node_rw_failed = rc; } } saved_interactive_mode = !!on; } static int extract_stats(uint64_t *list, char *file, const char**param_names, unsigned int num_parameters, int isHex) { FILE *fp; ssize_t read; size_t len; size_t index = 0; char *line; int ret; fp = fopen(file, "r"); if (fp == NULL) { ret = -errno; ALOGE("%s: failed to open: %s Error = %s", __func__, file, strerror(errno)); return ret; } for (line = NULL, len = 0; ((read = getline(&line, &len, fp) != -1) && (index < num_parameters)); free(line), line = NULL, len = 0) { uint64_t value; char* offset; size_t begin = strspn(line, " \t"); if (strncmp(line + begin, param_names[index], strlen(param_names[index]))) { continue; } offset = memchr(line, ':', len); if (!offset) { continue; } if (isHex) { sscanf(offset, ":%" SCNx64, &value); } else { sscanf(offset, ":%" SCNu64, &value); } list[index] = value; index++; } free(line); fclose(fp); return 0; } int extract_platform_stats(uint64_t *list) { int ret; //Data is located in two files ret = extract_stats(list, RPM_STAT, rpm_param_names, RPM_PARAM_COUNT, false); if (ret) { for (size_t i=0; i < RPM_PARAM_COUNT; i++) list[i] = 0; } ret = extract_stats(list + RPM_PARAM_COUNT, RPM_MASTER_STAT, rpm_master_param_names, PLATFORM_PARAM_COUNT - RPM_PARAM_COUNT, true); if (ret) { for (size_t i=RPM_PARAM_COUNT; i < PLATFORM_PARAM_COUNT; i++) list[i] = 0; } return 0; } int extract_wlan_stats(uint64_t *list) { int ret; ret = extract_stats(list, WLAN_POWER_STAT, wlan_param_names, WLAN_PARAM_COUNT, false); if (ret) { for (size_t i=0; i < WLAN_PARAM_COUNT; i++) list[i] = 0; } return 0; }