/* * Copyright (c) 2016-2017, ARM Limited and Contributors. All rights reserved. * * SPDX-License-Identifier: BSD-3-Clause */ #include <arch_helpers.h> #include <arm_gic.h> #include <assert.h> #include <bl_common.h> #include <cci.h> #include <common_def.h> #include <console.h> #include <context_mgmt.h> #include <debug.h> #include <generic_delay_timer.h> #include <mcucfg.h> #include <mmio.h> #include <mt_cpuxgpt.h> #include <mtk_plat_common.h> #include <mtk_sip_svc.h> #include <plat_private.h> #include <platform.h> #include <string.h> #include <xlat_tables.h> /******************************************************************************* * Declarations of linker defined symbols which will help us find the layout * of trusted SRAM ******************************************************************************/ unsigned long __RO_START__; unsigned long __RO_END__; /* * The next 2 constants identify the extents of the code & RO data region. * These addresses are used by the MMU setup code and therefore they must be * page-aligned. It is the responsibility of the linker script to ensure that * __RO_START__ and __RO_END__ linker symbols refer to page-aligned addresses. */ #define BL31_RO_BASE (unsigned long)(&__RO_START__) #define BL31_RO_LIMIT (unsigned long)(&__RO_END__) /* * Placeholder variables for copying the arguments that have been passed to * BL3-1 from BL2. */ static entry_point_info_t bl32_image_ep_info; static entry_point_info_t bl33_image_ep_info; static const int cci_map[] = { PLAT_MT_CCI_CLUSTER0_SL_IFACE_IX, PLAT_MT_CCI_CLUSTER1_SL_IFACE_IX }; static uint32_t cci_map_length = ARRAY_SIZE(cci_map); /* Table of regions to map using the MMU. */ static const mmap_region_t plat_mmap[] = { /* for TF text, RO, RW */ MAP_REGION_FLAT(MTK_DEV_RNG0_BASE, MTK_DEV_RNG0_SIZE, MT_DEVICE | MT_RW | MT_SECURE), MAP_REGION_FLAT(MTK_DEV_RNG1_BASE, MTK_DEV_RNG1_SIZE, MT_DEVICE | MT_RW | MT_SECURE), MAP_REGION_FLAT(RAM_CONSOLE_BASE & ~(PAGE_SIZE_MASK), RAM_CONSOLE_SIZE, MT_DEVICE | MT_RW | MT_NS), { 0 } }; /******************************************************************************* * Macro generating the code for the function setting up the pagetables as per * the platform memory map & initialize the mmu, for the given exception level ******************************************************************************/ #define DEFINE_CONFIGURE_MMU_EL(_el) \ void plat_configure_mmu_el ## _el(unsigned long total_base, \ unsigned long total_size, \ unsigned long ro_start, \ unsigned long ro_limit, \ unsigned long coh_start, \ unsigned long coh_limit) \ { \ mmap_add_region(total_base, total_base, \ total_size, \ MT_MEMORY | MT_RW | MT_SECURE); \ mmap_add_region(ro_start, ro_start, \ ro_limit - ro_start, \ MT_MEMORY | MT_RO | MT_SECURE); \ mmap_add_region(coh_start, coh_start, \ coh_limit - coh_start, \ MT_DEVICE | MT_RW | MT_SECURE); \ mmap_add(plat_mmap); \ init_xlat_tables(); \ \ enable_mmu_el ## _el(0); \ } /* Define EL3 variants of the function initialising the MMU */ DEFINE_CONFIGURE_MMU_EL(3) unsigned int plat_get_syscnt_freq2(void) { return SYS_COUNTER_FREQ_IN_TICKS; } void plat_cci_init(void) { /* Initialize CCI driver */ cci_init(PLAT_MT_CCI_BASE, cci_map, cci_map_length); } void plat_cci_enable(void) { /* * Enable CCI coherency for this cluster. * No need for locks as no other cpu is active at the moment. */ cci_enable_snoop_dvm_reqs(MPIDR_AFFLVL1_VAL(read_mpidr())); } void plat_cci_disable(void) { cci_disable_snoop_dvm_reqs(MPIDR_AFFLVL1_VAL(read_mpidr())); } static void platform_setup_cpu(void) { /* setup big cores */ mmio_write_32((uintptr_t)&mt6795_mcucfg->mp1_config_res, MP1_DIS_RGU0_WAIT_PD_CPUS_L1_ACK | MP1_DIS_RGU1_WAIT_PD_CPUS_L1_ACK | MP1_DIS_RGU2_WAIT_PD_CPUS_L1_ACK | MP1_DIS_RGU3_WAIT_PD_CPUS_L1_ACK | MP1_DIS_RGU_NOCPU_WAIT_PD_CPUS_L1_ACK); mmio_setbits_32((uintptr_t)&mt6795_mcucfg->mp1_miscdbg, MP1_AINACTS); mmio_setbits_32((uintptr_t)&mt6795_mcucfg->mp1_clkenm_div, MP1_SW_CG_GEN); mmio_clrbits_32((uintptr_t)&mt6795_mcucfg->mp1_rst_ctl, MP1_L2RSTDISABLE); /* set big cores arm64 boot mode */ mmio_setbits_32((uintptr_t)&mt6795_mcucfg->mp1_cpucfg, MP1_CPUCFG_64BIT); /* set LITTLE cores arm64 boot mode */ mmio_setbits_32((uintptr_t)&mt6795_mcucfg->mp0_rv_addr[0].rv_addr_hw, MP0_CPUCFG_64BIT); } /******************************************************************************* * Return a pointer to the 'entry_point_info' structure of the next image for * the security state specified. BL33 corresponds to the non-secure image type * while BL32 corresponds to the secure image type. A NULL pointer is returned * if the image does not exist. ******************************************************************************/ entry_point_info_t *bl31_plat_get_next_image_ep_info(uint32_t type) { entry_point_info_t *next_image_info; next_image_info = (type == NON_SECURE) ? &bl33_image_ep_info : &bl32_image_ep_info; /* None of the images on this platform can have 0x0 as the entrypoint */ if (next_image_info->pc) return next_image_info; else return NULL; } /******************************************************************************* * Perform any BL3-1 early platform setup. Here is an opportunity to copy * parameters passed by the calling EL (S-EL1 in BL2 & S-EL3 in BL1) before they * are lost (potentially). This needs to be done before the MMU is initialized * so that the memory layout can be used while creating page tables. * BL2 has flushed this information to memory, so we are guaranteed to pick up * good data. ******************************************************************************/ void bl31_early_platform_setup(bl31_params_t *from_bl2, void *plat_params_from_bl2) { struct mtk_bl_param_t *pmtk_bl_param = (struct mtk_bl_param_t *)from_bl2; struct atf_arg_t *teearg; unsigned long long normal_base; unsigned long long atf_base; assert(from_bl2 != NULL); /* * Mediatek preloader(i.e, BL2) is in 32 bit state, high 32bits * of 64 bit GP registers are UNKNOWN if CPU warm reset from 32 bit * to 64 bit state. So we need to clear high 32bit, * which may be random value. */ pmtk_bl_param = (struct mtk_bl_param_t *)((uint64_t)pmtk_bl_param & 0x00000000ffffffff); plat_params_from_bl2 = (void *)((uint64_t)plat_params_from_bl2 & 0x00000000ffffffff); teearg = (struct atf_arg_t *)pmtk_bl_param->tee_info_addr; console_init(teearg->atf_log_port, UART_CLOCK, UART_BAUDRATE); memcpy((void *)>eearg, (void *)teearg, sizeof(struct atf_arg_t)); normal_base = 0; /* in ATF boot time, timer for cntpct_el0 is not initialized * so it will not count now. */ atf_base = read_cntpct_el0(); sched_clock_init(normal_base, atf_base); VERBOSE("bl31_setup\n"); /* Populate entry point information for BL3-2 and BL3-3 */ SET_PARAM_HEAD(&bl32_image_ep_info, PARAM_EP, VERSION_1, 0); SET_SECURITY_STATE(bl32_image_ep_info.h.attr, SECURE); bl32_image_ep_info.pc = BL32_BASE; SET_PARAM_HEAD(&bl33_image_ep_info, PARAM_EP, VERSION_1, 0); /* * Tell BL3-1 where the non-trusted software image * is located and the entry state information */ /* BL33_START_ADDRESS */ bl33_image_ep_info.pc = pmtk_bl_param->bl33_start_addr; bl33_image_ep_info.spsr = plat_get_spsr_for_bl33_entry(); bl33_image_ep_info.args.arg4 = pmtk_bl_param->bootarg_loc; bl33_image_ep_info.args.arg5 = pmtk_bl_param->bootarg_size; SET_SECURITY_STATE(bl33_image_ep_info.h.attr, NON_SECURE); } /******************************************************************************* * Perform any BL3-1 platform setup code ******************************************************************************/ void bl31_platform_setup(void) { platform_setup_cpu(); generic_delay_timer_init(); plat_mt_gic_driver_init(); /* Initialize the gic cpu and distributor interfaces */ plat_mt_gic_init(); /* Topologies are best known to the platform. */ mt_setup_topology(); } /******************************************************************************* * Perform the very early platform specific architectural setup here. At the * moment this is only intializes the mmu in a quick and dirty way. * Init MTK propiartary log buffer control field. ******************************************************************************/ void bl31_plat_arch_setup(void) { /* Enable non-secure access to CCI-400 registers */ mmio_write_32(CCI400_BASE + CCI_SEC_ACCESS_OFFSET, 0x1); plat_cci_init(); plat_cci_enable(); if (gteearg.atf_log_buf_size != 0) { INFO("mmap atf buffer : 0x%x, 0x%x\n\r", gteearg.atf_log_buf_start, gteearg.atf_log_buf_size); mmap_add_region( gteearg.atf_log_buf_start & ~(PAGE_SIZE_2MB_MASK), gteearg.atf_log_buf_start & ~(PAGE_SIZE_2MB_MASK), PAGE_SIZE_2MB, MT_DEVICE | MT_RW | MT_NS); INFO("mmap atf buffer (force 2MB aligned):0x%x, 0x%x\n", (gteearg.atf_log_buf_start & ~(PAGE_SIZE_2MB_MASK)), PAGE_SIZE_2MB); } /* * add TZRAM_BASE to memory map * then set RO and COHERENT to different attribute */ plat_configure_mmu_el3( (TZRAM_BASE & ~(PAGE_SIZE_MASK)), (TZRAM_SIZE & ~(PAGE_SIZE_MASK)), (BL31_RO_BASE & ~(PAGE_SIZE_MASK)), BL31_RO_LIMIT, BL_COHERENT_RAM_BASE, BL_COHERENT_RAM_END); /* Initialize for ATF log buffer */ if (gteearg.atf_log_buf_size != 0) { gteearg.atf_aee_debug_buf_size = ATF_AEE_BUFFER_SIZE; gteearg.atf_aee_debug_buf_start = gteearg.atf_log_buf_start + gteearg.atf_log_buf_size - ATF_AEE_BUFFER_SIZE; INFO("ATF log service is registered (0x%x, aee:0x%x)\n", gteearg.atf_log_buf_start, gteearg.atf_aee_debug_buf_start); } else{ gteearg.atf_aee_debug_buf_size = 0; gteearg.atf_aee_debug_buf_start = 0; } /* Platform code before bl31_main */ /* compatible to the earlier chipset */ /* Show to ATF log buffer & UART */ INFO("BL3-1: %s\n", version_string); INFO("BL3-1: %s\n", build_message); } #if 0 /* MTK Define */ #define ACTLR_CPUECTLR_BIT (1 << 1) void enable_ns_access_to_cpuectlr(void) { unsigned int next_actlr; /* ACTLR_EL1 do not implement CUPECTLR */ next_actlr = read_actlr_el2(); next_actlr |= ACTLR_CPUECTLR_BIT; write_actlr_el2(next_actlr); next_actlr = read_actlr_el3(); next_actlr |= ACTLR_CPUECTLR_BIT; write_actlr_el3(next_actlr); } #endif /******************************************************************************* * This function prepare boot argument for 64 bit kernel entry ******************************************************************************/ static entry_point_info_t *bl31_plat_get_next_kernel64_ep_info(void) { entry_point_info_t *next_image_info; unsigned int mode; mode = 0; /* Kernel image is always non-secured */ next_image_info = &bl33_image_ep_info; /* Figure out what mode we enter the non-secure world in */ if (EL_IMPLEMENTED(2)) { INFO("Kernel_EL2\n"); mode = MODE_EL2; } else{ INFO("Kernel_EL1\n"); mode = MODE_EL1; } INFO("Kernel is 64Bit\n"); next_image_info->spsr = SPSR_64(mode, MODE_SP_ELX, DISABLE_ALL_EXCEPTIONS); next_image_info->pc = get_kernel_info_pc(); next_image_info->args.arg0 = get_kernel_info_r0(); next_image_info->args.arg1 = get_kernel_info_r1(); INFO("pc=0x%lx, r0=0x%lx, r1=0x%lx\n", next_image_info->pc, next_image_info->args.arg0, next_image_info->args.arg1); SET_SECURITY_STATE(next_image_info->h.attr, NON_SECURE); /* None of the images on this platform can have 0x0 as the entrypoint */ if (next_image_info->pc) return next_image_info; else return NULL; } /******************************************************************************* * This function prepare boot argument for 32 bit kernel entry ******************************************************************************/ static entry_point_info_t *bl31_plat_get_next_kernel32_ep_info(void) { entry_point_info_t *next_image_info; unsigned int mode; mode = 0; /* Kernel image is always non-secured */ next_image_info = &bl33_image_ep_info; /* Figure out what mode we enter the non-secure world in */ mode = MODE32_hyp; /* * TODO: Consider the possibility of specifying the SPSR in * the FIP ToC and allowing the platform to have a say as * well. */ INFO("Kernel is 32Bit\n"); next_image_info->spsr = SPSR_MODE32(mode, SPSR_T_ARM, SPSR_E_LITTLE, (DAIF_FIQ_BIT | DAIF_IRQ_BIT | DAIF_ABT_BIT)); next_image_info->pc = get_kernel_info_pc(); next_image_info->args.arg0 = get_kernel_info_r0(); next_image_info->args.arg1 = get_kernel_info_r1(); next_image_info->args.arg2 = get_kernel_info_r2(); INFO("pc=0x%lx, r0=0x%lx, r1=0x%lx, r2=0x%lx\n", next_image_info->pc, next_image_info->args.arg0, next_image_info->args.arg1, next_image_info->args.arg2); SET_SECURITY_STATE(next_image_info->h.attr, NON_SECURE); /* None of the images on this platform can have 0x0 as the entrypoint */ if (next_image_info->pc) return next_image_info; else return NULL; } /******************************************************************************* * This function prepare boot argument for kernel entrypoint ******************************************************************************/ void bl31_prepare_kernel_entry(uint64_t k32_64) { entry_point_info_t *next_image_info; uint32_t image_type; /* Determine which image to execute next */ /* image_type = bl31_get_next_image_type(); */ image_type = NON_SECURE; /* Program EL3 registers to enable entry into the next EL */ if (k32_64 == 0) next_image_info = bl31_plat_get_next_kernel32_ep_info(); else next_image_info = bl31_plat_get_next_kernel64_ep_info(); assert(next_image_info); assert(image_type == GET_SECURITY_STATE(next_image_info->h.attr)); INFO("BL3-1: Preparing for EL3 exit to %s world, Kernel\n", (image_type == SECURE) ? "secure" : "normal"); INFO("BL3-1: Next image address = 0x%llx\n", (unsigned long long) next_image_info->pc); INFO("BL3-1: Next image spsr = 0x%x\n", next_image_info->spsr); cm_init_context(read_mpidr_el1(), next_image_info); cm_prepare_el3_exit(image_type); }